lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Fri, 08 Jun 2018 23:51:01 +0200
From:   Stefan Agner <stefan@...er.ch>
To:     Dmitry Osipenko <digetx@...il.com>
Cc:     boris.brezillon@...tlin.com, dwmw2@...radead.org,
        computersforpeace@...il.com, marek.vasut@...il.com,
        robh+dt@...nel.org, mark.rutland@....com, thierry.reding@...il.com,
        dev@...xeye.de, miquel.raynal@...tlin.com, richard@....at,
        marcel@...wiler.com, krzk@...nel.org, benjamin.lindqvist@...ian.se,
        jonathanh@...dia.com, pdeschrijver@...dia.com, pgaikwad@...dia.com,
        mirza.krak@...il.com, linux-mtd@...ts.infradead.org,
        linux-tegra@...r.kernel.org, devicetree@...r.kernel.org,
        linux-kernel@...r.kernel.org
Subject: Re: [PATCH v3 4/6] mtd: rawnand: add NVIDIA Tegra NAND Flash
 controller driver

On 01.06.2018 11:20, Dmitry Osipenko wrote:
> On 01.06.2018 01:16, Stefan Agner wrote:
>> Add support for the NAND flash controller found on NVIDIA
>> Tegra 2 SoCs. This implementation does not make use of the
>> command queue feature. Regular operations/data transfers are
>> done in PIO mode. Page read/writes with hardware ECC make
>> use of the DMA for data transfer.
>>
>> Signed-off-by: Lucas Stach <dev@...xeye.de>
>> Signed-off-by: Stefan Agner <stefan@...er.ch>
>> ---
>>  MAINTAINERS                       |    7 +
>>  drivers/mtd/nand/raw/Kconfig      |    6 +
>>  drivers/mtd/nand/raw/Makefile     |    1 +
>>  drivers/mtd/nand/raw/tegra_nand.c | 1143 +++++++++++++++++++++++++++++
>>  4 files changed, 1157 insertions(+)
>>  create mode 100644 drivers/mtd/nand/raw/tegra_nand.c
>>
>> diff --git a/MAINTAINERS b/MAINTAINERS
>> index 58b9861ccf99..c2e5571c85d4 100644
>> --- a/MAINTAINERS
>> +++ b/MAINTAINERS
>> @@ -13844,6 +13844,13 @@ M:	Laxman Dewangan <ldewangan@...dia.com>
>>  S:	Supported
>>  F:	drivers/input/keyboard/tegra-kbc.c
>>
>> +TEGRA NAND DRIVER
>> +M:	Stefan Agner <stefan@...er.ch>
>> +M:	Lucas Stach <dev@...xeye.de>
>> +S:	Maintained
>> +F:	Documentation/devicetree/bindings/mtd/nvidia-tegra20-nand.txt
>> +F:	drivers/mtd/nand/raw/tegra_nand.c
>> +
>>  TEGRA PWM DRIVER
>>  M:	Thierry Reding <thierry.reding@...il.com>
>>  S:	Supported
>> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
>> index 19a2b283fbbe..e9093f52371e 100644
>> --- a/drivers/mtd/nand/raw/Kconfig
>> +++ b/drivers/mtd/nand/raw/Kconfig
>> @@ -534,4 +534,10 @@ config MTD_NAND_MTK
>>  	  Enables support for NAND controller on MTK SoCs.
>>  	  This controller is found on mt27xx, mt81xx, mt65xx SoCs.
>>
>> +config MTD_NAND_TEGRA
>> +	tristate "Support for NAND controller on NVIDIA Tegra"
>> +	depends on ARCH_TEGRA || COMPILE_TEST
>> +	help
>> +	  Enables support for NAND flash controller on NVIDIA Tegra SoC.
>> +
>>  endif # MTD_NAND
>> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
>> index 165b7ef9e9a1..d5a5f9832b88 100644
>> --- a/drivers/mtd/nand/raw/Makefile
>> +++ b/drivers/mtd/nand/raw/Makefile
>> @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_HISI504)	        += hisi504_nand.o
>>  obj-$(CONFIG_MTD_NAND_BRCMNAND)		+= brcmnand/
>>  obj-$(CONFIG_MTD_NAND_QCOM)		+= qcom_nandc.o
>>  obj-$(CONFIG_MTD_NAND_MTK)		+= mtk_ecc.o mtk_nand.o
>> +obj-$(CONFIG_MTD_NAND_TEGRA)		+= tegra_nand.o
>>
>>  nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
>>  nand-objs += nand_amd.o
>> diff --git a/drivers/mtd/nand/raw/tegra_nand.c b/drivers/mtd/nand/raw/tegra_nand.c
>> new file mode 100644
>> index 000000000000..e9664f2938a3
>> --- /dev/null
>> +++ b/drivers/mtd/nand/raw/tegra_nand.c
>> @@ -0,0 +1,1143 @@
>> +// SPDX-License-Identifier: GPL-2.0
>> +/*
>> + * Copyright (C) 2018 Stefan Agner <stefan@...er.ch>
>> + * Copyright (C) 2014-2015 Lucas Stach <dev@...xeye.de>
>> + * Copyright (C) 2012 Avionic Design GmbH
>> + */
>> +
>> +#include <linux/clk.h>
>> +#include <linux/completion.h>
>> +#include <linux/delay.h>
>> +#include <linux/dma-mapping.h>
>> +#include <linux/err.h>
>> +#include <linux/gpio/consumer.h>
>> +#include <linux/interrupt.h>
>> +#include <linux/io.h>
>> +#include <linux/module.h>
>> +#include <linux/mtd/partitions.h>
>> +#include <linux/mtd/rawnand.h>
>> +#include <linux/of.h>
>> +#include <linux/platform_device.h>
>> +#include <linux/reset.h>
>> +
>> +#define CMD					0x00
>> +#define   CMD_GO				BIT(31)
>> +#define   CMD_CLE				BIT(30)
>> +#define   CMD_ALE				BIT(29)
