lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Date: 12 Nov 2006 04:41:57 -0000
From: fcollyer@...il.com
To: bugtraq@...urityfocus.com
Subject: Digipass Go3 Token Dumper (at least for 2006)

The initial reverse engineering of Vasco’s Digipass Go3 algorithm follows in C++.
I think this implementation is a "rough" approximation, if we take some limitations about 2006 and the calculations made into account. Or I'm just joking… :)

This generator was able to predict an "otp" collision, within ~10 days range.
I publish this here, for further study/analysis by the community. The dumper part is something off a mess, used in a needed/just in time basis. Hack it around.
(the names are based in the meta-info used inside Vasco's dpx files; [TARGET] is an otp used to synchronize with a token device)

The 3 secrets' derivation is 3DES 112 based, and real ".dpx" files were used with success.
The core is also 3DES 112 based, as a hash/generator.

I have strong evidences (opcodes) to believe that Vasco's used openssl library, without proper acknowledgment. Who knows?
As DES is free, I guess the patents holded by the company protect only the synchronization side of digipass. Just a theory (I'm lazy, tired, and didn't research).

A brute-force approach was used instead, because I believe in law.
(I hope law also believes me!)

Decimalization from DES_cblock truncation was simplified, and some edge cases omitted.
Tested with gcc/Linux, and cl.exe/Windows.

May the Force be with you!

fc (a.k.a. “faypou”)


/* (c) 2006-2006 faypou (a.k.a fc) */
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <time.h>
#include <string.h>

#ifdef _WIN32

#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#pragma comment(lib, "libeay32.lib")

typedef unsigned __int64 uint64_t;

#else // _WIN32

#include <unistd.h>
#include <sys/time.h>

typedef unsigned char  BYTE;
typedef unsigned short WORD;
typedef unsigned int   DWORD;
typedef const char *   LPCSTR;
typedef unsigned long long uint64_t;

#endif // _WIN32

#include <openssl/des.h>


// ----------------------------------------------------------------------------

#define TRACE printf

#if 1
#define HIT_KEY_TO_CONTINUE() do { TRACE("\t\thit a key to continue\n");\
								getc(stdin);\
							}while (0)
#endif

//#define HIT_KEY_TO_CONTINUE()

// ----------------------------------------------------------------------------

#define SERIAL_LEN       (5)
#define ARGC_COUNT       (7)

#define MK         __argv[1]
#define DEL        __argv[2]
#define DKEY       __argv[3]
#define TDKEY      __argv[4]
#define OFFSET     __argv[5]
#define SERIAL     __argv[6]

#define TARGET     __argv[7]

// ----------------------------------------------------------------------------

typedef struct Digipass_GO3_ctx_
{
	BYTE  vMasterKey  [sizeof(DES_cblock) * 2];
	BYTE  vDEL        [sizeof(DES_cblock)    ];
	BYTE  vDES64KEY   [sizeof(DES_cblock)    ];
	BYTE  vA_TDES64KEY[sizeof(DES_cblock)    ];
	BYTE  vA_OFFSET   [sizeof(DES_cblock)    ];
	BYTE  vSERIAL     [SERIAL_LEN            ];

	// master keys
	DES_key_schedule  ks_master[2];

	// hold 3DES 112 "master-derived" keys
	DES_key_schedule  ks_digipass[2];
	DES_cblock        digipass_k[2];

	DES_cblock secret1; // 8 bytes
	DES_cblock secret2; // 8 bytes

	// only 3 first bytes used to derive OTPs
	DES_cblock        secret3;

	// finally, token keys
	DES_key_schedule ks_token[2];

} Digipass_GO3_ctx_t;

// ----------------------------------------------------------------------------

class CDigipassGO3
{
	public:
		CDigipassGO3() {
			ResetState();
			}

		~CDigipassGO3() {
			ResetState();
			}

		static BYTE inline TO_I(char c) {
			BYTE cc = (BYTE) toupper((BYTE)c);
			return ( c > '9' /* hex chars */ ) ? (cc - '7') : (cc - '0');
			}

		bool InitCtx(	LPCSTR szMK,
						LPCSTR szDEL,
						LPCSTR szDKEY,
						LPCSTR szTDKEY,
						LPCSTR szOFFSET,
						LPCSTR szSERIAL
						);

		void GetOTP(time_t start, char *GeneratedOTP = NULL);

		bool Synchronize(LPCSTR szTarget);

		time_t GetTimeDrift(void) {
				return m_sync_delta;
			}

		LPCSTR GetOTP_Str(void) {
				return m_szTokenCode;
			}

		enum {
				// time step itself is fixed during Digipass init
				TIME_WINDOW_SIZE = 100,

