lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Fri, 8 Dec 2017 22:54:24 +0000
From:   Ard Biesheuvel <ard.biesheuvel@...aro.org>
To:     Eric Biggers <ebiggers3@...il.com>
Cc:     "linux-crypto@...r.kernel.org" <linux-crypto@...r.kernel.org>,
        Herbert Xu <herbert@...dor.apana.org.au>,
        Eric Biggers <ebiggers@...gle.com>,
        linux-fscrypt@...r.kernel.org, "Theodore Ts'o" <tytso@....edu>,
        linux-ext4@...r.kernel.org, linux-f2fs-devel@...ts.sourceforge.net,
        linux-mtd@...ts.infradead.org, linux-fsdevel@...r.kernel.org,
        Jaegeuk Kim <jaegeuk@...nel.org>,
        Michael Halcrow <mhalcrow@...gle.com>,
        Paul Crowley <paulcrowley@...gle.com>,
        Martin Willi <martin@...ongswan.org>,
        David Gstir <david@...ma-star.at>,
        "Jason A . Donenfeld" <Jason@...c4.com>,
        Stephan Mueller <smueller@...onox.de>
Subject: Re: [RFC PATCH] crypto: chacha20 - add implementation using 96-bit nonce

On 8 December 2017 at 22:42, Ard Biesheuvel <ard.biesheuvel@...aro.org> wrote:
> On 8 December 2017 at 22:17, Eric Biggers <ebiggers3@...il.com> wrote:
>> On Fri, Dec 08, 2017 at 11:55:02AM +0000, Ard Biesheuvel wrote:
>>> As pointed out by Eric [0], the way RFC7539 was interpreted when creating
>>> our implementation of ChaCha20 creates a risk of IV reuse when using a
>>> little endian counter as the IV generator. The reason is that the low end
>>> bits of the counter get mapped onto the ChaCha20 block counter, which
>>> advances every 64 bytes. This means that the counter value that gets
>>> selected as IV for the next input block will collide with the ChaCha20
>>> block counter of the previous block, basically recreating the same
>>> keystream but shifted by 64 bytes.
>>>
>>> RFC7539 describes the inputs of the algorithm as follows:
>>>
>>>   The inputs to ChaCha20 are:
>>>
>>>      o  A 256-bit key
>>>
>>>      o  A 32-bit initial counter.  This can be set to any number, but will
>>>         usually be zero or one.  It makes sense to use one if we use the
>>>         zero block for something else, such as generating a one-time
>>>         authenticator key as part of an AEAD algorithm.
>>>
>>>      o  A 96-bit nonce.  In some protocols, this is known as the
>>>         Initialization Vector.
>>>
>>>      o  An arbitrary-length plaintext
>>>
>>> The solution is to use a fixed value of 0 for the initial counter, and
>>> only expose a 96-bit IV to the upper layers of the crypto API.
>>>
>>> So introduce a new ChaCha20 flavor called chacha20-iv96, which takes the
>>> above into account, and should become the preferred ChaCha20
>>> implementation going forward for general use.
>>
>> Note that there are two conflicting conventions for what inputs ChaCha takes.
>> The original paper by Daniel Bernstein
>> (https://cr.yp.to/chacha/chacha-20080128.pdf) says that the block counter is
>> 64-bit and the nonce is 64-bit, thereby expanding the key into 2^64 randomly
>> accessible streams, each containing 2^64 randomly accessible 64-byte blocks.
>>
>> The RFC 7539 convention is equivalent to seeking to a large offset (determined
>> by the first 32 bits of the 96-bit nonce) in the keystream defined by the djb
>> convention, but only if the 32-bit portion of the block counter never overflows.
>>
>> Maybe it is only RFC 7539 that matters because that is what is being
>> standardized by the IETF; I don't know.  But it confused me.
>>
>
> The distinction only matters if you start the counter at zero (or
> one), because you 'lose' 32 bits of IV that will never be != 0 in
> practice if you use a 64-bit counter.
>
> So that argues for not exposing the block counter as part of the API,
> given that it should start at zero anyway, and that you should take
> care not to put colliding values in it.
>
>> Anyway, I actually thought it was intentional that the ChaCha implementations in
>> the Linux kernel allowed specifying the block counter, and therefore allowed
>> seeking to any point in the keystream, exposing the full functionality of the
>> cipher.  It's true that it's easily misused though, so there may nevertheless be
>> value in providing a nonce-only variant.
>>
>
> Currently, the skcipher API does not allow such random access, so
> while I can see how that could be a useful feature, we can't really
> make use of it today. But more importantly, it still does not mean the
> block counter should be exposed to the /users/ of the skcipher API
> which typically encrypt/decrypt blocks that are much larger than 64
> bytes.

... but now that I think of it, how is this any different from, say,
AES in CTR mode? The counter is big endian, but apart from that, using
IVs derived from a counter will result in the exact same issue, only
with a shift of 16 bytes.

That means using file block numbers as IV is simply inappropriate, and
you should encrypt them first like is done for AES-CBC

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