lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [day] [month] [year] [list]
Date:	Mon, 05 Jan 2009 11:08:24 +0000
From:	Phillip Lougher <phillip@...gher.demon.co.uk>
To:	akpm@...ux-foundation.org, linux-embedded@...r.kernel.org,
	linux-fsdevel@...r.kernel.org, linux-kernel@...r.kernel.org,
	tim.bird@...sony.com, sfr@...b.auug.org.au
Subject: [PATCH V3 16/17] Squashfs: documentation


Signed-off-by: Phillip Lougher <phillip@...gher.demon.co.uk>
---
 Documentation/filesystems/squashfs.txt |  225 ++++++++++++++++++++++++++++++++
 1 files changed, 225 insertions(+), 0 deletions(-)

diff --git a/Documentation/filesystems/squashfs.txt b/Documentation/filesystems/squashfs.txt
new file mode 100644
index 0000000..3e79e4a
--- /dev/null
+++ b/Documentation/filesystems/squashfs.txt
@@ -0,0 +1,225 @@
+SQUASHFS 4.0 FILESYSTEM
+=======================
+
+Squashfs is a compressed read-only filesystem for Linux.
+It uses zlib compression to compress files, inodes and directories.
+Inodes in the system are very small and all blocks are packed to minimise
+data overhead. Block sizes greater than 4K are supported up to a maximum
+of 1Mbytes (default block size 128K).
+
+Squashfs is intended for general read-only filesystem use, for archival
+use (i.e. in cases where a .tar.gz file may be used), and in constrained
+block device/memory systems (e.g. embedded systems) where low overhead is
+needed.
+
+Mailing list: squashfs-devel@...ts.sourceforge.net
+Web site: www.squashfs.org
+
+1. FILESYSTEM FEATURES
+----------------------
+
+Squashfs filesystem features versus Cramfs:
+
+				Squashfs		Cramfs
+
+Max filesystem size:		2^64			16 MiB
+Max file size:			~ 2 TiB			16 MiB
+Max files:			unlimited		unlimited
+Max directories:		unlimited		unlimited
+Max entries per directory:	unlimited		unlimited
+Max block size:			1 MiB			4 KiB
+Metadata compression:		yes			no
+Directory indexes:		yes			no
+Sparse file support:		yes			no
+Tail-end packing (fragments):	yes			no
+Exportable (NFS etc.):		yes			no
+Hard link support:		yes			no
+"." and ".." in readdir:	yes			no
+Real inode numbers:		yes			no
+32-bit uids/gids:		yes			no
+File creation time:		yes			no
+Xattr and ACL support:		no			no
+
+Squashfs compresses data, inodes and directories.  In addition, inode and
+directory data are highly compacted, and packed on byte boundaries.  Each
+compressed inode is on average 8 bytes in length (the exact length varies on
+file type, i.e. regular file, directory, symbolic link, and block/char device
+inodes have different sizes).
+
+2. USING SQUASHFS
+-----------------
+
+As squashfs is a read-only filesystem, the mksquashfs program must be used to
+create populated squashfs filesystems.  This and other squashfs utilities
+can be obtained from http://www.squashfs.org.  Usage instructions can be
+obtained from this site also.
+
+
+3. SQUASHFS FILESYSTEM DESIGN
+-----------------------------
+
+A squashfs filesystem consists of seven parts, packed together on a byte
+alignment:
+
+	 ---------------
+	|  superblock 	|
+	|---------------|
+	|  datablocks   |
+	|  & fragments  |
+	|---------------|
+	|  inode table	|
+	|---------------|
+	|   directory	|
+	|     table     |
+	|---------------|
+	|   fragment	|
+	|    table      |
+	|---------------|
+	|    export     |
+	|    table      |
+	|---------------|
+	|    uid/gid	|
+	|  lookup table	|
+	 ---------------
+
+Compressed data blocks are written to the filesystem as files are read from
+the source directory, and checked for duplicates.  Once all file data has been
+written the completed inode, directory, fragment, export and uid/gid lookup
+tables are written.
+
+3.1 Inodes
+----------
+
+Metadata (inodes and directories) are compressed in 8Kbyte blocks.  Each
+compressed block is prefixed by a two byte length, the top bit is set if the
+block is uncompressed.  A block will be uncompressed if the -noI option is set,
+or if the compressed block was larger than the uncompressed block.
+
+Inodes are packed into the metadata blocks, and are not aligned to block
+boundaries, therefore inodes overlap compressed blocks.  Inodes are identified
+by a 48-bit number which encodes the location of the compressed metadata block
+containing the inode, and the byte offset into that block where the inode is
+placed (<block, offset>).
+
+To maximise compression there are different inodes for each file type
+(regular file, directory, device, etc.), the inode contents and length
+varying with the type.
+
+To further maximise compression, two types of regular file inode and
+directory inode are defined: inodes optimised for frequently occurring
+regular files and directories, and extended types where extra
+information has to be stored.
+
+3.2 Directories
+---------------
+
+Like inodes, directories are packed into compressed metadata blocks, stored
+in a directory table.  Directories are accessed using the start address of
+the metablock containing the directory and the offset into the
+decompressed block (<block, offset>).
+
+Directories are organised in a slightly complex way, and are not simply
+a list of file names.  The organisation takes advantage of the
