lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:	Wed, 12 Mar 2008 01:22:48 +0000
From:	Ben Hutchings <bhutchings@...arflare.com>
To:	netdev@...r.kernel.org
Cc:	linux-net-drivers@...arflare.com, Jeff Garzik <jgarzik@...ox.com>,
	David Miller <davem@...emloft.net>
Subject: [PATCH 1/8] New driver "sfc" for Solarstorm SFC4000 controller (try #8)

Signed-off-by: Ben Hutchings <bhutchings@...arflare.com>
diff --git a/drivers/net/sfc/efx.c b/drivers/net/sfc/efx.c
new file mode 100644
index 0000000..42fbb23
--- /dev/null
+++ b/drivers/net/sfc/efx.c
@@ -0,0 +1,2343 @@
+/****************************************************************************
+ * Driver for Solarflare Solarstorm network controllers and boards
+ * Copyright 2005-2006 Fen Systems Ltd.
+ * Copyright 2005-2008 Solarflare Communications Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation, incorporated herein by reference.
+ */
+
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/delay.h>
+#include <linux/notifier.h>
+#include <linux/ip.h>
+#include <linux/tcp.h>
+#include <linux/in.h>
+#include <linux/crc32.h>
+#include <linux/ethtool.h>
+#include <asm/uaccess.h>
+#include "net_driver.h"
+#include "gmii.h"
+#include "ethtool.h"
+#include "tx.h"
+#include "rx.h"
+#include "efx.h"
+#include "mdio_10g.h"
+#include "falcon.h"
+#include "workarounds.h"
+#include "mac.h"
+
+#define EFX_MAX_MTU (9 * 1024)
+
+/* RX slow fill workqueue. If memory allocation fails in the fast path,
+ * a work item is pushed onto this work queue to retry the allocation later,
+ * to avoid the NIC being starved of RX buffers. Since this is a per cpu
+ * workqueue, there is nothing to be gained in making it per NIC
+ */
+static struct workqueue_struct *refill_workqueue;
+
+/**************************************************************************
+ *
+ * Configurable values
+ *
+ *************************************************************************/
+
+/*
+ * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
+ *
+ * This sets the default for new devices.  It can be controlled later
+ * using ethtool.
+ */
+static int lro = 1;
+module_param(lro, int, 0644);
+MODULE_PARM_DESC(lro, "Large receive offload acceleration");
+
+/*
+ * Use separate channels for TX and RX events
+ *
+ * Set this to 1 to use separate channels for TX and RX. It allows us to
+ * apply a higher level of interrupt moderation to TX events.
+ *
+ * This is forced to 0 for MSI interrupt mode as the interrupt vector
+ * is not written
+ */
+static unsigned int separate_tx_and_rx_channels = 1;
+
+/* This is the weight assigned to each of the (per-channel) virtual
+ * NAPI devices.
+ */
+static int napi_weight = 64;
+
+/* This is the time (in jiffies) between invocations of the hardware
+ * monitor, which checks for known hardware bugs and resets the
+ * hardware and driver as necessary.
+ */
+unsigned int efx_monitor_interval = 1 * HZ;
+
+/* This controls whether or not the hardware monitor will trigger a
+ * reset when it detects an error condition.
+ */
+static unsigned int monitor_reset = 1;
+
+/* This controls whether or not the driver will initialise devices
+ * with invalid MAC addresses stored in the EEPROM or flash.  If true,
+ * such devices will be initialised with a random locally-generated
+ * MAC address.  This allows for loading the sfc_mtd driver to
+ * reprogram the flash, even if the flash contents (including the MAC
+ * address) have previously been erased.
+ */
+static unsigned int allow_bad_hwaddr;
+
+/* Initial interrupt moderation settings.  They can be modified after
+ * module load with ethtool.
+ *
+ * The default for RX should strike a balance between increasing the
+ * round-trip latency and reducing overhead.
+ */
+static unsigned int rx_irq_mod_usec = 60;
+
+/* Initial interrupt moderation settings.  They can be modified after
+ * module load with ethtool.
+ *
+ * This default is chosen to ensure that a 10G link does not go idle
+ * while a TX queue is stopped after it has become full.  A queue is
+ * restarted when it drops below half full.  The time this takes (assuming
+ * worst case 3 descriptors per packet and 1024 descriptors) is
+ *   512 / 3 * 1.2 = 205 usec.
+ */
+static unsigned int tx_irq_mod_usec = 150;
+
+/* This is the first interrupt mode to try out of:
+ * 0 => MSI-X
+ * 1 => MSI
+ * 2 => legacy
+ */
+static unsigned int interrupt_mode;
+
+/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
+ * i.e. the number of CPUs among which we may distribute simultaneous
+ * interrupt handling.