>> +#define   CMD_PIO				BIT(28)
>> +#define   CMD_TX				BIT(27)
>> +#define   CMD_RX				BIT(26)
>> +#define   CMD_SEC_CMD				BIT(25)
>> +#define   CMD_AFT_DAT				BIT(24)
>> +#define   CMD_TRANS_SIZE(x)			(((x - 1) & 0xf) << 20)
>> +#define   CMD_A_VALID				BIT(19)
>> +#define   CMD_B_VALID				BIT(18)
>> +#define   CMD_RD_STATUS_CHK			BIT(17)
>> +#define   CMD_RBSY_CHK				BIT(16)
>> +#define   CMD_CE(x)				BIT((8 + ((x) & 0x7)))
>> +#define   CMD_CLE_SIZE(x)			(((x - 1) & 0x3) << 4)
>> +#define   CMD_ALE_SIZE(x)			(((x - 1) & 0xf) << 0)
>> +
>> +#define STATUS					0x04
>> +
>> +#define ISR					0x08
>> +#define   ISR_CORRFAIL_ERR			BIT(24)
>> +#define   ISR_UND				BIT(7)
>> +#define   ISR_OVR				BIT(6)
>> +#define   ISR_CMD_DONE				BIT(5)
>> +#define   ISR_ECC_ERR				BIT(4)
>> +
>> +#define IER					0x0c
>> +#define   IER_ERR_TRIG_VAL(x)			(((x) & 0xf) << 16)
>> +#define   IER_UND				BIT(7)
>> +#define   IER_OVR				BIT(6)
>> +#define   IER_CMD_DONE				BIT(5)
>> +#define   IER_ECC_ERR				BIT(4)
>> +#define   IER_GIE				BIT(0)
>> +
>> +#define CFG					0x10
>> +#define   CFG_HW_ECC				BIT(31)
>> +#define   CFG_ECC_SEL				BIT(30)
>> +#define   CFG_ERR_COR				BIT(29)
>> +#define   CFG_PIPE_EN				BIT(28)
>> +#define   CFG_TVAL_4				(0 << 24)
>> +#define   CFG_TVAL_6				(1 << 24)
>> +#define   CFG_TVAL_8				(2 << 24)
>> +#define   CFG_SKIP_SPARE			BIT(23)
>> +#define   CFG_BUS_WIDTH_16			BIT(21)
>> +#define   CFG_COM_BSY				BIT(20)
>> +#define   CFG_PS_256				(0 << 16)
>> +#define   CFG_PS_512				(1 << 16)
>> +#define   CFG_PS_1024				(2 << 16)
>> +#define   CFG_PS_2048				(3 << 16)
>> +#define   CFG_PS_4096				(4 << 16)
>> +#define   CFG_SKIP_SPARE_SIZE_4			(0 << 14)
>> +#define   CFG_SKIP_SPARE_SIZE_8			(1 << 14)
>> +#define   CFG_SKIP_SPARE_SIZE_12		(2 << 14)
>> +#define   CFG_SKIP_SPARE_SIZE_16		(3 << 14)
>> +#define   CFG_TAG_BYTE_SIZE(x)			((x) & 0xff)
>> +
>> +#define TIMING_1				0x14
>> +#define   TIMING_TRP_RESP(x)			(((x) & 0xf) << 28)
>> +#define   TIMING_TWB(x)				(((x) & 0xf) << 24)
>> +#define   TIMING_TCR_TAR_TRR(x)			(((x) & 0xf) << 20)
>> +#define   TIMING_TWHR(x)			(((x) & 0xf) << 16)
>> +#define   TIMING_TCS(x)				(((x) & 0x3) << 14)
>> +#define   TIMING_TWH(x)				(((x) & 0x3) << 12)
>> +#define   TIMING_TWP(x)				(((x) & 0xf) <<  8)
>> +#define   TIMING_TRH(x)				(((x) & 0x3) <<  4)
>> +#define   TIMING_TRP(x)				(((x) & 0xf) <<  0)
>> +
>> +#define RESP					0x18
>> +
>> +#define TIMING_2				0x1c
>> +#define   TIMING_TADL(x)			((x) & 0xf)
>> +
>> +#define CMD_1					0x20
>> +#define CMD_2					0x24
>> +#define ADDR_1					0x28
>> +#define ADDR_2					0x2c
>> +
>> +#define DMA_CTRL				0x30
>> +#define   DMA_CTRL_GO				BIT(31)
>> +#define   DMA_CTRL_IN				(0 << 30)
>> +#define   DMA_CTRL_OUT				BIT(30)
>> +#define   DMA_CTRL_PERF_EN			BIT(29)
>> +#define   DMA_CTRL_IE_DONE			BIT(28)
>> +#define   DMA_CTRL_REUSE			BIT(27)
>> +#define   DMA_CTRL_BURST_1			(2 << 24)
>> +#define   DMA_CTRL_BURST_4			(3 << 24)
>> +#define   DMA_CTRL_BURST_8			(4 << 24)
>> +#define   DMA_CTRL_BURST_16			(5 << 24)
>> +#define   DMA_CTRL_IS_DONE			BIT(20)
>> +#define   DMA_CTRL_EN_A				BIT(2)
>> +#define   DMA_CTRL_EN_B				BIT(1)
>> +
>> +#define DMA_CFG_A				0x34
>> +#define DMA_CFG_B				0x38
>> +
>> +#define FIFO_CTRL				0x3c
>> +#define   FIFO_CTRL_CLR_ALL			BIT(3)
>> +
>> +#define DATA_PTR				0x40
>> +#define TAG_PTR					0x44
>> +#define ECC_PTR					0x48
>> +
>> +#define DEC_STATUS				0x4c
>> +#define   DEC_STATUS_A_ECC_FAIL			BIT(1)
>> +#define   DEC_STATUS_ERR_COUNT_MASK		0x00ff0000
>> +#define   DEC_STATUS_ERR_COUNT_SHIFT		16
>> +
>> +#define HWSTATUS_CMD				0x50
>> +#define HWSTATUS_MASK				0x54
>> +#define   HWSTATUS_RDSTATUS_MASK(x)		(((x) & 0xff) << 24)
>> +#define   HWSTATUS_RDSTATUS_VALUE(x)		(((x) & 0xff) << 16)
>> +#define   HWSTATUS_RBSY_MASK(x)			(((x) & 0xff) << 8)
>> +#define   HWSTATUS_RBSY_VALUE(x)		(((x) & 0xff) << 0)
>> +
>> +#define BCH_CONFIG				0xcc
>> +#define   BCH_ENABLE				BIT(0)
>> +#define   BCH_TVAL_4				(0 << 4)
>> +#define   BCH_TVAL_8				(1 << 4)
>> +#define   BCH_TVAL_14				(2 << 4)
>> +#define   BCH_TVAL_16				(3 << 4)
>> +
>> +#define DEC_STAT_RESULT				0xd0
>> +#define DEC_STAT_BUF				0xd4
>> +#define   DEC_STAT_BUF_FAIL_SEC_FLAG_MASK	0xff000000
>> +#define   DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT	24
