lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Date:	Thu, 08 Feb 2007 16:32:11 +0000
From:	David Howells <dhowells@...hat.com>
To:	davem@...emloft.net, netdev@...r.kernel.org, herbert.xu@...hat.com
Cc:	hch@...radead.org, arjan@...radead.org, dhowells@...hat.com
Subject: [PATCH 0/5] [RFC] AF_RXRPC socket family implementation


These patches together supply secure client-side RxRPC connectivity as a Linux
kernel socket family.  Only the transport/session side is supplied - the
presentation side (marshalling the data) is left to the client.

The userspace access methods make use of the control data passed to/by
sendmsg() and recvmsg().  See the two simple test programs:

	http://people.redhat.com/~dhowells/rxrpc/klog.c
	http://people.redhat.com/~dhowells/rxrpc/rxrpc.c

I've attached the current in-kernel documentation to this message.

TODO:

 (*) Server support.

 (*) Make it possible for the client socket to be used to go to more than one
     destination.

 (*) Make fs/afs/ use it and delete the current contents of net/rxrpc/

 (*) Make certain parameters (such as connection timeouts) userspace
     configurable.

 (*) Make userspace utilities use it; librxrpc.

 (*) Userspace documentation.

David

			    ======================
			    RxRPC NETWORK PROTOCOL
			    ======================

The RxRPC protocol driver provides a reliable two-phase transport on top of UDP
that can be used to perform RxRPC remote operations.  This is done over sockets
of AF_RXRPC family, using sendmsg() and recvmsg() with control data to send and
receive data, aborts and errors.


========
OVERVIEW
========

RxRPC is a two-layer protocol.  There is a session layer which provides
reliable virtual connections using UDP over IPv4 (or IPv6) as the transport
layer, but implements a real network protocol; and there's the presentation
layer which renders structured data to binary blobs and back again using XDR
(as does SunRPC):

		+-------------+
		| Application |
		+-------------+
		|     XDR     |		Presentation
		+-------------+
		|    RxRPC    |		Session
		+-------------+
		|     UDP     |		Transport
		+-------------+


AF_RXRPC provides:

 (1) Part of an RxRPC facility for both kernel and userspace applications by
     making the session part of it a Linux network protocol (AF_RXRPC).

 (2) A two-phase protocol.  The client transmits a blob (the request) and then
     receives a blob (the reply), and the server receives the request and then
     transmits the reply.

 (3) Retention of the reusable bits of the transport system set up for one call
     to speed up subsequent calls.

 (4) A secure protocol, using the Linux kernel's key retention facility to
     manage security on the client end.  The server end must of necessity be
     more active in security negotiations.

AF_RXRPC does not provide XDR marshalling/presentation facilities.  That is
left to the application.  AF_RXRPC only deals in blobs.  Even the operation ID
is just the first four bytes of the request blob, and as such is beyond the
kernel's interest.


Sockets of AF_RXRPC family are:

 (1) created as type SOCK_RPC;

 (2) provided with a protocol of the type of underlying transport they're going
     to use - currently only PF_INET is supported.


The Andrew File System (AFS) is an example of an application that uses this and
that has both kernel (filesystem) and userspace (utility) components.


======================
RXRPC PROTOCOL SUMMARY
======================

An overview of the RxRPC protocol:

 (*) RxRPC sits on top of another networking protocol (UDP is the only option
     currently), and uses this to provide network transport.  UDP ports, for
     example, provide transport endpoints.

 (*) RxRPC supports multiple virtual "connections" from any given transport
     endpoint, thus allowing the endpoints to be shared, even to the same
     remote endpoint.

 (*) Each connection goes to a particular "service".  A connection may not go
     to multiple services.  A service may be considered the RxRPC equivalent of
     a port number.  AF_RXRPC permits multiple services to share an endpoint.

 (*) Client-originating packets are marked, thus a transport endpoint can be
     shared between client and server connections (connections have a
     direction).

 (*) Up to a billion connections may be supported concurrently between one
     local transport endpoint and one service on one remote endpoint.  An RxRPC
     connection is described by seven numbers:

	Local address	}
	Local port	} Transport (UDP) address
	Remote address	}
	Remote port	}
	Direction
	Connection ID
	Service ID

 (*) Each RxRPC operation is a "call".  A connection may make up to four
     billion calls, but only up to four calls may be in progress on a
     connection at any one time.

 (*) Calls are two-phase and asymmetric: the client sends its request data,
     which the service receives; then the service transmits the reply data
     which the client receives.

 (*) The data blobs are of indefinite size, the end of a phase is marked with a
     flag in the packet.  The number of packets of data making up one blob may
     not exceed 4 billion, however, as this would cause the sequence number to
     wrap.

 (*) The first four bytes of the request data are the service operation ID.