+fact that (in most cases) the inodes of the files will be in the same
+compressed metadata block, and therefore, can share the start block.
+Directories are therefore organised in a two level list, a directory
+header containing the shared start block value, and a sequence of directory
+entries, each of which share the shared start block.  A new directory header
+is written once/if the inode start block changes.  The directory
+header/directory entry list is repeated as many times as necessary.
+
+Directories are sorted, and can contain a directory index to speed up
+file lookup.  Directory indexes store one entry per metablock, each entry
+storing the index/filename mapping to the first directory header
+in each metadata block.  Directories are sorted in alphabetical order,
+and at lookup the index is scanned linearly looking for the first filename
+alphabetically larger than the filename being looked up.  At this point the
+location of the metadata block the filename is in has been found.
+The general idea of the index is ensure only one metadata block needs to be
+decompressed to do a lookup irrespective of the length of the directory.
+This scheme has the advantage that it doesn't require extra memory overhead
+and doesn't require much extra storage on disk.
+
+3.3 File data
+-------------
+
+Regular files consist of a sequence of contiguous compressed blocks, and/or a
+compressed fragment block (tail-end packed block).   The compressed size
+of each datablock is stored in a block list contained within the
+file inode.
+
+To speed up access to datablocks when reading 'large' files (256 Mbytes or
+larger), the code implements an index cache that caches the mapping from
+block index to datablock location on disk.
+
+The index cache allows Squashfs to handle large files (up to 1.75 TiB) while
+retaining a simple and space-efficient block list on disk.  The cache
+is split into slots, caching up to eight 224 GiB files (128 KiB blocks).
+Larger files use multiple slots, with 1.75 TiB files using all 8 slots.
+The index cache is designed to be memory efficient, and by default uses
+16 KiB.
+
+3.4 Fragment lookup table
+-------------------------
+
+Regular files can contain a fragment index which is mapped to a fragment
+location on disk and compressed size using a fragment lookup table.  This
+fragment lookup table is itself stored compressed into metadata blocks.
+A second index table is used to locate these.  This second index table for
+speed of access (and because it is small) is read at mount time and cached
+in memory.
+
+3.5 Uid/gid lookup table
+------------------------
+
+For space efficiency regular files store uid and gid indexes, which are
+converted to 32-bit uids/gids using an id look up table.  This table is
+stored compressed into metadata blocks.  A second index table is used to
+locate these.  This second index table for speed of access (and because it
+is small) is read at mount time and cached in memory.
+
+3.6 Export table
+----------------
+
+To enable Squashfs filesystems to be exportable (via NFS etc.) filesystems
+can optionally (disabled with the -no-exports Mksquashfs option) contain
+an inode number to inode disk location lookup table.  This is required to
+enable Squashfs to map inode numbers passed in filehandles to the inode
+location on disk, which is necessary when the export code reinstantiates
+expired/flushed inodes.
+
+This table is stored compressed into metadata blocks.  A second index table is
+used to locate these.  This second index table for speed of access (and because
+it is small) is read at mount time and cached in memory.
+
+
+4. TODOS AND OUTSTANDING ISSUES
+-------------------------------
+
+4.1 Todo list
+-------------
+
+Implement Xattr and ACL support.  The Squashfs 4.0 filesystem layout has hooks
+for these but the code has not been written.  Once the code has been written
+the existing layout should not require modification.
+
+4.2 Squashfs internal cache
+---------------------------
+
+Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
+recently accessed data Squashfs uses two small metadata and fragment caches.
+
+The cache is not used for file datablocks, these are decompressed and cached in
+the page-cache in the normal way.  The cache is used to temporarily cache
+fragment and metadata blocks which have been read as a result of a metadata
+(i.e. inode or directory) or fragment access.  Because metadata and fragments
+are packed together into blocks (to gain greater compression) the read of a
+particular piece of metadata or fragment will retrieve other metadata/fragments
+which have been packed with it, these because of locality-of-reference may be
+read in the near future. Temporarily caching them ensures they are available
+for near future access without requiring an additional read and decompress.
+
+In the future this internal cache may be replaced with an implementation which
+uses the kernel page cache.  Because the page cache operates on page sized
+units this may introduce additional complexity in terms of locking and
+associated race conditions.
-- 
1.5.6.3

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