>> +#define   DEC_STAT_BUF_CORR_SEC_FLAG_MASK	0x00ff0000
>> +#define   DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT	16
>> +#define   DEC_STAT_BUF_MAX_CORR_CNT_MASK	0x00001f00
>> +#define   DEC_STAT_BUF_MAX_CORR_CNT_SHIFT	8
>> +
>> +#define OFFSET(val, off)		((val) < (off) ? 0 : (val) - (off))
>> +
>> +#define SKIP_SPARE_BYTES	4
>> +#define BITS_PER_STEP_RS	18
>> +#define BITS_PER_STEP_BCH	13
>> +
>> +struct tegra_nand_controller {
>> +	struct nand_hw_control controller;
>> +	void __iomem *regs;
>> +	struct clk *clk;
>> +	struct device *dev;
>> +	struct completion command_complete;
>> +	struct completion dma_complete;
>> +	bool last_read_error;
>> +	int cur_chip;
>> +	struct nand_chip *chip;
>> +};
>> +
>> +struct tegra_nand_chip {
>> +	struct nand_chip chip;
>> +	struct gpio_desc *wp_gpio;
>> +	struct mtd_oob_region tag;
>> +};
>> +
>> +static inline struct tegra_nand_controller *to_tegra_ctrl(
>> +						struct nand_hw_control *hw_ctrl)
>> +{
>> +	return container_of(hw_ctrl, struct tegra_nand_controller, controller);
>> +}
>> +
>> +static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip)
>> +{
>> +	return container_of(chip, struct tegra_nand_chip, chip);
>> +}
>> +
>> +static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
>> +				       struct mtd_oob_region *oobregion)
>> +{
>> +	struct nand_chip *chip = mtd_to_nand(mtd);
>> +	int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
>> +					  BITS_PER_BYTE);
>> +
>> +	if (section > 0)
>> +		return -ERANGE;
>> +
>> +	oobregion->offset = SKIP_SPARE_BYTES;
>> +	oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
>> +
>> +	return 0;
>> +}
>> +
>> +static int tegra_nand_ooblayout_rs_free(struct mtd_info *mtd, int section,
>> +					struct mtd_oob_region *oobregion)
>> +{
>> +	struct nand_chip *chip = mtd_to_nand(mtd);
>> +	int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
>> +					  BITS_PER_BYTE);
>> +
>> +	if (section > 0)
>> +		return -ERANGE;
>> +
>> +	oobregion->offset = SKIP_SPARE_BYTES +
>> +			    round_up(bytes_per_step * chip->ecc.steps, 4);
>> +	oobregion->length = mtd->oobsize - oobregion->offset;
>> +
>> +	return 0;
>> +}
>> +
>> +static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
>> +	.ecc = tegra_nand_ooblayout_rs_ecc,
>> +	.free = tegra_nand_ooblayout_rs_free,
>> +};
>> +
>> +static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
>> +				       struct mtd_oob_region *oobregion)
>> +{
>> +	struct nand_chip *chip = mtd_to_nand(mtd);
>> +	int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
>> +					  BITS_PER_BYTE);
>> +
>> +	if (section > 0)
>> +		return -ERANGE;
>> +
>> +	oobregion->offset = SKIP_SPARE_BYTES;
>> +	oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
>> +
>> +	return 0;
>> +}
>> +
>> +static int tegra_nand_ooblayout_bch_free(struct mtd_info *mtd, int section,
>> +					struct mtd_oob_region *oobregion)
>> +{
>> +	struct nand_chip *chip = mtd_to_nand(mtd);
>> +	int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
>> +					  BITS_PER_BYTE);
>> +
>> +	if (section > 0)
>> +		return -ERANGE;
>> +
>> +	oobregion->offset = SKIP_SPARE_BYTES +
>> +			    round_up(bytes_per_step * chip->ecc.steps, 4);
>> +	oobregion->length = mtd->oobsize - oobregion->offset;
>> +
>> +	return 0;
>> +}
>> +
>> +/*
>> + * Layout with tag bytes is
>> + *
>> + * --------------------------------------------------------------------------
>> + * | main area                       | skip bytes | tag bytes | parity | .. |
>> + * --------------------------------------------------------------------------
>> + *
>> + * If not tag bytes are written, parity moves right after skip bytes!
>> + */
>> +static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
>> +	.ecc = tegra_nand_ooblayout_bch_ecc,
>> +	.free = tegra_nand_ooblayout_bch_free,
>> +};
>> +
>> +static irqreturn_t tegra_nand_irq(int irq, void *data)
>> +{
>> +	struct tegra_nand_controller *ctrl = data;
>> +	u32 isr, dma;
>> +
>> +	isr = readl_relaxed(ctrl->regs + ISR);
>> +	dma = readl_relaxed(ctrl->regs + DMA_CTRL);
>> +	dev_dbg(ctrl->dev, "isr %08x\n", isr);
>> +
>> +	if (!isr && !(dma & DMA_CTRL_IS_DONE))
>> +		return IRQ_NONE;
>> +
>> +	/*
>> +	 * The bit name is somewhat missleading: This is also set when
>> +	 * HW ECC was successful. The data sheet states:
>> +	 * Correctable OR Un-correctable errors occurred in the DMA transfer...