				GO3_CODE_LEN = 6,

				SEC_DELTA = 36,

				GO3_PERIOD = (1 * SEC_DELTA)
			};

	private:
		void ResetState(void) {
			memset(this, 0, sizeof(*this));
			}

		void MakePreSecretFromSerial(DES_cblock &pre, BYTE ord);

		bool DeriveKeys(void);

		static bool ConvertHexStrToByteVector(LPCSTR szSTR, BYTE *pBase);

		Digipass_GO3_ctx_t   m_ctx;
		BYTE                *m_pDerivePinPtr;
		size_t               m_sync_delta;
		char                 m_szTokenCode[GO3_CODE_LEN + 1];
};

// ----------------------------------------------------------------------------
// converts the hex string representation to byte vector representation;
// ----------------------------------------------------------------------------
bool CDigipassGO3::ConvertHexStrToByteVector(LPCSTR szSTR, BYTE *pBase)
{
	size_t len = strlen(szSTR);

	if ( len & 1 )
	{
		TRACE("\tmalformed hex_str not multiple of 2: '%s'...\n", szSTR);
		return false;
	}

	TRACE("\tconverting '%s' to bin...\n", szSTR);

	for ( size_t i = 0, j = 0; i < len; j++, i += 2 )
	{
		pBase[j] = (TO_I(szSTR[i]) << 4) + TO_I(szSTR[i + 1]);
	}

	return true;
}

// ----------------------------------------------------------------------------
//
// we received string material; make DigipassGO3 derivations;
//
// ----------------------------------------------------------------------------
bool CDigipassGO3::InitCtx(		LPCSTR szMK,
								LPCSTR szDEL,
								LPCSTR szDKEY,
								LPCSTR szTDKEY,
								LPCSTR szOFFSET,
								LPCSTR szSERIAL
							)
{
	if (	!ConvertHexStrToByteVector( szMK,     m_ctx.vMasterKey   ) ||
			!ConvertHexStrToByteVector( szDEL,    m_ctx.vDEL         ) ||
			!ConvertHexStrToByteVector( szDKEY,   m_ctx.vDES64KEY    ) ||
			!ConvertHexStrToByteVector( szTDKEY,  m_ctx.vA_TDES64KEY ) ||
			!ConvertHexStrToByteVector( szOFFSET, m_ctx.vA_OFFSET    ) ||
			!ConvertHexStrToByteVector( szSERIAL, m_ctx.vSERIAL      )
		)
	{
		TRACE("\tcannot get str material....\n");
		return false;
	}

	return DeriveKeys();
}

// ----------------------------------------------------------------------------
// prepare the secrets from token serial number; each one has hadcoded value;
// ----------------------------------------------------------------------------
void CDigipassGO3::MakePreSecretFromSerial(DES_cblock &pre, BYTE ord)
{
	memset(&pre, 0, sizeof(DES_cblock));

	BYTE *p = (BYTE *) &pre;

	memcpy(p + (sizeof(DES_cblock) -SERIAL_LEN), m_ctx.vSERIAL, SERIAL_LEN);

	if ( ord == 0x01 ) {
		p[0] = 0x01;
	}
	else if ( ord == 0x02 ) {
		p[1] = 0x10;
	}
	else if ( ord == 0x03 ) {
		p[1] = 0x01;
	}
}

// ----------------------------------------------------------------------------
// Here, the digipass derivation actually happens.
// ----------------------------------------------------------------------------
bool CDigipassGO3::DeriveKeys()
{
	DES_cblock des1;
		memcpy(&des1, m_ctx.vMasterKey, sizeof(DES_cblock));

	DES_cblock des2;
		memcpy(&des2, m_ctx.vMasterKey + sizeof(DES_cblock), sizeof(DES_cblock));

	DES_set_key_unchecked(&des1, &m_ctx.ks_master[0]);
	DES_set_key_unchecked(&des2, &m_ctx.ks_master[1]);

	DES_ecb3_encrypt((DES_cblock *)m_ctx.vDEL, &m_ctx.digipass_k[0], 
					&m_ctx.ks_master[0], &m_ctx.ks_master[1], &m_ctx.ks_master[0], 
					DES_ENCRYPT
					);

	DES_ecb3_encrypt(&m_ctx.digipass_k[0], &m_ctx.digipass_k[1], 
					&m_ctx.ks_master[0], &m_ctx.ks_master[1], &m_ctx.ks_master[0], 
					DES_ENCRYPT
					);