 (*) Security is negotiated on a per-connection basis.  The connection is
     initiated by the first data packet on it arriving.  If security is
     requested, the server then issues a "challenge" and then the client
     replies with a "response".  If the response is successful, the security is
     set for the lifetime of that connection, and all subsequent calls made
     upon it use that same security.  In the event that the server lets a
     connection lapse before the client, the security will be renegotiated if
     the client uses the connection again.

 (*) Calls use ACK packets to handle reliability.  Data packets are also
     explicitly sequenced per call.

 (*) There are two types of positive acknowledgement: hard-ACKs and soft-ACKs.
     A hard-ACK indicates to the far side that all the data received to a point
     has been received and processed; a soft-ACK indicates that the data has
     been received but may yet be discarded and re-requested.  The sender may
     not discard any transmittable packets until they've been hard-ACK'd.

 (*) Reception of a reply data packet implicitly hard-ACK's all the data
     packets that make up the request.

 (*) An call is complete when the request has been sent, the reply has been
     received and the final hard-ACK on the last packet of the reply has
     reached the server.

 (*) An call may be aborted by either end at any time up to its completion.


=====================
AF_RXRPC DRIVER MODEL
=====================

About the AF_RXRPC driver:

 (*) The AF_RXRPC protocol transparently uses internal sockets of the transport
     protocol to represent transport endpoints.

 (*) AF_RXRPC sockets map onto RxRPC connection bundles.  Actual RxRPC
     connections are handled transparently.  One client socket may be used to
     make multiple simultaneous calls to the same service.  One server socket
     may handle calls from many clients.

 (*) Additional parallel client connections will be initiated to support extra
     concurrent calls, up to a tunable limit.

 (*) Each connection is retained for a certain amount of time [tunable] after
     the last call currently using it has completed in case a new call is made
     that could reuse it.

 (*) Each internal UDP socket is retained [tunable] for a certain amount of
     time [tunable] after the last connection using it discarded, in case a new
     connection is made that could use it.

 (*) A client-side connection is only shared between calls if they have have
     the same key struct describing their security (and assuming the calls
     would otherwise share the connection).  Non-secured calls would also be
     able to share connections with each other.

 (*) ACK'ing is handled by the protocol driver automatically, including ping
     replying.

 (*) SO_KEEPALIVE automatically pings the other side to keep the connection
     alive [TODO].

 (*) If an ICMP error is received, all calls affected by that error will be
     aborted with an appropriate network error passed through recvmsg().


Interaction with the user of the RxRPC socket:

 (*) A socket is made into a server socket by binding an address with a
     non-zero service ID [TODO].

 (*) In the client, sending a request is achieved with one or more sendmsgs,
     followed by the reply being received with one or more recvmsgs.

 (*) The first sendmsg for a request to be sent from a client contains a tag to
     be used in all other sendmsgs or recvmsgs associated with that call.  The
     tag is carried in the control data.

 (*) Once the client has received the last message associated with a call, the
     tag is guaranteed not to be seen again, and so it can be used to pin
     client resources.  A new call can then be initiated with the same tag
     without fear of interference.

 (*) In the server, a request is received with one or more recvmsgs, then the
     the reply is transmitted with one or more sendmsgs, and then the final ACK
     is received with a last recvmsg [TODO].

 (*) When sending data, sendmsg is given MSG_MORE if there's more data to come.

 (*) An abort may be issued by adding an control message to the control data.
     Issuing an abort terminates the kernel's use of that call's tag.

 (*) Aborts, busy notifications and challenge packets are collected by recvmsg
     with control data message to indicate the context.  Receiving an abort or
     a busy message terminates the kernel's use of that call's tag.

 (*) The control data part of the msghdr struct is used for a number of things:

     (*) The tag of the intended or affected call.

     (*) Sending or receiving errors, aborts, busy notifications, challenge and
     	 response notifications.

     (*) Sending debug requests and receiving debug replies [TODO].

 (*) The server application has to assist in the setting up of security.  The
     server sends a challenge packet to the client and receives a response
     packet [TODO].

 (*) The name of the key a client will use to secure its communications is
     nominated by a socket option.


========
SECURITY
========

Currently, only the kerberos 4 equivalent protocol has been implemented
(security index 2 - rxkad).  This requires the rxkad module to be loaded and,
on the client, tickets of the appropriate type to be obtained from the AFS
kaserver or the kerberos server and installed as "rxrpc" type keys.  This is
normally done using the klog program.  An example simple klog program can be
found at:

	http://people.redhat.com/~dhowells/rxrpc/klog.c

The payload provided to add_key() on the client should be of the following
form:

	struct rxrpc_key_sec2_v1 {
		uint16_t	security_index;	/* 2 */
		uint16_t	ticket_length;	/* length of ticket[] */
		uint32_t	expiry;		/* time at which expires */
		uint8_t		kvno;		/* key version number */
		uint8_t		__pad[3];
		uint8_t		session_key[8];	/* DES session key */
		uint8_t		ticket[0];	/* the encrypted ticket */
	};

Where the ticket blob is just appended to the above structure.