>> +	 */
>> +	if (isr & ISR_CORRFAIL_ERR)
>> +		ctrl->last_read_error = true;
>> +
>> +	if (isr & ISR_CMD_DONE)
>> +		complete(&ctrl->command_complete);
>> +
>> +	if (isr & ISR_UND)
>> +		dev_err(ctrl->dev, "FIFO underrun\n");
>> +
>> +	if (isr & ISR_OVR)
>> +		dev_err(ctrl->dev, "FIFO overrun\n");
>> +
>> +	/* handle DMA interrupts */
>> +	if (dma & DMA_CTRL_IS_DONE) {
>> +		writel_relaxed(dma, ctrl->regs + DMA_CTRL);
>> +		complete(&ctrl->dma_complete);
>> +	}
>> +
>> +	/* clear interrupts */
>> +	writel_relaxed(isr, ctrl->regs + ISR);
>> +
>> +	return IRQ_HANDLED;
>> +}
>> +
>> +static const char * const tegra_nand_reg_names[] = {
>> +	"COMMAND",
>> +	"STATUS",
>> +	"ISR",
>> +	"IER",
>> +	"CONFIG",
>> +	"TIMING",
>> +	NULL,
>> +	"TIMING2",
>> +	"CMD_REG1",
>> +	"CMD_REG2",
>> +	"ADDR_REG1",
>> +	"ADDR_REG2",
>> +	"DMA_MST_CTRL",
>> +	"DMA_CFG_A",
>> +	"DMA_CFG_B",
>> +	"FIFO_CTRL",
>> +};
>> +
>> +static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl)
>> +{
>> +	u32 reg;
>> +	int i;
>> +
>> +	dev_err(ctrl->dev, "Tegra NAND controller register dump\n");
>> +	for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) {
>> +		const char *reg_name = tegra_nand_reg_names[i];
>> +
>> +		if (!reg_name)
>> +			continue;
>> +
>> +		reg = readl_relaxed(ctrl->regs + (i * 4));
>> +		dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg);
>> +	}
>> +}
>> +
>> +static int tegra_nand_cmd(struct nand_chip *chip,
>> +			 const struct nand_subop *subop)
>> +{
>> +	const struct nand_op_instr *instr;
>> +	const struct nand_op_instr *instr_data_in = NULL;
>> +	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>> +	unsigned int op_id, size = 0, offset = 0;
>> +	bool first_cmd = true;
>> +	u32 reg, cmd = 0;
>> +	int ret;
>> +
>> +	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
>> +		unsigned int naddrs, i;
>> +		const u8 *addrs;
>> +		u32 addr1 = 0, addr2 = 0;
>> +
>> +		instr = &subop->instrs[op_id];
>> +
>> +		switch (instr->type) {
>> +		case NAND_OP_CMD_INSTR:
>> +			if (first_cmd) {
>> +				cmd |= CMD_CLE;
>> +				writel_relaxed(instr->ctx.cmd.opcode,
>> +					       ctrl->regs + CMD_1);
>> +			} else {
>> +				cmd |= CMD_SEC_CMD;
>> +				writel_relaxed(instr->ctx.cmd.opcode,
>> +					       ctrl->regs + CMD_2);
>> +			}
>> +			first_cmd = false;
>> +			break;
>> +		case NAND_OP_ADDR_INSTR:
>> +			offset = nand_subop_get_addr_start_off(subop, op_id);
>> +			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
>> +			addrs = &instr->ctx.addr.addrs[offset];
>> +
>> +			cmd |= CMD_ALE | CMD_ALE_SIZE(naddrs);
>> +			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
>> +				addr1 |= *addrs++ << (BITS_PER_BYTE * i);
>> +			naddrs -= i;
>> +			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
>> +				addr2 |= *addrs++ << (BITS_PER_BYTE * i);
>> +			writel_relaxed(addr1, ctrl->regs + ADDR_1);
>> +			writel_relaxed(addr2, ctrl->regs + ADDR_2);
>> +			break;
>> +
>> +		case NAND_OP_DATA_IN_INSTR:
>> +			size = nand_subop_get_data_len(subop, op_id);
>> +			offset = nand_subop_get_data_start_off(subop, op_id);
>> +
>> +			cmd |= CMD_TRANS_SIZE(size) | CMD_PIO | CMD_RX |
>> +				CMD_A_VALID;
>> +
>> +			instr_data_in = instr;
>> +			break;
>> +
>> +		case NAND_OP_DATA_OUT_INSTR:
>> +			size = nand_subop_get_data_len(subop, op_id);
>> +			offset = nand_subop_get_data_start_off(subop, op_id);
>> +
>> +			cmd |= CMD_TRANS_SIZE(size) | CMD_PIO | CMD_TX |
>> +				CMD_A_VALID;
>> +
>> +			memcpy(&reg, instr->ctx.data.buf.out + offset, size);
>> +			writel_relaxed(reg, ctrl->regs + RESP);
>> +
>> +			break;
>> +		case NAND_OP_WAITRDY_INSTR:
>> +			cmd |= CMD_RBSY_CHK;
>> +			break;
>> +
>> +		}
>> +	}
>> +
>> +	cmd |= CMD_GO | CMD_CE(ctrl->cur_chip);
>> +	writel_relaxed(cmd, ctrl->regs + CMD);
>> +	ret = wait_for_completion_timeout(&ctrl->command_complete,
>> +					  msecs_to_jiffies(500));
>> +	if (!ret) {
>> +		dev_err(ctrl->dev, "CMD timeout\n");
>> +		tegra_nand_dump_reg(ctrl);
>> +		return -ETIMEDOUT;
>> +	}
> 
> - wait_for_completion_timeout() could fail

Not according to:
https://elixir.bootlin.com/linux/latest/source/kernel/sched/completion.c#L140
https://www.kernel.org/doc/Documentation/scheduler/completion.txt

Afaik, only the _interruptible variant can fail.

Btw, maybe we should use the _io variant?


> - HW shall be reset
> - completion shall be re-inited because IRQ could fire just after the completion
> timeout
> 
> I'd write it something like this:
> 
> #define INT_MASK	(IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE)
> 
> #define HWSTATUS_MASK	(HWSTATUS_RDSTATUS_MASK(1) |		 \
> 			 HWSTATUS_RDSTATUS_VALUE(0) |		 \
> 			 HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \
> 			 HWSTATUS_RBSY_VALUE(NAND_STATUS_READY))
> 
> #define HW_TIMEOUT	500
> 
> void tegra_nand_controller_reset(struct tegra_nand_controller *ctrl)
> {
> 	int err;
> 
> 	disable_irq(ctrl->irq);
> 
> 	err = reset_control_reset(ctrl->rst);
> 	if (err) {
> 		dev_err(ctrl->dev, "Failed to reset HW: %d\n", err);
> 		msleep(HW_TIMEOUT);
> 	}
> 
> 	writel_relaxed(NAND_CMD_STATUS, ctrl->regs + HWSTATUS_CMD);
> 	writel_relaxed(HWSTATUS_MASK, ctrl->regs + HWSTATUS_MASK);
> 	writel_relaxed(INT_MASK, ctrl->regs + ISR);

If we do a controller reset, there is much more state than that which
needs to be restored. A lot of it is not readily available currently
(timing, ECC settings...)

That seems a lot of work for a code path I do not intend to ever use :-)

--
Stefan

> 
> 	reinit_completion(&ctrl->command_complete);
> 	reinit_completion(&ctrl->dma_complete);
> 
> 	enable_irq(ctrl->irq);
> }
> 
> ...