+ *
+ * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
+ * The default (0) means to assign an interrupt to each package (level II cache)
+ */
+static unsigned int rss_cpus;
+module_param(rss_cpus, uint, 0444);
+MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
+
+/**************************************************************************
+ *
+ * Utility functions and prototypes
+ *
+ *************************************************************************/
+static void efx_remove_channel(struct efx_channel *channel);
+static void efx_remove_port(struct efx_nic *efx);
+static void efx_fini_napi(struct efx_nic *efx);
+static void efx_fini_channels(struct efx_nic *efx);
+
+#define EFX_ASSERT_RESET_SERIALISED(efx)		\
+	do {						\
+		if ((efx->state == STATE_RUNNING) ||	\
+		    (efx->state == STATE_RESETTING))	\
+			ASSERT_RTNL();			\
+	} while (0)
+
+/**************************************************************************
+ *
+ * Event queue processing
+ *
+ *************************************************************************/
+
+/* Process channel's event queue
+ *
+ * This function is responsible for processing the event queue of a
+ * single channel.  The caller must guarantee that this function will
+ * never be concurrently called more than once on the same channel,
+ * though different channels may be being processed concurrently.
+ */
+static inline int efx_process_channel(struct efx_channel *channel, int rx_quota)
+{
+	int rxdmaqs;
+	struct efx_rx_queue *rx_queue;
+
+	if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
+		     !channel->enabled))
+		return rx_quota;
+
+	rxdmaqs = falcon_process_eventq(channel, &rx_quota);
+
+	/* Deliver last RX packet. */
+	if (channel->rx_pkt) {
+		__efx_rx_packet(channel, channel->rx_pkt,
+				channel->rx_pkt_csummed);
+		channel->rx_pkt = NULL;
+	}
+
+	efx_flush_lro(channel);
+	efx_rx_strategy(channel);
+
+	/* Refill descriptor rings as necessary */
+	rx_queue = &channel->efx->rx_queue[0];
+	while (rxdmaqs) {
+		if (rxdmaqs & 0x01)
+			efx_fast_push_rx_descriptors(rx_queue);
+		rx_queue++;
+		rxdmaqs >>= 1;
+	}
+
+	return rx_quota;
+}
+
+/* Mark channel as finished processing
+ *
+ * Note that since we will not receive further interrupts for this
+ * channel before we finish processing and call the eventq_read_ack()
+ * method, there is no need to use the interrupt hold-off timers.
+ */
+static inline void efx_channel_processed(struct efx_channel *channel)
+{
+	/* Write to EVQ_RPTR_REG.  If a new event arrived in a race
+	 * with finishing processing, a new interrupt will be raised.
+	 */
+	channel->work_pending = 0;
+	smp_wmb(); /* Ensure channel updated before any new interrupt. */
+	falcon_eventq_read_ack(channel);
+}
+
+/* NAPI poll handler
+ *
+ * NAPI guarantees serialisation of polls of the same device, which
+ * provides the guarantee required by efx_process_channel().
+ */
+static int efx_poll(struct napi_struct *napi, int budget)
+{
+	struct efx_channel *channel =
+		container_of(napi, struct efx_channel, napi_str);
+	struct net_device *napi_dev = channel->napi_dev;
+	int unused;
+	int rx_packets;
+
+	EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
+		  channel->channel, raw_smp_processor_id());
+
+	unused = efx_process_channel(channel, budget);
+	rx_packets = (budget - unused);
+
+	if (rx_packets < budget) {
+		/* There is no race here; although napi_disable() will
+		 * only wait for netif_rx_complete(), this isn't a problem
+		 * since efx_channel_processed() will have no effect if
+		 * interrupts have already been disabled.
+		 */
+		netif_rx_complete(napi_dev, napi);
+		efx_channel_processed(channel);
+	}
+
+	return rx_packets;
+}
+
+/* Process the eventq of the specified channel immediately on this CPU
+ *
+ * Disable hardware generated interrupts, wait for any existing
+ * processing to finish, then directly poll (and ack ) the eventq.
+ * Finally reenable NAPI and interrupts.
+ *
+ * Since we are touching interrupts the caller should hold the suspend lock
+ */
+void efx_process_channel_now(struct efx_channel *channel)
+{
+	struct efx_nic *efx = channel->efx;
+
+	BUG_ON(!channel->used_flags);
+	BUG_ON(!channel->enabled);
+
+	/* Disable interrupts and wait for ISRs to complete */
+	falcon_disable_interrupts(efx);
+	if (efx->legacy_irq)
+		synchronize_irq(efx->legacy_irq);
+	if (channel->has_interrupt && channel->irq)
+		synchronize_irq(channel->irq);
+
+	/* Wait for any NAPI processing to complete */
+	napi_disable(&channel->napi_str);
+
+	/* Poll the channel */
+	(void) efx_process_channel(channel, efx->type->evq_size);
+
+	/* Ack the eventq. This may cause an interrupt to be generated
+	 * when they are reenabled */
+	efx_channel_processed(channel);
+
+	napi_enable(&channel->napi_str);
+	falcon_enable_interrupts(efx);
+}
+
+/* Create event queue
+ * Event queue memory allocations are done only once.  If the channel
+ * is reset, the memory buffer will be reused; this guards against
+ * errors during channel reset and also simplifies interrupt handling.