====================
EXAMPLE CLIENT USAGE
====================

A client would issue an operation by:

 (1) An RxRPC socket is set up by:

	client = socket(AF_RXRPC, SOCK_RPC, PF_INET);

     Where the third parameter indicates the protocol family of the transport
     socket used - usually IPv4 but it can also be IPv6 [TODO].

 (2) A local address can optionally be bound:

	struct sockaddr_rxrpc srx = {
		.srx_family	= AF_RXRPC,
		.srx_service	= 0,  /* we're a client */
		.transport_type	= SOCK_DGRAM,	/* type of transport socket */
		.transport.sin_family	= AF_INET,
		.transport.sin_port	= htons(7000), /* AFS callback */
		.transport.sin_address	= 0,  /* all local interfaces */
	};
	bind(client, &srx, sizeof(srx));

     This specifies the local UDP port to be used.  If not given, a random
     non-privileged port will be used.  A UDP port may be shared between
     several unrelated RxRPC sockets.  Security is handled on a basis of
     per-RxRPC virtual connection.

 (3) The security is set:

	const char *key = "AFS:cambridge.redhat.com";
	setsockopt(client, SOL_RXRPC, RXRPC_SECURITY_KEY, key, strlen(key));

     This issues a request_key() to get the key representing the security
     context.  The minimum security level can be set:

	unsigned int sec = RXRPC_SECURITY_ENCRYPTED;
	setsockopt(client, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
		   &sec, sizeof(sec));

 (4) The server to be contacted is then specified:

	struct sockaddr_rxrpc srx = {
		.srx_family	= AF_RXRPC,
		.srx_service	= VL_SERVICE_ID,
		.transport_type	= SOCK_DGRAM,	/* type of transport socket */
		.transport.sin_family	= AF_INET,
		.transport.sin_port	= htons(7005), /* AFS volume manager */
		.transport.sin_address	= ...,
	};
	connect(client, &srx, sizeof(srx));

 (5) The request is then sent:

	sendmsg(client, msg, 0);

 (6) And the reply received:

	recvmsg(client, msg, 0);

     If an abort or error occurred, this will be returned in the control data
     buffer.


====================
EXAMPLE SERVER USAGE [PROPOSED]
====================

A server would accept operations by:

 (1) An RxRPC socket would be set up by:

	server = socket(AF_RXRPC, SOCK_RPC, PF_INET);

     Where the third parameter indicates the address type of the transport
     socket used - usually IPv4.

 (2) A local address would be bound:

	struct sockaddr_rxrpc srx = {
		.srx_family	= AF_RXRPC,
		.srx_service	= VL_SERVICE_ID, /* RxRPC service ID */
		.transport_type	= SOCK_DGRAM,	/* type of transport socket */
		.transport.sin_family	= AF_INET,
		.transport.sin_port	= htons(7000), /* AFS callback */
		.transport.sin_address	= 0,  /* all local interfaces */
	};
	bind(server, &srx, sizeof(srx));

 (3) The server would then listen out for incoming calls:

	listen(server, 100);

 (4) It would accept calls that were made:

	struct sockaddr_rxrpc srx;
	socken_t slen = sizeof(srx)
	call = accept(server, &src, &slen);

 (5) The first data packet would then be received:

	recvmsg(call, msg, 0);

     A connection is discovered on the server by reception of the first data
     packet holding its connection ID.  Only then can security be set up.

 (6) The security context might need to be set up:

     (a) The security index can be examined:

	uint16_t sectype;
	socklen_t len = sizeof(sectype);
	getsockopt(call, SOL_RXRPC, RXRPC_GET_SECURITY_INDEX, &sectype, &len);

     (b) A security challenge can be made:

	sendmsg(call, msg, 0);

         The control message will contain the challenge; there would be no
         data.

     (c) And the security response received:

	recvmsg(call, msg, 0);

         The control message will contain the response; there would be no data.

     (d) The security context can then be set:

	setsockopt(call, SOL_RXRPC, RXRPC_SET_SECURITY, buffer, buflen);

     If the virtual RxRPC connection already has security set up, the
     getsockopt will indicate this, and steps (b) to (d) can be skipped.

     A security rejection would be achieved simply by closing the socket before
     step (d).

 (7) The data could then be received:

	recvmsg(call, msg, 0);

 (8) And then the reply transmitted:

	sendmsg(client, msg, 0);

     If an abort/error is to be served instead, that would be placed in the
     control data, and no data would be attached.

 (9) Then the socket would be closed.
-
To unsubscribe from this list: send the line "unsubscribe netdev" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html

Powered by blists - more mailing lists