> 
> 	ret = wait_for_completion_timeout(&ctrl->command_complete,
> 					  msecs_to_jiffies(HW_TIMEOUT));
> 	if (ret <= 0) {
> 		if (ret == 0) {
> 			dev_err(ctrl->dev, "CMD timeout\n");
> 			tegra_nand_dump_reg(ctrl);
> 			ret = -ETIMEDOUT;
> 		} else {
> 			dev_err(ctrl->dev,
> 				"Failed to wait for CMD completion: %d\n",
> 				ret);
> 		}
> 
> 		tegra_nand_controller_reset(ctrl);
> 		return ret;
> 	}
> 
>> +
>> +	if (instr_data_in) {
>> +		reg = readl_relaxed(ctrl->regs + RESP);
>> +		memcpy(instr_data_in->ctx.data.buf.in + offset, &reg, size);
>> +	}
>> +
>> +	return 0;
>> +}
>> +
>> +static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
>> +	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
>> +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> +		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
>> +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
>> +	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
>> +		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
>> +	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
>> +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> +		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
>> +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
>> +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
>> +		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
>> +	);
>> +
>> +static int tegra_nand_exec_op(struct nand_chip *chip,
>> +			     const struct nand_operation *op,
>> +			     bool check_only)
>> +{
>> +	return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
>> +				      check_only);
>> +}
>> +static void tegra_nand_select_chip(struct mtd_info *mtd, int chip_nr)
>> +{
>> +	struct nand_chip *chip = mtd_to_nand(mtd);
>> +	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>> +
>> +	ctrl->cur_chip = chip_nr;
>> +}
>> +
>> +static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
>> +			      struct nand_chip *chip, bool enable)
>> +{
>> +	u32 reg;
>> +
>> +	switch (chip->ecc.algo) {
>> +	case NAND_ECC_RS:
>> +		reg = readl_relaxed(ctrl->regs + CFG);
>> +		if (enable)
>> +			reg |= CFG_HW_ECC | CFG_ERR_COR;
>> +		else
>> +			reg &= ~(CFG_HW_ECC | CFG_ERR_COR);
>> +		writel_relaxed(reg, ctrl->regs + CFG);
>> +		break;
>> +	case NAND_ECC_BCH:
>> +		reg = readl_relaxed(ctrl->regs + BCH_CONFIG);
>> +		if (enable)
>> +			reg |= BCH_ENABLE;
>> +		else
>> +			reg &= ~BCH_ENABLE;
>> +		writel_relaxed(reg, ctrl->regs + BCH_CONFIG);
>> +		break;
>> +	default:
>> +		dev_err(ctrl->dev, "Unsupported hardware ECC algorithm\n");
>> +		break;
>> +	}
>> +}
>> +
>> +static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip,
>> +				void *buf, int oob_required, int page,
>> +				bool read)
>> +{
>> +	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>> +	struct tegra_nand_chip *nand = to_tegra_chip(chip);
>> +	enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
>> +	dma_addr_t dma_addr;
>> +	u32 cmd, dma_ctrl;
>> +	int ret, dma_len;
>> +
>> +	if (read) {
>> +		writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_1);
>> +		writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_2);
>> +	} else {
>> +		writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_1);
>> +		writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_2);
>> +	}
>> +	cmd = CMD_CLE | CMD_SEC_CMD;
>> +
>> +	/* Lower 16-bits are column, always 0 */
>> +	writel_relaxed(page << 16, ctrl->regs + ADDR_1);
>> +
>> +	if (chip->options & NAND_ROW_ADDR_3) {
>> +		writel_relaxed(page >> 16, ctrl->regs + ADDR_2);
>> +		cmd |= CMD_ALE | CMD_ALE_SIZE(5);
>> +	} else {
>> +		cmd |= CMD_ALE | CMD_ALE_SIZE(4);
>> +	}
>> +
>> +	dma_len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
>> +	dma_addr = dma_map_single(ctrl->dev, buf, dma_len, dir);
>> +	ret = dma_mapping_error(ctrl->dev, dma_addr);
>> +	if (ret) {
>> +		dev_err(ctrl->dev, "dma mapping error\n");
>> +		return -EINVAL;
>> +	}
>> +
>> +	writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
>> +	writel_relaxed(dma_addr, ctrl->regs + DATA_PTR);
>> +
>> +	if (oob_required) {
>> +		dma_addr_t dma_addr_tag = dma_addr + mtd->writesize;
>> +
>> +		writel_relaxed(nand->tag.length - 1, ctrl->regs + DMA_CFG_B);
>> +		writel_relaxed(dma_addr_tag + nand->tag.offset,
>> +			       ctrl->regs + TAG_PTR);
>> +	} else {
>> +		writel_relaxed(0, ctrl->regs + DMA_CFG_B);
>> +		writel_relaxed(0, ctrl->regs + TAG_PTR);
>> +	}
>> +
>> +	dma_ctrl = DMA_CTRL_GO | DMA_CTRL_PERF_EN |
>> +		   DMA_CTRL_IE_DONE | DMA_CTRL_IS_DONE |
>> +		   DMA_CTRL_BURST_16 | DMA_CTRL_EN_A;
>> +	if (oob_required)
>> +		dma_ctrl |= DMA_CTRL_EN_B;
>> +	if (read)
>> +		dma_ctrl |= DMA_CTRL_IN | DMA_CTRL_REUSE;
>> +	else
>> +		dma_ctrl |= DMA_CTRL_OUT;
>> +
>> +	writel_relaxed(dma_ctrl, ctrl->regs + DMA_CTRL);
>> +
>> +	cmd |= CMD_GO | CMD_RBSY_CHK | CMD_TRANS_SIZE(9) |
>> +	       CMD_CE(ctrl->cur_chip) | CMD_A_VALID;
>> +	if (oob_required)
>> +		cmd |= CMD_B_VALID;
>> +	if (read)
>> +		cmd |= CMD_RX;
>> +	else
>> +		cmd |= CMD_TX | CMD_AFT_DAT;
>> +
>> +	writel_relaxed(cmd, ctrl->regs + CMD);
>> +
>> +	ret = wait_for_completion_timeout(&ctrl->command_complete,
>> +					  msecs_to_jiffies(500));
>> +	if (!ret) {
>> +		dev_err(ctrl->dev, "CMD timeout\n");
>> +		tegra_nand_dump_reg(ctrl);
>> +		ret = -ETIMEDOUT;
>> +		goto err_unmap_dma;
>> +	}
>> +
>> +	ret = wait_for_completion_timeout(&ctrl->dma_complete,
>> +					  msecs_to_jiffies(500));
>> +	if (!ret) {
>> +		dev_err(ctrl->dev, "DMA timeout\n");
>> +		tegra_nand_dump_reg(ctrl);
>> +		ret = -ETIMEDOUT;
>> +		goto err_unmap_dma;
>> +	}
>> +	ret = 0;
> 
> Same as the above comment regarding the wait_for_completion_timeout().