	DES_set_odd_parity(&m_ctx.digipass_k[0]);
	DES_set_odd_parity(&m_ctx.digipass_k[1]);

	DES_set_key_unchecked(&m_ctx.digipass_k[0], &m_ctx.ks_digipass[0]);
	DES_set_key_unchecked(&m_ctx.digipass_k[1], &m_ctx.ks_digipass[1]);

	//
	// ks_digipass[0] && ks_digipass[1] 
	//
	DES_cblock pre1;
		MakePreSecretFromSerial(pre1, 0x01);

	DES_cblock a;
	DES_cblock b;

	DES_ecb3_encrypt(&pre1, &a, 
				&m_ctx.ks_digipass[0], &m_ctx.ks_digipass[1], &m_ctx.ks_digipass[0], 
				DES_ENCRYPT
				);

	for ( int i = 0; i < sizeof(DES_cblock); i++ )
	{
		DES_cblock tmp;
			memcpy(&tmp, (BYTE *)&a + i, sizeof(DES_cblock) -i);
			memcpy((BYTE *)&tmp + sizeof(DES_cblock) -i, m_ctx.vDES64KEY, i);

		DES_ecb3_encrypt(&tmp, &b, 
				&m_ctx.ks_digipass[0], &m_ctx.ks_digipass[1], &m_ctx.ks_digipass[0],
				DES_ENCRYPT
				);

		BYTE al = *(BYTE *) &b;
		BYTE cl = m_ctx.vDES64KEY[i] ^ al;
		((BYTE *)&m_ctx.secret1)[i] = cl;
	}

	DES_cblock pre2;
		MakePreSecretFromSerial(pre2, 0x02);

	DES_ecb3_encrypt(&pre2, &a, 
				&m_ctx.ks_digipass[0], &m_ctx.ks_digipass[1], &m_ctx.ks_digipass[0], 
				DES_ENCRYPT
				);

	//
	// FIXME: each loop/round should be unified in a separate function;
	//
	for ( int i = 0; i < sizeof(DES_cblock); i++ )
	{
		DES_cblock tmp;
			memcpy(&tmp, (BYTE *)&a + i, sizeof(DES_cblock) -i);
			memcpy((BYTE *)&tmp + sizeof(DES_cblock) -i, m_ctx.vA_TDES64KEY, i);

		DES_ecb3_encrypt(&tmp, &b, 
						&m_ctx.ks_digipass[0], &m_ctx.ks_digipass[1], &m_ctx.ks_digipass[0],
						 DES_ENCRYPT
						);

		BYTE al = *(BYTE *) &b;
		BYTE cl = m_ctx.vA_TDES64KEY[i] ^ al;
		((BYTE *)&m_ctx.secret2)[i] = cl;
	}

	DES_cblock pre3;
		MakePreSecretFromSerial(pre3, 0x03);

	DES_ecb3_encrypt(&pre3, &a, 
					&m_ctx.ks_digipass[0], &m_ctx.ks_digipass[1], &m_ctx.ks_digipass[0], 
					DES_ENCRYPT
					);

	for ( int i = 0; i < sizeof(DES_cblock); i++ )
	{
		DES_cblock tmp;
			memcpy(&tmp, (BYTE *)&a + i, sizeof(DES_cblock) -i);
			memcpy((BYTE *)&tmp + sizeof(DES_cblock) -i, m_ctx.vA_OFFSET, i);

		DES_ecb3_encrypt(&tmp, &b, 
						&m_ctx.ks_digipass[0], &m_ctx.ks_digipass[1], &m_ctx.ks_digipass[0],
						 DES_ENCRYPT
						);

		BYTE al = *(BYTE *) &b;
		BYTE cl = m_ctx.vA_OFFSET[i] ^ al;
		((BYTE *)&m_ctx.secret3)[i] = cl;
	}

	DES_set_key_unchecked(&m_ctx.secret1, &m_ctx.ks_token[0]);
	DES_set_key_unchecked(&m_ctx.secret2, &m_ctx.ks_token[1]);

	m_pDerivePinPtr = (BYTE *)&m_ctx.secret3;

	TRACE("\tCDigipassGO3::DeriveKeys() done...\n");

	return true;
}

// ----------------------------------------------------------------------------
// THE generator; start must have been sync'ed before generation;
// FIXME: thread unsafe outside MS CRT
// ----------------------------------------------------------------------------
void CDigipassGO3::GetOTP(time_t start, char *szTokenCode)
{
	DES_cblock token_code = { 0 };
	struct tm time_tm     = *(gmtime(&start)); // here