+ */
+static int efx_probe_eventq(struct efx_channel *channel)
+{
+	EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
+
+	return falcon_probe_eventq(channel);
+}
+
+/* Prepare channel's event queue */
+static int efx_init_eventq(struct efx_channel *channel)
+{
+	EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
+
+	channel->eventq_read_ptr = 0;
+
+	return falcon_init_eventq(channel);
+}
+
+static void efx_fini_eventq(struct efx_channel *channel)
+{
+	EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
+
+	falcon_fini_eventq(channel);
+}
+
+static void efx_remove_eventq(struct efx_channel *channel)
+{
+	EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
+
+	falcon_remove_eventq(channel);
+}
+
+/**************************************************************************
+ *
+ * Channel handling
+ *
+ *************************************************************************/
+
+/* Setup per-NIC RX buffer parameters.
+ * Calculate the rx buffer allocation parameters required to support
+ * the current MTU, including padding for header alignment and overruns.
+ */
+static void efx_calc_rx_buffer_params(struct efx_nic *efx)
+{
+	unsigned int order, len;
+
+	len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
+	       EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
+	       efx->type->rx_buffer_padding);
+
+	/* Calculate page-order */
+	for (order = 0; ((1u << order) * PAGE_SIZE) < len; ++order)
+		;
+
+	efx->rx_buffer_len = len;
+	efx->rx_buffer_order = order;
+}
+
+static int efx_probe_channel(struct efx_channel *channel)
+{
+	struct efx_tx_queue *tx_queue;
+	struct efx_rx_queue *rx_queue;
+	int rc;
+
+	EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
+
+	rc = efx_probe_eventq(channel);
+	if (rc)
+		goto fail1;
+
+	efx_for_each_channel_tx_queue(tx_queue, channel) {
+		rc = efx_probe_tx_queue(tx_queue);
+		if (rc)
+			goto fail2;
+	}
+
+	efx_for_each_channel_rx_queue(rx_queue, channel) {
+		rc = efx_probe_rx_queue(rx_queue);
+		if (rc)
+			goto fail3;
+	}
+
+	channel->n_rx_frm_trunc = 0;
+
+	return 0;
+
+ fail3:
+	efx_for_each_channel_rx_queue(rx_queue, channel)
+		efx_remove_rx_queue(rx_queue);
+ fail2:
+	efx_for_each_channel_tx_queue(tx_queue, channel)
+		efx_remove_tx_queue(tx_queue);
+ fail1:
+	return rc;
+}
+
+
+/* Channels are shutdown and reinitialised whilst the NIC is running
+ * to propagate configuration changes (mtu, checksum offload), or
+ * to clear hardware error conditions
+ */
+static int efx_init_channels(struct efx_nic *efx)
+{
+	struct efx_tx_queue *tx_queue;
+	struct efx_rx_queue *rx_queue;
+	struct efx_channel *channel;
+	int rc = 0;
+
+	efx_calc_rx_buffer_params(efx);
+
+	/* Initialise the channels */
+	efx_for_each_channel(channel, efx) {
+		EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
+
+		rc = efx_init_eventq(channel);
+		if (rc)
+			goto err;
+
+		efx_for_each_channel_tx_queue(tx_queue, channel) {
+			rc = efx_init_tx_queue(tx_queue);
+			if (rc)
+				goto err;
+		}
+
+		/* The rx buffer allocation strategy is MTU dependent */
+		efx_rx_strategy(channel);
+
+		efx_for_each_channel_rx_queue(rx_queue, channel) {
+			rc = efx_init_rx_queue(rx_queue);
+			if (rc)
+				goto err;
+		}
+
+		WARN_ON(channel->rx_pkt != NULL);
+		efx_rx_strategy(channel);
+	}
+
+	return 0;
+
+ err:
+	EFX_ERR(efx, "failed to initialise channel %d\n",
+		channel ? channel->channel : -1);
+	efx_fini_channels(efx);
+	return rc;
+}
+
+/* This enables event queue processing and packet transmission.
+ *
+ * Note that this function is not allowed to fail, since that would
+ * introduce too much complexity into the suspend/resume path.
+ */
+static void efx_start_channel(struct efx_channel *channel)
+{
+	struct efx_rx_queue *rx_queue;
+
+	EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
+
+	if (!(channel->efx->net_dev->flags & IFF_UP))
+		netif_napi_add(channel->napi_dev, &channel->napi_str,
+			       efx_poll, napi_weight);
+
+	channel->work_pending = 0;
+	channel->enabled = 1;
+	smp_wmb(); /* ensure channel updated before first interrupt */
+
+	napi_enable(&channel->napi_str);
+
+	/* Load up RX descriptors */
+	efx_for_each_channel_rx_queue(rx_queue, channel)
+		efx_fast_push_rx_descriptors(rx_queue);
+}
+
+/* This disables event queue processing and packet transmission.
+ * This function does not guarantee that all queue processing
+ * (e.g. RX refill) is complete.