> 
>> +
>> +err_unmap_dma:
>> +	dma_unmap_single(ctrl->dev, dma_addr, dma_len, dir);
>> +
>> +	return ret;
>> +}
>> +
>> +static int tegra_nand_read_page_hwecc(struct mtd_info *mtd,
>> +				      struct nand_chip *chip,
>> +				      uint8_t *buf, int oob_required, int page)
>> +{
>> +	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>> +	u32 dec_stat, max_corr_cnt;
>> +	unsigned long fail_sec_flag;
>> +	int ret;
>> +
>> +	tegra_nand_hw_ecc(ctrl, chip, true);
>> +	ret = tegra_nand_page_xfer(mtd, chip, buf, oob_required, page, true);
>> +	tegra_nand_hw_ecc(ctrl, chip, false);
>> +	if (ret)
>> +		return ret;
>> +
>> +	/* No correctable or un-correctable errors, page must have 0 bitflips */
>> +	if (!ctrl->last_read_error)
>> +		return 0;
>> +
>> +	/*
>> +	 * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF
>> +	 * which contains information for all ECC selections.
>> +	 *
>> +	 * Note that since we do not use Command Queues DEC_RESULT does not
>> +	 * state the number of pages we can read from the DEC_STAT_BUF. But
>> +	 * since CORRFAIL_ERR did occur during page read we do have a valid
>> +	 * result in DEC_STAT_BUF.
>> +	 */
>> +	ctrl->last_read_error = false;
>> +	dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF);
>> +
>> +	fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >>
>> +			DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT;
>> +
>> +	max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
>> +		       DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
>> +
>> +	if (fail_sec_flag) {
>> +		int bit, max_bitflips = 0;
>> +
>> +		/*
>> +		 * Check if all sectors in a page failed. If only some failed
>> +		 * its definitly not an erased page and we can return error
>> +		 * stats right away.
>> +		 *
>> +		 * E.g. controller might return fail_sec_flag with 0x4, which
>> +		 * would mean only the third sector failed to correct.
>> +		 */
>> +		if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) {
>> +			mtd->ecc_stats.failed += hweight8(fail_sec_flag);
>> +			return max_corr_cnt;
>> +		}
>> +
>> +		/*
>> +		 * All sectors failed to correct, but the ECC isn't smart
>> +		 * enough to figure out if a page is really completely erased.
>> +		 * We check the read data here to figure out if it's a
>> +		 * legitimate ECC error or only an erased page.
>> +		 */
>> +		for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) {
>> +			u8 *data = buf + (chip->ecc.size * bit);
>> +
>> +			ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
>> +							  NULL, 0,
>> +							  NULL, 0,
>> +							  chip->ecc.strength);
>> +			if (ret < 0)
>> +				mtd->ecc_stats.failed++;
>> +			else
>> +				max_bitflips = max(ret, max_bitflips);
>> +		}
>> +
>> +		return max_t(unsigned int, max_corr_cnt, max_bitflips);
>> +	} else {
>> +		int corr_sec_flag;
>> +
>> +		corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
>> +				DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
>> +
>> +		/*
>> +		 * The value returned in the register is the maximum of
>> +		 * bitflips encountered in any of the ECC regions. As there is
>> +		 * no way to get the number of bitflips in a specific regions
>> +		 * we are not able to deliver correct stats but instead
>> +		 * overestimate the number of corrected bitflips by assuming
>> +		 * that all regions where errors have been corrected
>> +		 * encountered the maximum number of bitflips.
>> +		 */
>> +		mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);
>> +
>> +		return max_corr_cnt;
>> +	}
>> +
>> +}
>> +
>> +static int tegra_nand_write_page_hwecc(struct mtd_info *mtd,
>> +				       struct nand_chip *chip,
>> +				       const uint8_t *buf, int oob_required,
>> +				       int page)
>> +{
>> +	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>> +	int ret;
>> +
>> +	tegra_nand_hw_ecc(ctrl, chip, true);
>> +	ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_required, page,
>> +				   false);
>> +	tegra_nand_hw_ecc(ctrl, chip, false);
>> +
>> +	return ret;
>> +}
>> +
>> +static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
>> +				    const struct nand_sdr_timings *timings)
>> +{
>> +	/*
>> +	 * The period (and all other timings in this function) is in ps,
>> +	 * so need to take care here to avoid integer overflows.
>> +	 */
>> +	unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
>> +	unsigned int period = DIV_ROUND_UP(1000000, rate);
>> +	u32 val, reg = 0;
>> +
>> +	val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
>> +				timings->tRC_min), period);
>> +	reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3));
>> +
>> +	val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
>> +			       max(timings->tALS_min, timings->tALH_min)),
>> +			   period);
>> +	reg |= TIMING_TCS(OFFSET(val, 2));
>> +
>> +	val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
>> +			   period);
>> +	reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1));
>> +
>> +	reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1));
>> +	reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1));
>> +	reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1));
>> +	reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1));
>> +	reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1));
>> +
>> +	writel_relaxed(reg, ctrl->regs + TIMING_1);
>> +
>> +	val = DIV_ROUND_UP(timings->tADL_min, period);
>> +	reg = TIMING_TADL(OFFSET(val, 3));
>> +
>> +	writel_relaxed(reg, ctrl->regs + TIMING_2);
>> +}
>> +
>> +static int tegra_nand_setup_data_interface(struct mtd_info *mtd, int csline,
>> +					   const struct nand_data_interface *conf)
>> +{
>> +	struct nand_chip *chip = mtd_to_nand(mtd);
>> +	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>> +	const struct nand_sdr_timings *timings;
>> +
>> +	timings = nand_get_sdr_timings(conf);
>> +	if (IS_ERR(timings))
>> +		return PTR_ERR(timings);
>> +
>> +	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
>> +		return 0;
>> +
>> +	tegra_nand_setup_timing(ctrl, timings);
>> +
>> +	return 0;
>> +}
>> +
>> +
>> +const int rs_strength_bootable[] = { 4 };
>> +const int rs_strength[] = { 4, 6, 8 };
>> +const int bch_strength_bootable[] = { 8, 16 };
>> +const int bch_strength[] = { 4, 8, 14, 16 };
> 
> These const's shall be 'static'.
> 
>> +
>> +static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength,
>> +				   int strength_len, int oobsize)
>> +{
>> +	bool maximize = chip->ecc.options & NAND_ECC_MAXIMIZE;
>> +	int i;
>> +
>> +	/*
>> +	 * Loop through available strengths. Backwards in case we try to
>> +	 * maximize the BCH strength.