	DWORD dwTmpCalc31 = (DWORD) (time_tm.tm_min * 60);

	dwTmpCalc31 += (DWORD) time_tm.tm_sec;

	uint64_t tmp = (uint64_t) dwTmpCalc31 * (uint64_t)0x38E38E39;

	tmp >>= 32;
	tmp >>= 3;


	BYTE calc1 = ((BYTE)(time_tm.tm_year / (TIME_WINDOW_SIZE / 10)) << 4) +
					(BYTE)(time_tm.tm_year % 0x0A);

	BYTE calc2 = ((BYTE)(time_tm.tm_hour / (TIME_WINDOW_SIZE / 10)) << 4) +
					(BYTE)(time_tm.tm_hour % 0x0A);

	BYTE calc3 = (((BYTE) tmp / 0x0A) * GO3_CODE_LEN) + (BYTE) tmp;

	BYTE calcA = ((BYTE)(time_tm.tm_mday / (TIME_WINDOW_SIZE / 10)) << 4) +
					(BYTE)(time_tm.tm_mday % 0x0A);

	time_tm.tm_mon++; // time_tm.tm_mon + 1; // ok
	BYTE calcB = ((BYTE)(time_tm.tm_mon / (TIME_WINDOW_SIZE / 10)) << 4) +
					(BYTE)(time_tm.tm_mon % 0x0A);

	// [0], [1], [2] - ok (secret3[0], secret3[1], secret3[2])
	m_pDerivePinPtr[3] = calc1;
	m_pDerivePinPtr[4] = calcB;
	m_pDerivePinPtr[5] = calcA;
	m_pDerivePinPtr[6] = calc2;
	m_pDerivePinPtr[7] = calc3;

	DES_ecb3_encrypt(&m_ctx.secret3, &token_code, 
						&m_ctx.ks_token[0], &m_ctx.ks_token[1], &m_ctx.ks_token[0], 
						DES_ENCRYPT
					);

	//
	// extrated from fixed binary position
	//
	const static BYTE c_table[0x100] = {
							0x92, 0x82, 0x55, 0x23, 0x90, 0x71, 0x22, 0x63, 
							0x37, 0x25, 0xFE, 0xFF, 0xFA, 0xFB, 0xFC, 0xFD,
							0x59, 0x53, 0x06, 0x44, 0x79, 0x75, 0x88, 0x13, 
							0x64, 0x36, 0xEF, 0xEA, 0xEB, 0xEC, 0xED, 0xEE,
							0x34, 0x46, 0x35, 0x21, 0x57, 0x27, 0x20, 0x65, 
							0x77, 0x03, 0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF,
							0x10, 0x78, 0x81, 0x49, 0x84, 0x01, 0x32, 0x96, 
							0x11, 0x02, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF, 0xCA,
							0x04, 0x24, 0x00, 0x54, 0x45, 0x72, 0x87, 0x09, 
							0x73, 0x83, 0xBC, 0xBD, 0xBE, 0xBF, 0xBA, 0xBB,
							0x76, 0x98, 0x12, 0x42, 0x38, 0x33, 0x94, 0x05, 
							0x91, 0x86, 0xAD, 0xAE, 0xAF, 0xAA, 0xAB, 0xAC,
							0x28, 0x39, 0x68, 0x47, 0x15, 0x56, 0x60, 0x17,
							0x99, 0x07, 0x9E, 0x9F, 0x9A, 0x9B, 0x9C, 0x9D,
							0x26, 0x18, 0x50, 0x74, 0x93, 0x89, 0x70, 0x61,
							0x31, 0x58, 0x8F, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E,
							0x16, 0x69, 0x30, 0x08, 0x43, 0x85, 0x67, 0x62,
							0x95, 0x48, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F,
							0x52, 0x66, 0x14, 0x29, 0x19, 0x97, 0x51, 0x40,
							0x80, 0x41, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x6A,
							0xE5, 0xF4, 0xA3, 0xB2, 0xC1, 0xD0, 0xE9, 0xF8,
							0xA7, 0xB6, 0x5C, 0x5D, 0x5E, 0x5F, 0x5A, 0x5B,
							0xF5, 0xA4, 0xB3, 0xC2, 0xD1, 0xE0, 0xF9, 0xA8,
							0xB7, 0xC6, 0x4D, 0x4E, 0x4F, 0x4A, 0x4B, 0x4C,
							0xA5, 0xB4, 0xC3, 0xD2, 0xE1, 0xF0, 0xA9, 0xB8,
							0xC7, 0xD6, 0x3E, 0x3F, 0x3A, 0x3B, 0x3C, 0x3D,
							0xB5, 0xC4, 0xD3, 0xE2, 0xF1, 0xA0, 0xB9, 0xC8,
							0xD7, 0xE6, 0x2F, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E,
							0xC5, 0xD4, 0xE3, 0xF2, 0xA1, 0xB0, 0xC9, 0xD8,
							0xE7, 0xF6, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
							0xD5, 0xE4, 0xF3, 0xA2, 0xB1, 0xC0, 0xD9, 0xE8,
							0xF7, 0xA6, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x0A
						};

