lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Fri, 23 Mar 2018 10:54:47 +0100
From:   Greg Kroah-Hartman <gregkh@...uxfoundation.org>
To:     linux-kernel@...r.kernel.org
Cc:     Greg Kroah-Hartman <gregkh@...uxfoundation.org>,
        stable@...r.kernel.org, Stephen Boyd <sboyd@...eaurora.org>,
        Shawn Guo <shawnguo@...nel.org>,
        Dong Aisheng <aisheng.dong@....com>,
        Jerome Brunet <jbrunet@...libre.com>,
        Marek Szyprowski <m.szyprowski@...sung.com>,
        Heiko Stuebner <heiko@...ech.de>,
        Michael Turquette <mturquette@...libre.com>
Subject: [PATCH 4.14 73/77] clk: migrate the count of orphaned clocks at init

4.14-stable review patch.  If anyone has any objections, please let me know.

------------------

From: Jerome Brunet <jbrunet@...libre.com>

commit 99652a469df19086d594e8e89757d4081a812789 upstream.

The orphan clocks reparents should migrate any existing count from the
orphan clock to its new acestor clocks, otherwise we may have
inconsistent counts in the tree and end-up with gated critical clocks

Assuming we have two clocks, A and B.
* Clock A has CLK_IS_CRITICAL flag set.
* Clock B is an ancestor of A which can gate. Clock B gate is left
  enabled by the bootloader.

Step 1: Clock A is registered. Since it is a critical clock, it is
enabled. The clock being still an orphan, no parent are enabled.

Step 2: Clock B is registered and reparented to clock A (potentially
through several other clocks). We are now in situation where the enable
count of clock A is 1 while the enable count of its ancestors is 0, which
is not good.

Step 3: in lateinit, clk_disable_unused() is called, the enable_count of
clock B being 0, clock B is gated and and critical clock A actually gets
disabled.

This situation was found while adding fdiv_clk gates to the meson8b
platform.  These clocks parent clk81 critical clock, which is the mother
of all peripheral clocks in this system. Because of the issue described
here, the system is crashing when clk_disable_unused() is called.

The situation is solved by reverting
commit f8f8f1d04494 ("clk: Don't touch hardware when reparenting during registration").
To avoid breaking again the situation described in this commit
description, enabling critical clock should be done before walking the
orphan list. This way, a parent critical clock may not be accidentally
disabled due to the CLK_OPS_PARENT_ENABLE mechanism.

Fixes: f8f8f1d04494 ("clk: Don't touch hardware when reparenting during registration")
Cc: Stephen Boyd <sboyd@...eaurora.org>
Cc: Shawn Guo <shawnguo@...nel.org>
Cc: Dong Aisheng <aisheng.dong@....com>
Signed-off-by: Jerome Brunet <jbrunet@...libre.com>
Tested-by: Marek Szyprowski <m.szyprowski@...sung.com>
Tested-by: Heiko Stuebner <heiko@...ech.de>
Signed-off-by: Michael Turquette <mturquette@...libre.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@...uxfoundation.org>

---
 drivers/clk/clk.c |   37 +++++++++++++++++++++----------------
 1 file changed, 21 insertions(+), 16 deletions(-)

--- a/drivers/clk/clk.c
+++ b/drivers/clk/clk.c
@@ -2471,22 +2471,37 @@ static int __clk_core_init(struct clk_co
 	core->rate = core->req_rate = rate;
 
 	/*
+	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
+	 * don't get accidentally disabled when walking the orphan tree and
+	 * reparenting clocks
+	 */
+	if (core->flags & CLK_IS_CRITICAL) {
+		unsigned long flags;
+
+		clk_core_prepare(core);
+
+		flags = clk_enable_lock();
+		clk_core_enable(core);
+		clk_enable_unlock(flags);
+	}
+
+	/*
 	 * walk the list of orphan clocks and reparent any that newly finds a
 	 * parent.
 	 */
 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
 		struct clk_core *parent = __clk_init_parent(orphan);
-		unsigned long flags;
 
 		/*
-		 * we could call __clk_set_parent, but that would result in a
-		 * redundant call to the .set_rate op, if it exists
+		 * We need to use __clk_set_parent_before() and _after() to
+		 * to properly migrate any prepare/enable count of the orphan
+		 * clock. This is important for CLK_IS_CRITICAL clocks, which
+		 * are enabled during init but might not have a parent yet.
 		 */
 		if (parent) {
 			/* update the clk tree topology */
-			flags = clk_enable_lock();
-			clk_reparent(orphan, parent);
-			clk_enable_unlock(flags);
+			__clk_set_parent_before(orphan, parent);
+			__clk_set_parent_after(orphan, parent, NULL);
 			__clk_recalc_accuracies(orphan);
 			__clk_recalc_rates(orphan, 0);
 		}
@@ -2503,16 +2518,6 @@ static int __clk_core_init(struct clk_co
 	if (core->ops->init)
 		core->ops->init(core->hw);
 
-	if (core->flags & CLK_IS_CRITICAL) {
-		unsigned long flags;
-
-		clk_core_prepare(core);
-
-		flags = clk_enable_lock();
-		clk_core_enable(core);
-		clk_enable_unlock(flags);
-	}
-
 	kref_init(&core->ref);
 out:
 	clk_prepare_unlock();


Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