>> +	 */
>> +	for (i = 0; i < strength_len; i++) {
>> +		int strength_sel, bytes_per_step, bytes_per_page;
>> +
>> +		if (maximize) {
>> +			strength_sel = strength[strength_len - i - 1];
>> +		} else {
>> +			strength_sel = strength[i];
>> +
>> +			if (strength_sel < chip->ecc_strength_ds)
>> +				continue;
>> +		}
>> +
>> +		bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * strength_sel,
>> +					      BITS_PER_BYTE);
>> +		bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4);
>> +
>> +		/* Check whether strength fits OOB */
>> +		if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES))
>> +			return strength_sel;
>> +	}
>> +
>> +	return -EINVAL;
>> +}
>> +
>> +static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize)
>> +{
>> +	const int *strength;
>> +	int strength_len;
>> +
>> +	switch (chip->ecc.algo) {
>> +	case NAND_ECC_RS:
>> +		if (chip->options & NAND_IS_BOOT_MEDIUM) {
>> +			strength = rs_strength_bootable;
>> +			strength_len = ARRAY_SIZE(rs_strength_bootable);
>> +		} else {
>> +			strength = rs_strength;
>> +			strength_len = ARRAY_SIZE(rs_strength);
>> +		}
>> +		break;
>> +	case NAND_ECC_BCH:
>> +		if (chip->options & NAND_IS_BOOT_MEDIUM) {
>> +			strength = bch_strength_bootable;
>> +			strength_len = ARRAY_SIZE(bch_strength_bootable);
>> +		} else {
>> +			strength = bch_strength;
>> +			strength_len = ARRAY_SIZE(bch_strength);
>> +		}
>> +		break;
>> +	default:
>> +		return -EINVAL;
>> +	}
>> +
>> +	return tegra_nand_get_strength(chip, strength, strength_len, oobsize);
>> +}
>> +
>> +static int tegra_nand_chips_init(struct device *dev,
>> +				 struct tegra_nand_controller *ctrl)
>> +{
>> +	struct device_node *np = dev->of_node;
>> +	struct device_node *np_nand;
>> +	int nchips = of_get_child_count(np);
>> +	struct tegra_nand_chip *nand;
>> +	struct mtd_info *mtd;
>> +	struct nand_chip *chip;
>> +	unsigned long config, bch_config = 0;
>> +	int bits_per_step;
>> +	int ret;
>> +
>> +	if (nchips != 1) {
>> +		dev_err(dev, "Currently only one NAND chip supported\n");
>> +		return -EINVAL;
>> +	}
>> +
>> +	np_nand = of_get_next_child(np, NULL);
>> +
>> +	nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
>> +	if (!nand)
>> +		return -ENOMEM;
>> +
>> +	nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
>> +
>> +	if (IS_ERR(nand->wp_gpio)) {
>> +		ret = PTR_ERR(nand->wp_gpio);
>> +		dev_err(dev, "Failed to request WP GPIO: %d\n", ret);
>> +		return ret;
>> +	}
>> +
>> +	chip = &nand->chip;
>> +	chip->controller = &ctrl->controller;
>> +
>> +	mtd = nand_to_mtd(chip);
>> +
>> +	mtd->dev.parent = dev;
>> +	if (!mtd->name)
>> +		mtd->name = "tegra_nand";
>> +	mtd->owner = THIS_MODULE;
>> +
>> +	nand_set_flash_node(chip, np_nand);
>> +
>> +	chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
>> +	chip->exec_op = tegra_nand_exec_op;
>> +	chip->select_chip = tegra_nand_select_chip;
>> +	chip->setup_data_interface = tegra_nand_setup_data_interface;
>> +
>> +	ret = nand_scan_ident(mtd, 1, NULL);
>> +	if (ret)
>> +		return ret;
>> +
>> +	if (chip->bbt_options & NAND_BBT_USE_FLASH)
>> +		chip->bbt_options |= NAND_BBT_NO_OOB;
>> +
>> +	chip->ecc.mode = NAND_ECC_HW;
>> +	chip->ecc.size = 512;
>> +	chip->ecc.steps = mtd->writesize / chip->ecc.size;
>> +	if (chip->ecc_step_ds != 512) {
>> +		dev_err(dev, "Unsupported step size %d\n", chip->ecc_step_ds);
>> +		return -EINVAL;
>> +	}
>> +
>> +	chip->ecc.read_page = tegra_nand_read_page_hwecc;
>> +	chip->ecc.write_page = tegra_nand_write_page_hwecc;
>> +
>> +	config = readl_relaxed(ctrl->regs + CFG);
>> +	config |= CFG_PIPE_EN | CFG_SKIP_SPARE | CFG_SKIP_SPARE_SIZE_4;
>> +
>> +	if (chip->options & NAND_BUSWIDTH_16)
>> +		config |= CFG_BUS_WIDTH_16;
>> +
>> +	if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
>> +		if (mtd->writesize < 2048)
>> +			chip->ecc.algo = NAND_ECC_RS;
>> +		else
>> +			chip->ecc.algo = NAND_ECC_BCH;
>> +	}
>> +
>> +	if (chip->ecc.algo == NAND_ECC_BCH && mtd->writesize < 2048) {
>> +		dev_err(dev, "BCH supportes 2K or 4K page size only\n");
>> +		return -EINVAL;
>> +	}
>> +
>> +	if (!chip->ecc.strength) {
>> +		ret = tegra_nand_select_strength(chip, mtd->oobsize);
>> +		if (ret < 0) {
>> +			dev_err(dev, "No valid strenght found, minimum %d\n",
>> +				chip->ecc_strength_ds);
>> +			return ret;
>> +		}
>> +
>> +		chip->ecc.strength = ret;
>> +	}
>> +
>> +	switch (chip->ecc.algo) {
>> +	case NAND_ECC_RS:
>> +		bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
>> +		mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
>> +		switch (chip->ecc.strength) {
>> +		case 4:
>> +			config |= CFG_ECC_SEL | CFG_TVAL_4;
>> +			break;
>> +		case 6:
>> +			config |= CFG_ECC_SEL | CFG_TVAL_6;
>> +			break;
>> +		case 8:
>> +			config |= CFG_ECC_SEL | CFG_TVAL_8;
>> +			break;
>> +		default:
>> +			dev_err(dev, "ECC strength %d not supported\n",
>> +				chip->ecc.strength);
>> +			return -EINVAL;
>> +		}
>> +		break;
>> +	case NAND_ECC_BCH:
>> +		bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
>> +		mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