	BYTE *pTokenCode  = (BYTE *) &token_code;
	BYTE *pTokenCode2 = pTokenCode;

	BYTE cl = pTokenCode[0];
	BYTE dl = pTokenCode[2];
	BYTE al = pTokenCode[3];
	BYTE bl = 0;

	dl ^= cl;

	cl            = pTokenCode[4];
	pTokenCode[2] = dl;
	dl            = pTokenCode[1];

	pTokenCode2 += 4;
	al ^= dl;

	dl            = pTokenCode[5];
	pTokenCode[3] = al;

	al = pTokenCode[6];
	cl ^= al;

	pTokenCode2[0] = cl;

	cl = pTokenCode[7];
	dl ^= cl;

	pTokenCode[5] = dl;

	for ( int i = 0; i < sizeof(DES_cblock); i++ )
	{
		al = pTokenCode[i];

		if ( al >= 0xA0 )
		{
			al -= 0x60;
		}

		pTokenCode[i] = al;

		BYTE bl = al;

		bl &= 0x0F;

		if ( bl >= 0x0A )
		{
			al -= 0x06;
			pTokenCode[i] = al;
		}
	}

	dl = m_pDerivePinPtr[7];
	pTokenCode[6] = dl;

	for ( int i = 0; i < GO3_CODE_LEN; i++ )
	{
		for ( int j = 0; j < (GO3_CODE_LEN / 2); j++ )
		{
			al = pTokenCode2[j];
			dl = al;
			al &= 0x0F;
			dl >>= 4;

			DWORD dwTmp1 = (DWORD) dl;
			DWORD dwTmp2 = (DWORD) al;

			dwTmp1 &= 0x000000FF;
			dwTmp2 &= 0x000000FF;

			dwTmp1 <<= 4;
			al = c_table[dwTmp1 + dwTmp2];
			pTokenCode2[j] = al;
		}

		dl = pTokenCode2[1];
		cl = pTokenCode2[2];

		bl = dl;
		al = cl;
		bl &= 0x0F;
		al &= 0x0F;

		bl <<= 4;
		cl >>= 4;
		bl += cl;

		cl =  pTokenCode2[0];
		pTokenCode2[2] = bl;

		bl = cl;
		bl &= 0x0F;
		bl <<= 4;
		dl >>= 4;
		cl >>= 4;
		al <<= 4;
		bl += dl;
		cl += al;

		pTokenCode2[1] = bl;
		pTokenCode2[0] = cl;
	}

	#if 0 // digits only
	sprintf(m_szTokenCode, "%02X%02X%02X", 
			pTokenCode2[0], pTokenCode2[1], pTokenCode2[2]
			);
	#endif

	//
	// optimized lookup convertion; see sprintf() disabled above;
	//
	const static char g_HexToStr[0x10] = {
							'0', '1', '2', '3', '4',
							'5', '6', '7', '8', '9',
							//
							// from now on, should never happen; they're 
							//  wrong if reached; the extra padding avoids 
							//  runtime "explosions";
							//
							'A', 'B', 'C', 'D','E', 'F'
						};