+ */
+static void efx_stop_channel(struct efx_channel *channel)
+{
+	struct efx_rx_queue *rx_queue;
+
+	if (!channel->enabled)
+		return;
+
+	EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
+
+	channel->enabled = 0;
+	napi_disable(&channel->napi_str);
+
+	/* Ensure that any worker threads have exited or will be no-ops */
+	efx_for_each_channel_rx_queue(rx_queue, channel) {
+		spin_lock_bh(&rx_queue->add_lock);
+		spin_unlock_bh(&rx_queue->add_lock);
+	}
+}
+
+/* The caller SHOULD call efx_drain_port() before calling this function */
+static void efx_fini_channels(struct efx_nic *efx)
+{
+	struct efx_channel *channel;
+	struct efx_tx_queue *tx_queue;
+	struct efx_rx_queue *rx_queue;
+
+	EFX_ASSERT_RESET_SERIALISED(efx);
+
+	efx_for_each_channel(channel, efx) {
+		EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
+
+		efx_for_each_channel_rx_queue(rx_queue, channel)
+			efx_fini_rx_queue(rx_queue);
+		efx_for_each_channel_tx_queue(tx_queue, channel)
+			efx_fini_tx_queue(tx_queue);
+	}
+
+	/* Do the event queues last so that we can handle flush events
+	 * for all DMA queues. */
+	efx_for_each_channel(channel, efx) {
+		EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
+
+		efx_fini_eventq(channel);
+	}
+}
+
+static void efx_remove_channel(struct efx_channel *channel)
+{
+	struct efx_tx_queue *tx_queue;
+	struct efx_rx_queue *rx_queue;
+
+	EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
+
+	efx_for_each_channel_rx_queue(rx_queue, channel)
+		efx_remove_rx_queue(rx_queue);
+	efx_for_each_channel_tx_queue(tx_queue, channel)
+		efx_remove_tx_queue(tx_queue);
+	efx_remove_eventq(channel);
+
+	channel->used_flags = 0;
+}
+
+void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
+{
+	queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
+}
+
+/**************************************************************************
+ *
+ * Port handling
+ *
+ **************************************************************************/
+
+/* This ensures that the kernel is kept informed (via
+ * netif_carrier_on/off) of the link status, and also maintains the
+ * link status's stop on the port's TX queue.
+ */
+static void efx_link_status_changed(struct efx_nic *efx)
+{
+	unsigned long flags __attribute__ ((unused));
+	int carrier_ok;
+
+	/* Ensure no link status notifications get sent to the OS after the net
+	 * device has been unregistered. */
+	if (!efx->net_dev_registered)
+		return;
+
+	carrier_ok = netif_carrier_ok(efx->net_dev) ? 1 : 0;
+	if (efx->link_up != carrier_ok) {
+		efx->n_link_state_changes++;
+
+		if (efx->link_up)
+			netif_carrier_on(efx->net_dev);
+		else
+			netif_carrier_off(efx->net_dev);
+	}
+
+	/* Status message for kernel log */
+	if (efx->link_up) {
+		struct mii_if_info *gmii = &efx->mii;
+		unsigned adv, lpa;
+		/* NONE here means direct XAUI from the controller, with no
+		 * MDIO-attached device we can query. */
+		if (efx->phy_type != PHY_TYPE_NONE) {
+			adv = gmii_advertised(gmii);
+			lpa = gmii_lpa(gmii);
+		} else {
+			lpa = GM_LPA_10000 | LPA_DUPLEX;
+			adv = lpa;
+		}
+		EFX_INFO(efx, "link up at %dMbps %s-duplex "
+			 "(adv %04x lpa %04x) (MTU %d)%s\n",
+			 (efx->link_options & GM_LPA_10000 ? 10000 :
+			  (efx->link_options & GM_LPA_1000 ? 1000 :
+			   (efx->link_options & GM_LPA_100 ? 100 :
+			    10))),
+			 (efx->link_options & GM_LPA_DUPLEX ?
+			  "full" : "half"),
+			 adv, lpa,
+			 efx->net_dev->mtu,
+			 (efx->promiscuous ? " [PROMISC]" : ""));
+	} else {
+		EFX_INFO(efx, "link down\n");
+	}
+
+}
+
+/* This call reinitialises the MAC to pick up new PHY settings. The
+ * caller must hold the mac_lock */
+static void __efx_reconfigure_port(struct efx_nic *efx)
+{
+	WARN_ON(!mutex_is_locked(&efx->mac_lock));
+
+	EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
+		raw_smp_processor_id());
+
+	falcon_reconfigure_xmac(efx);
+
+	/* Inform kernel of loss/gain of carrier */
+	efx_link_status_changed(efx);
+}
+
+/* Reinitialise the MAC to pick up new PHY settings, even if the port is
+ * disabled. */
+void efx_reconfigure_port(struct efx_nic *efx)
+{
+	EFX_ASSERT_RESET_SERIALISED(efx);
+
+	mutex_lock(&efx->mac_lock);
+	__efx_reconfigure_port(efx);
+	mutex_unlock(&efx->mac_lock);
+}
+
+/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
+ * we don't efx_reconfigure_port() if the port is disabled. Care is taken
+ * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
+static void efx_reconfigure_work(struct work_struct *data)
+{
+	struct efx_nic *efx = container_of(data, struct efx_nic,
+					   reconfigure_work);
+	mutex_lock(&efx->mac_lock);
+	if (efx->port_enabled)
+		__efx_reconfigure_port(efx);
+	mutex_unlock(&efx->mac_lock);
+}
+
+static int efx_probe_port(struct efx_nic *efx)
+{
+	unsigned char *dev_addr;
+	int rc;
+
+	EFX_LOG(efx, "create port\n");
+
+	/* Connect up MAC/PHY operations table and read MAC address */
+	rc = falcon_probe_port(efx);
+	if (rc)
+		goto err;
+
+	/* Sanity check MAC address */
+	dev_addr = efx->mac_address;
+	if (!is_valid_ether_addr(dev_addr)) {
+		DECLARE_MAC_BUF(mac);
+
+		EFX_ERR(efx, "invalid MAC address %s\n",
+			print_mac(mac, dev_addr));
+		if (!allow_bad_hwaddr) {
+			rc = -EINVAL;
+			goto err;
+		}
+		random_ether_addr(dev_addr);
+		EFX_INFO(efx, "using locally-generated MAC %s\n",
+			 print_mac(mac, dev_addr));
+	}
+
+	return 0;
+
+ err:
+	efx_remove_port(efx);
+	return rc;
+}
+
+static int efx_init_port(struct efx_nic *efx)
+{
+	int rc;
+
+	EFX_LOG(efx, "init port\n");
+
+	/* Initialise the MAC and PHY */
+	rc = falcon_init_xmac(efx);
+	if (rc)
+		return rc;
+
+	efx->port_initialized = 1;
+
+	/* Reconfigure port to program MAC registers */
+	falcon_reconfigure_xmac(efx);
+
+	return 0;
+}
+
+/* Allow efx_reconfigure_port() to run, and propagate delayed changes
+ * to the promiscuous flag to the MAC if needed */
+static void efx_start_port(struct efx_nic *efx)
+{
+	EFX_LOG(efx, "start port\n");
+	BUG_ON(efx->port_enabled);
+
+	mutex_lock(&efx->mac_lock);
+	efx->port_enabled = 1;
+	mutex_unlock(&efx->mac_lock);
+
+	if (efx->net_dev_registered) {
+		int promiscuous;
+
+		netif_tx_lock_bh(efx->net_dev);
+		promiscuous = (efx->net_dev->flags & IFF_PROMISC) ? 1 : 0;
+		if (efx->promiscuous != promiscuous) {
+			efx->promiscuous = promiscuous;
+			queue_work(efx->workqueue, &efx->reconfigure_work);
+		}
+		netif_tx_unlock_bh(efx->net_dev);
+	}
+}
+
+/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
+ * efx_set_multicast_list() from scheduling efx_reconfigure_work.
+ * efx_reconfigure_work can still be scheduled via NAPI processing
+ * until efx_flush_all() is called */
+static void efx_stop_port(struct efx_nic *efx)
+{
+	EFX_LOG(efx, "stop port\n");
+
+	mutex_lock(&efx->mac_lock);
+	efx->port_enabled = 0;
+	mutex_unlock(&efx->mac_lock);
+
+	/* Serialise against efx_set_multicast_list() */
+	if (efx->net_dev_registered) {
+		netif_tx_lock_bh(efx->net_dev);
+		netif_tx_unlock_bh(efx->net_dev);
+	}
+}
+
+/* Isolate the MAC from the TX and RX engines, so that queue flushes will
+ * complete in a timely manner. The port must be in the disabled state.
+ * efx_reconfigure_port() MUST be called to reinitialise the hardware */
+static void __efx_drain_port(struct efx_nic *efx)
+{
+	BUG_ON(efx->port_enabled);
+	falcon_deconfigure_mac_wrapper(efx);
+	falcon_drain_tx_fifo(efx);
+}
+
+static void efx_drain_port(struct efx_nic *efx)
+{
+	mutex_lock(&efx->mac_lock);
+	__efx_drain_port(efx);
+	mutex_unlock(&efx->mac_lock);
+}
+
+static void efx_fini_port(struct efx_nic *efx)
+{
+	EFX_LOG(efx, "shut down port\n");
+
+	if (!efx->port_initialized)
+		return;
+
+	falcon_fini_xmac(efx);
+	efx->port_initialized = 0;
+
+	efx->link_up = 0;
+	efx_link_status_changed(efx);
+}
+
+static void efx_remove_port(struct efx_nic *efx)
+{
+	EFX_LOG(efx, "destroying port\n");
+
+	falcon_remove_port(efx);
+}
+
+/**************************************************************************
+ *
+ * NIC handling
+ *
+ **************************************************************************/
+
+/* This configures the PCI device to enable I/O and DMA. */
+static int efx_init_io(struct efx_nic *efx)
+{
+	struct pci_dev *pci_dev = efx->pci_dev;
+	dma_addr_t dma_mask = efx->type->max_dma_mask;
+	int rc;
+
+	EFX_LOG(efx, "initialising I/O\n");
+
+	rc = pci_enable_device(pci_dev);
+	if (rc) {
+		EFX_ERR(efx, "failed to enable PCI device\n");
+		goto fail1;
+	}
+
+	pci_set_master(pci_dev);
+
+	/* Set the PCI DMA mask.  Try all possibilities from our
+	 * genuine mask down to 32 bits, because some architectures
+	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
+	 * masks event though they reject 46 bit masks.