>> +		switch (chip->ecc.strength) {
>> +		case 4:
>> +			bch_config = BCH_TVAL_4;
>> +			break;
>> +		case 8:
>> +			bch_config = BCH_TVAL_8;
>> +			break;
>> +		case 14:
>> +			bch_config = BCH_TVAL_14;
>> +			break;
>> +		case 16:
>> +			bch_config = BCH_TVAL_16;
>> +			break;
>> +		default:
>> +			dev_err(dev, "ECC strength %d not supported\n",
>> +				chip->ecc.strength);
>> +			return -EINVAL;
>> +		}
>> +		break;
>> +	default:
>> +		dev_err(dev, "ECC algorithm not supported\n");
>> +		return -EINVAL;
>> +	}
>> +
>> +	dev_info(dev, "Using %s with strength %d per 512 byte step\n",
>> +			chip->ecc.algo == NAND_ECC_BCH ? "BCH" : "RS",
>> +			chip->ecc.strength);
>> +
>> +	chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE);
>> +
>> +	switch (mtd->writesize) {
>> +	case 256:
>> +		config |= CFG_PS_256;
>> +		break;
>> +	case 512:
>> +		config |= CFG_PS_512;
>> +		break;
>> +	case 1024:
>> +		config |= CFG_PS_1024;
>> +		break;
>> +	case 2048:
>> +		config |= CFG_PS_2048;
>> +		break;
>> +	case 4096:
>> +		config |= CFG_PS_4096;
>> +		break;
>> +	default:
>> +		dev_err(dev, "Unsupported writesize %d\n", mtd->writesize);
>> +		return -ENODEV;
>> +	}
>> +
>> +	writel_relaxed(config, ctrl->regs + CFG);
>> +	writel_relaxed(bch_config, ctrl->regs + BCH_CONFIG);
>> +
>> +	ret = nand_scan_tail(mtd);
>> +	if (ret)
>> +		return ret;
>> +
>> +	mtd_ooblayout_free(mtd, 0, &nand->tag);
>> +
>> +	config |= CFG_TAG_BYTE_SIZE(nand->tag.length - 1);
>> +	writel_relaxed(config, ctrl->regs + CFG);
>> +
>> +	ret = mtd_device_register(mtd, NULL, 0);
>> +	if (ret) {
>> +		dev_err(dev, "Failed to register mtd device: %d\n", ret);
>> +		nand_cleanup(chip);
>> +		return ret;
>> +	}
>> +
>> +	ctrl->chip = chip;
>> +
>> +	return 0;
>> +}
>> +
>> +static int tegra_nand_probe(struct platform_device *pdev)
>> +{
>> +	struct reset_control *rst;
>> +	struct tegra_nand_controller *ctrl;
>> +	struct resource *res;
>> +	unsigned long reg;
>> +	int irq, err = 0;
>> +
>> +	ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
>> +	if (!ctrl)
>> +		return -ENOMEM;
>> +
>> +	ctrl->dev = &pdev->dev;
>> +	nand_hw_control_init(&ctrl->controller);
>> +
>> +	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
>> +	ctrl->regs = devm_ioremap_resource(&pdev->dev, res);
>> +	if (IS_ERR(ctrl->regs))
>> +		return PTR_ERR(ctrl->regs);
>> +
>> +	rst = devm_reset_control_get(&pdev->dev, "nand");
>> +	if (IS_ERR(rst))
>> +		return PTR_ERR(rst);
>> +
>> +	ctrl->clk = devm_clk_get(&pdev->dev, "nand");
>> +	if (IS_ERR(ctrl->clk))
>> +		return PTR_ERR(ctrl->clk);
>> +
>> +	err = clk_prepare_enable(ctrl->clk);
>> +	if (err)
>> +		return err;
>> +
>> +	err = reset_control_reset(rst);
>> +	if (err)
>> +		goto err_disable_clk;
>> +
>> +	reg = HWSTATUS_RDSTATUS_MASK(1) | HWSTATUS_RDSTATUS_VALUE(0) |
>> +		HWSTATUS_RBSY_MASK(NAND_STATUS_READY) |
>> +		HWSTATUS_RBSY_VALUE(NAND_STATUS_READY);
>> +	writel_relaxed(NAND_CMD_STATUS, ctrl->regs + HWSTATUS_CMD);
>> +	writel_relaxed(reg, ctrl->regs + HWSTATUS_MASK);
>> +
>> +	init_completion(&ctrl->command_complete);
>> +	init_completion(&ctrl->dma_complete);
>> +
>> +	/* clear interrupts */
>> +	reg = readl_relaxed(ctrl->regs + ISR);
>> +	writel_relaxed(reg, ctrl->regs + ISR);
>> +
>> +	irq = platform_get_irq(pdev, 0);
>> +	err = devm_request_irq(&pdev->dev, irq, tegra_nand_irq, 0,
>> +			       dev_name(&pdev->dev), ctrl);
>> +	if (err)
>> +		goto err_disable_clk;
>> +
>> +	writel_relaxed(DMA_CTRL_IS_DONE, ctrl->regs + DMA_CTRL);
>> +
>> +	/* enable interrupts */
>> +	reg = IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE;
>> +	writel_relaxed(reg, ctrl->regs + IER);
>> +
>> +	/* reset config */
>> +	writel_relaxed(0, ctrl->regs + CFG);
>> +
>> +	err = tegra_nand_chips_init(ctrl->dev, ctrl);
>> +	if (err)
>> +		goto err_disable_clk;
>> +
>> +	platform_set_drvdata(pdev, ctrl);
>> +
>> +	return 0;
>> +
>> +err_disable_clk:
>> +	clk_disable_unprepare(ctrl->clk);
>> +	return err;
>> +}
>> +
>> +static int tegra_nand_remove(struct platform_device *pdev)
>> +{
>> +	struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
>> +
>> +	nand_release(nand_to_mtd(ctrl->chip));
>> +
>> +	clk_disable_unprepare(ctrl->clk);
>> +
>> +	return 0;
>> +}
>> +
>> +static const struct of_device_id tegra_nand_of_match[] = {
>> +	{ .compatible = "nvidia,tegra20-nand" },
>> +	{ /* sentinel */ }
>> +};
>> +
>> +static struct platform_driver tegra_nand_driver = {
>> +	.driver = {
>> +		.name = "tegra-nand",
>> +		.of_match_table = tegra_nand_of_match,
>> +	},
>> +	.probe = tegra_nand_probe,
>> +	.remove = tegra_nand_remove,
>> +};
>> +module_platform_driver(tegra_nand_driver);
>> +
>> +MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
>> +MODULE_AUTHOR("Thierry Reding <thierry.reding@...dia.com>");
>> +MODULE_AUTHOR("Lucas Stach <dev@...xeye.de>");
>> +MODULE_AUTHOR("Stefan Agner <stefan@...er.ch>");
>> +MODULE_LICENSE("GPL v2");
>> +MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
>>

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