	//
	// loop unrolled, still for optimization purposes;
	//
	m_szTokenCode[0x00] = g_HexToStr[((pTokenCode2[0] >> 4) & 0x0F)];
	m_szTokenCode[0x01] = g_HexToStr[((pTokenCode2[0] >> 0) & 0x0F)];
	m_szTokenCode[0x02] = g_HexToStr[((pTokenCode2[1] >> 4) & 0x0F)];
	m_szTokenCode[0x03] = g_HexToStr[((pTokenCode2[1] >> 0) & 0x0F)];
	m_szTokenCode[0x04] = g_HexToStr[((pTokenCode2[2] >> 4) & 0x0F)];
	m_szTokenCode[0x05] = g_HexToStr[((pTokenCode2[2] >> 0) & 0x0F)];

	m_szTokenCode[0x06] = '\0';

	if ( szTokenCode != NULL )
		strcpy(szTokenCode, m_szTokenCode);
}

// ----------------------------------------------------------------------------
// Try to find time drift between token and localtime();
// This can be positive, or negative; depends on kind of time drift;
// Brute-force approach; FIXME
// ----------------------------------------------------------------------------
bool CDigipassGO3::Synchronize(LPCSTR szTarget)
{
	TRACE("\tSynchronize()ing with '%s'...\n", szTarget);


	time_t start = time(NULL);

	const size_t DAYS = 2 * (24 * 60 * 60); // 2 days in seconds

	TRACE("\t\tbackwards...\n");

	HIT_KEY_TO_CONTINUE();

	//
	// backwards
	//
	for ( m_sync_delta = 0; m_sync_delta < DAYS; m_sync_delta += GO3_PERIOD )
	{
		m_szTokenCode[0] = '\0';

		GetOTP(start - m_sync_delta);

		TRACE("\t\tround: %08u, %s:%s\n", m_sync_delta, szTarget, m_szTokenCode);

		if ( strcmp(szTarget, m_szTokenCode) == 0 )
		{
			m_sync_delta = (~(DWORD)m_sync_delta) + 1; // negative, 2s-complement

			TRACE("\t\tSynchronize() found negative drift!\n");
			return true;
		}
	}

	TRACE("\t\tupwards...\n");

	HIT_KEY_TO_CONTINUE();

	//
	// upwards
	//
	for ( m_sync_delta = 0; m_sync_delta < DAYS; m_sync_delta += GO3_PERIOD )
	{
		m_szTokenCode[0] = '\0';

		GetOTP(start + m_sync_delta);

		TRACE("\t\tround: %08u, %s:%s\n", m_sync_delta, szTarget, m_szTokenCode);

		if ( strcmp(szTarget, m_szTokenCode) == 0 )
		{
			TRACE("\t\tSynchronize() found positive drift!\n");
			return true;
		}
	}

	return false;
}

// ----------------------------------------------------------------------------

#ifndef _WIN32
int    __argc;
char **__argv;
#endif // _WIN32

// ----------------------------------------------------------------------------

int main(int argc, char *argv[])
{
#ifndef _WIN32
	__argc = argc;
	__argv = argv;
#endif // _WIN32

	if ( argc < ARGC_COUNT )
	{
		printf("\tincomplete arguments: MK DEL DKEY TDKEY OFFSET SERIAL [TARGET]\n");
		return -1;
	}

	bool bHasTarget = false;

	printf("\n");

	if ( argc == (ARGC_COUNT + 1) )
	{
		bHasTarget = true;
		printf("\t\tconvergence using '%s'...\n", TARGET);
	}


	CDigipassGO3 go3_token;

	if ( !go3_token.InitCtx(MK, DEL, DKEY, TDKEY, OFFSET, SERIAL) )
	{
		printf("\t\tcannot init token ctx...\n");
		return -2;
	}

	printf("\n");

	time_t start = time(NULL);

	if ( bHasTarget )
	{
		if ( !go3_token.Synchronize(TARGET) )
		{
			printf("\t\tSynchronize() did not converge. aborted :(\n");
			return -3;
		}
		else
		{
			printf("\t\tdrif: 0x%08X...\n", go3_token.GetTimeDrift());

			start += go3_token.GetTimeDrift();

			HIT_KEY_TO_CONTINUE();
		}
	}

	int          round    = 0;
	const DWORD  WAIT_MSEC = 51;

	while ( true ) {

		char *str_time = ctime(&start);
		str_time[24] = '\0';

		go3_token.GetOTP(start);

		#if 0
		printf("\ttoken code ('%s':%03d): '%s'...\n", str_time, 
							round, go3_token.GetOTP_Str()
				);
		#endif

		// for database manipulation
		printf("%d;%s\n", round, go3_token.GetOTP_Str());

		#if 0
		Sleep(WAIT_MSEC);
		#endif

		start += (CDigipassGO3::GO3_PERIOD);
		round++;

		if ( round > ((72000 + 10 + 2400) ) * 6) // ~ 6 month
			break;
		//if ( start < 0 ) // time_t are long's in Win32; overflowed!
		//	break;
	}

	return 0;
}

// ----------------------------------------------------------------------------

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