Zero length iovecs can go into an infinite loop in writev, because the iovec iterator does not always advance over them. The sequence required to trigger this is not trivial. I think it requires that a zero-length iovec be followed by a non-zero-length iovec which causes a pagefault in the atomic usercopy. This causes the writev code to drop back into single-segment copy mode, which then tries to copy the 0 bytes of the zero-length iovec; a zero length copy looks like a failure though, so it loops. Put a test into iov_iter_advance to catch zero-length iovecs. We could just put the test in the fallback path, but I feel it is more robust to skip over zero-length iovecs throughout the code (iovec iterator may be used in filesystems too, so it should be robust). Signed-off-by: Nick Piggin --- Index: linux-2.6/mm/filemap.c =================================================================== --- linux-2.6.orig/mm/filemap.c +++ linux-2.6/mm/filemap.c @@ -1733,7 +1733,11 @@ static void __iov_iter_advance_iov(struc const struct iovec *iov = i->iov; size_t base = i->iov_offset; - while (bytes) { + /* + * The !iov->iov_len check ensures we skip over unlikely + * zero-length segments. + */ + while (bytes || !iov->iov_len) { int copy = min(bytes, iov->iov_len - base); bytes -= copy; @@ -2251,6 +2255,7 @@ again: cond_resched(); + iov_iter_advance(i, copied); if (unlikely(copied == 0)) { /* * If we were unable to copy any data at all, we must @@ -2264,7 +2269,6 @@ again: iov_iter_single_seg_count(i)); goto again; } - iov_iter_advance(i, copied); pos += copied; written += copied;