+	 */
+	while (dma_mask > 0x7fffffffUL) {
+		if (pci_dma_supported(pci_dev, dma_mask) &&
+		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
+			break;
+		dma_mask >>= 1;
+	}
+	if (rc) {
+		EFX_ERR(efx, "could not find a suitable DMA mask\n");
+		goto fail2;
+	}
+	EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
+	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
+	if (rc) {
+		/* pci_set_consistent_dma_mask() is not *allowed* to
+		 * fail with a mask that pci_set_dma_mask() accepted,
+		 * but just in case...
+		 */
+		EFX_ERR(efx, "failed to set consistent DMA mask\n");
+		goto fail2;
+	}
+
+	efx->membase_phys = pci_resource_start(efx->pci_dev,
+					       efx->type->mem_bar);
+	rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
+	if (rc) {
+		EFX_ERR(efx, "request for memory BAR failed\n");
+		rc = -EIO;
+		goto fail3;
+	}
+	efx->membase = ioremap_nocache(efx->membase_phys,
+				       efx->type->mem_map_size);
+	if (!efx->membase) {
+		EFX_ERR(efx, "could not map memory BAR %d at %lx+%x\n",
+			efx->type->mem_bar, efx->membase_phys,
+			efx->type->mem_map_size);
+		rc = -ENOMEM;
+		goto fail4;
+	}
+	EFX_LOG(efx, "memory BAR %u at %lx+%x (virtual %p)\n",
+		efx->type->mem_bar, efx->membase_phys, efx->type->mem_map_size,
+		efx->membase);
+
+	return 0;
+
+ fail4:
+	release_mem_region(efx->membase_phys, efx->type->mem_map_size);
+ fail3:
+	efx->membase_phys = 0UL;
+ fail2:
+	pci_disable_device(efx->pci_dev);
+ fail1:
+	return rc;
+}
+
+static void efx_fini_io(struct efx_nic *efx)
+{
+	EFX_LOG(efx, "shutting down I/O\n");
+
+	if (efx->membase) {
+		iounmap(efx->membase);
+		efx->membase = NULL;
+	}
+
+	if (efx->membase_phys) {
+		pci_release_region(efx->pci_dev, efx->type->mem_bar);
+		efx->membase_phys = 0UL;
+	}
+
+	pci_disable_device(efx->pci_dev);
+}
+
+/* Probe the number and type of interrupts we are able to obtain. */
+static int efx_probe_interrupts(struct efx_nic *efx)
+{
+	int max_channel = efx->type->phys_addr_channels - 1;
+	struct msix_entry xentries[EFX_MAX_CHANNELS];
+	int rc, i;
+
+	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
+		BUG_ON(!pci_find_capability(efx->pci_dev, PCI_CAP_ID_MSIX));
+
+		if (rss_cpus == 0) {
+#ifdef topology_core_siblings
+			cpumask_t core_mask;
+			int cpu;
+
+			cpus_clear(core_mask);
+			efx->rss_queues = 0;
+			for_each_online_cpu(cpu) {
+				if (!cpu_isset(cpu, core_mask)) {
+					++efx->rss_queues;
+					cpus_or(core_mask, core_mask,
+						topology_core_siblings(cpu));
+				}
+			}
+#else
+			efx->rss_queues = num_online_cpus();
+#endif
+		} else {
+			efx->rss_queues = rss_cpus;
+		}
+
+		efx->rss_queues = min(efx->rss_queues, max_channel + 1);
+		efx->rss_queues = min(efx->rss_queues, EFX_MAX_CHANNELS);
+
+		/* Request maximum number of MSI interrupts, and fill out
+		 * the channel interrupt information the allowed allocation */
+		for (i = 0; i < efx->rss_queues; i++)
+			xentries[i].entry = i;
+		rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues);
+		if (rc > 0) {
+			EFX_BUG_ON_PARANOID(rc >= efx->rss_queues);
+			efx->rss_queues = rc;
+			rc = pci_enable_msix(efx->pci_dev, xentries,
+					     efx->rss_queues);
+		}
+
+		if (rc == 0) {
+			for (i = 0; i < efx->rss_queues; i++) {
+				efx->channel[i].has_interrupt = 1;
+				efx->channel[i].irq = xentries[i].vector;
+			}
+		} else {
+			/* Fall back to single channel MSI */
+			efx->interrupt_mode = EFX_INT_MODE_MSI;
+			EFX_ERR(efx, "could not enable MSI-X\n");
+		}
+	}
+
+	/* Try single interrupt MSI */
+	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
+		efx->rss_queues = 1;
+		rc = pci_enable_msi(efx->pci_dev);
+		if (rc == 0) {
+			efx->channel[0].irq = efx->pci_dev->irq;
+			efx->channel[0].has_interrupt = 1;
+		} else {
+			EFX_ERR(efx, "could not enable MSI\n");
+			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
+		}
+	}
+
+	/* Assume legacy interrupts */
+	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
+		efx->rss_queues = 1;
+		/* Every channel is interruptible */
+		for (i = 0; i < EFX_MAX_CHANNELS; i++)
+			efx->channel[i].has_interrupt = 1;
+		efx->legacy_irq = efx->pci_dev->irq;
+	}
+
+	return 0;
+}
+
+static void efx_remove_interrupts(struct efx_nic *efx)
+{
+	struct efx_channel *channel;
+
+	/* Remove MSI/MSI-X interrupts */
+	efx_for_each_channel_with_interrupt(channel, efx)
+		channel->irq = 0;
+	pci_disable_msi(efx->pci_dev);
+	pci_disable_msix(efx->pci_dev);
+
+	/* Remove legacy interrupt */
+	efx->legacy_irq = 0;
+}
+
+/* Select number of used resources
+ * Should be called after probe_interrupts()
+ */
+static int efx_select_used(struct efx_nic *efx)
+{
+	struct efx_tx_queue *tx_queue;
+	struct efx_rx_queue *rx_queue;
+	int i;
+
+	/* TX queues.  One per port per channel with TX capability
+	 * (more than one per port won't work on Linux, due to out
+	 *  of order issues... but will be fine on Solaris)
+	 */
+	tx_queue = &efx->tx_queue[0];
+
+	/* Perform this for each channel with TX capabilities.
