lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:	Sun, 17 Jan 2010 16:37:07 +0200
From:	Avi Kivity <avi@...hat.com>
To:	Jim Keniston <jkenisto@...ibm.com>
CC:	Peter Zijlstra <peterz@...radead.org>,
	Srikar Dronamraju <srikar@...ux.vnet.ibm.com>,
	Ingo Molnar <mingo@...e.hu>,
	Arnaldo Carvalho de Melo <acme@...radead.org>,
	Ananth N Mavinakayanahalli <ananth@...ibm.com>,
	utrace-devel <utrace-devel@...hat.com>,
	Frederic Weisbecker <fweisbec@...il.com>,
	Masami Hiramatsu <mhiramat@...hat.com>,
	Maneesh Soni <maneesh@...ibm.com>,
	Mark Wielaard <mjw@...hat.com>,
	LKML <linux-kernel@...r.kernel.org>
Subject: Re: [RFC] [PATCH 1/7] User Space Breakpoint Assistance Layer (UBP)

On 01/16/2010 02:58 AM, Jim Keniston wrote:
>
> I hear (er, read) you.  Emulation may turn out to be the answer for some
> architectures.  But here are some things to keep in mind about the
> various approaches:
>
> 1. Single-stepping inline is easiest: you need to know very little about
> the instruction set you're probing.  But it's inadequate for
> multithreaded apps.
> 2. Single-stepping out of line solves the multithreading issue (as do #3
> and #4), but requires more knowledge of the instruction set.  (In
> particular, calls, jumps, and returns need special care; as do
> rip-relative instructions in x86_64.)  I count 9 architectures that
> support kprobes.  I think most of these do SSOL.
> 3. "Boosted" probes (where an appended jump instruction removes the need
> for the single-step trap on many instructions) require even more
> knowledge of the instruction set, and like SSOL, require XOL slots.
> Right now, as far as I know, x86 is the only architecture with boosted
> kprobes.
> 4. Emulation removes the need for the XOL area, but requires pretty much
> total knowledge of the instruction set.  It's also a performance win for
> architectures that can't do #3.  I see kvm implemented on 4
> architectures (ia64, powerpc, s390, x86).  Coincidentally, those are the
> architectures to which uprobes (old uprobes, with ubp and xol bundled
> in) has already been ported (though Intel hasn't been maintaining their
> ia64 port).  So it sort of comes down to how objectionable the XOL vma
> (or page) really is.
>    

The kvm emulator emulates only a subset of the x86 instruction set 
(basically mmio instructions and commonly-used page-table manipulation 
instructions, as well as some privileged instructions).  It would take a 
lot of work to expand it to be completely generic; and even then it will 
fail if userspace uses an instruction set extension the kernel is not 
aware of.

To me, boosted probes with a fallback to single-stepping seems to be the 
better option by far.

-- 
error compiling committee.c: too many arguments to function

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