+	 * At the moment, we only support a single TX queue
+	 */
+	tx_queue->used = 1;
+	if ((!EFX_INT_MODE_USE_MSI(efx)) && separate_tx_and_rx_channels)
+		tx_queue->channel = &efx->channel[1];
+	else
+		tx_queue->channel = &efx->channel[0];
+	tx_queue->channel->used_flags |= EFX_USED_BY_TX;
+	tx_queue++;
+
+	/* RX queues.  Each has a dedicated channel. */
+	for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
+		rx_queue = &efx->rx_queue[i];
+
+		if (i < efx->rss_queues) {
+			rx_queue->used = 1;
+			/* If we allow multiple RX queues per channel
+			 * we need to decide that here
+			 */
+			rx_queue->channel = &efx->channel[rx_queue->queue];
+			rx_queue->channel->used_flags |= EFX_USED_BY_RX;
+			rx_queue++;
+		}
+	}
+	return 0;
+}
+
+static int efx_probe_nic(struct efx_nic *efx)
+{
+	int rc;
+
+	EFX_LOG(efx, "creating NIC\n");
+
+	/* Carry out hardware-type specific initialisation */
+	rc = falcon_probe_nic(efx);
+	if (rc)
+		goto fail1;
+
+	/* Determine the number of channels and RX queues by trying to hook
+	 * in MSI-X interrupts. */
+	rc = efx_probe_interrupts(efx);
+	if (rc)
+		goto fail2;
+
+	/* Determine number of RX queues and TX queues */
+	rc = efx_select_used(efx);
+	if (rc)
+		goto fail3;
+
+	/* Initialise the interrupt moderation settings */
+	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
+
+	return 0;
+
+ fail3:
+	efx_remove_interrupts(efx);
+ fail2:
+	falcon_remove_nic(efx);
+ fail1:
+	return rc;
+}
+
+static void efx_remove_nic(struct efx_nic *efx)
+{
+	EFX_LOG(efx, "destroying NIC\n");
+
+	efx_remove_interrupts(efx);
+	falcon_remove_nic(efx);
+}
+
+/**************************************************************************
+ *
+ * NIC startup/shutdown
+ *
+ *************************************************************************/
+
+static int efx_probe_all(struct efx_nic *efx)
+{
+	struct efx_channel *channel;
+	int rc;
+
+	/* Create NIC */
+	rc = efx_probe_nic(efx);
+	if (rc) {
+		EFX_ERR(efx, "failed to create NIC\n");
+		goto fail1;
+	}
+
+	/* Create port */
+	rc = efx_probe_port(efx);
+	if (rc) {
+		EFX_ERR(efx, "failed to create port\n");
+		goto fail2;
+	}
+
+	/* Create channels */
+	efx_for_each_channel(channel, efx) {
+		rc = efx_probe_channel(channel);
+		if (rc) {
+			EFX_ERR(efx, "failed to create channel %d\n",
+				channel->channel);
+			goto fail3;
+		}
+	}
+
+	return 0;
+
+ fail3:
+	efx_for_each_channel(channel, efx)
+		efx_remove_channel(channel);
+ fail2:
+	efx_remove_port(efx);
+ fail1:
+	return rc;
+}
+
+/* Called after previous invocation(s) of efx_stop_all, restarts the
+ * port, kernel transmit queue, NAPI processing and hardware interrupts.
+ * This function is safe to call multiple times when the NIC is in any
+ * state. */
+static void efx_start_all(struct efx_nic *efx)
+{
+	struct efx_channel *channel;
+
+	EFX_ASSERT_RESET_SERIALISED(efx);
+
+	/* Check that it is appropriate to restart the interface. All
+	 * of these flags are safe to read under just the rtnl lock */
+	if (efx->port_enabled)
+		return;
+	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
+		return;
+	if (efx->net_dev_registered && !netif_running(efx->net_dev))
+		return;
+
+	/* Mark the port as enabled so port reconfigurations can start, then
+	 * restart the transmit interface early so the watchdog timer stops */
+	efx_start_port(efx);
+	efx_wake_queue(efx);
+
+	efx_for_each_channel(channel, efx)
+		efx_start_channel(channel);
+
+	falcon_enable_interrupts(efx);
+
+	/* Start hardware monitor if we're in RUNNING */
+	if (efx->state == STATE_RUNNING)
+		queue_delayed_work(efx->workqueue, &efx->monitor_work,
+				   efx_monitor_interval);
+}
+
+/* Flush all delayed work. Should only be called when no more delayed work
+ * will be scheduled. This doesn't flush pending online resets (efx_reset),
+ * since we're holding the rtnl_lock at this point. */
+static void efx_flush_all(struct efx_nic *efx)
+{
+	struct efx_rx_queue *rx_queue;
+
+	/* Make sure the hardware monitor is stopped */
+	cancel_delayed_work_sync(&efx->monitor_work);
+
+	/* Ensure that all RX slow refills are complete. */
+	efx_for_each_rx_queue(rx_queue, efx) {
+		cancel_delayed_work_sync(&rx_queue->work);
+	}
+
+	/* Stop scheduled port reconfigurations */
+	cancel_work_sync(&efx->reconfigure_work);
+
+}
+
+/* Quiesce hardware and software without bringing the link down.
+ * Safe to call multiple times, when the nic and interface is in any
+ * state. The caller is guaranteed to subsequently be in a position
+ * to modify any hardware and software state they see fit without
+ * taking locks. */
+static void efx_stop_all(struct efx_nic *efx)
+{
+	struct efx_channel *channel;
+
+	EFX_ASSERT_RESET_SERIALISED(efx);
+
+	/* port_enabled can be read safely under the rtnl lock */
+	if (!efx->port_enabled)
+		return;
+
+	/* Disable interrupts and wait for ISR to complete */
+	falcon_disable_interrupts(efx);
+	if (efx->legacy_irq)
+		synchronize_irq(efx->legacy_irq);
+	efx_for_each_channel_with_interrupt(channel, efx)
+		if (channel->irq)
+			synchronize_irq(channel->irq);
+
+	/* Stop all NAPI processing and synchronous rx refills */
+	efx_for_each_channel(channel, efx)
+		efx_stop_channel(channel);
+
+	/* Stop all asynchronous port reconfigurations. Since all
+	 * event processing has already been stopped, there is no
+	 * window to loose phy events */
+	efx_stop_port(efx);
+
+	/* Flush reconfigure_work, refill_workqueue, monitor_work */
+	efx_flush_all(efx);
+
+	/* Stop the kernel transmit interface late, so the watchdog
+	 * timer isn't ticking over the flush */
+	efx_stop_queue(efx);
+	if (efx->net_dev_registered) {
+		netif_tx_lock_bh(efx->net_dev);
+		netif_tx_unlock_bh(efx->net_dev);
+	}
+}
+
+static void efx_remove_all(struct efx_nic *efx)
+{
+	struct efx_channel *channel;
+
+	efx_for_each_channel(channel, efx)
+		efx_remove_channel(channel);
+	efx_remove_port(efx);
+	efx_remove_nic(efx);
+}
+
+/* A convinience function to safely flush all the queues */
+int efx_flush_queues(struct efx_nic *efx)
+{
+	int rc;
+
+	EFX_ASSERT_RESET_SERIALISED(efx);
+
+	efx_stop_all(efx);
+	efx_drain_port(efx);
+
+	efx_fini_channels(efx);
+	rc = efx_init_channels(efx);
+	if (rc) {
+		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
+		return rc;
+	}
+
+	efx_reconfigure_port(efx);
+	efx_start_all(efx);
+
+	return 0;
+}
+
+/**************************************************************************
+ *
+ * Interrupt moderation
+ *
+ **************************************************************************/
+
+/* Set interrupt moderation parameters */
+void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
+{
+	struct efx_tx_queue *tx_queue;
+	struct efx_rx_queue *rx_queue;
+
+	EFX_ASSERT_RESET_SERIALISED(efx);
+
+	efx_for_each_tx_queue(tx_queue, efx)
+		tx_queue->channel->irq_moderation = tx_usecs;
+
+	efx_for_each_rx_queue(rx_queue, efx)
+		rx_queue->channel->irq_moderation = rx_usecs;
+}
+
+/**************************************************************************
+ *
+ * Hardware monitor
+ *
+ **************************************************************************/
+
+/* Run periodically off the general workqueue. Serialised against
+ * efx_reconfigure_port via the mac_lock */
+static void efx_monitor(struct work_struct *data)
+{
+	struct efx_nic *efx = container_of(data, struct efx_nic,
+					   monitor_work.work);
+	int rc = 0;
+
+	EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
+		  raw_smp_processor_id());
+
+
+	/* If the mac_lock is already held then it is likely a port
+	 * reconfiguration is already in place, which will likely do
+	 * most of the work of check_hw() anyway. */
+	if (!mutex_trylock(&efx->mac_lock)) {
+		queue_delayed_work(efx->workqueue, &efx->monitor_work,
+				   efx_monitor_interval);
+		return;
+	}
+
+	if (efx->port_enabled)
+		rc = falcon_check_xmac(efx);
+	mutex_unlock(&efx->mac_lock);
+
+	if (rc) {
+		if (monitor_reset) {
+			EFX_ERR(efx, "hardware monitor detected a fault: "
+				"triggering reset\n");
+			efx_schedule_reset(efx, RESET_TYPE_MONITOR);
+		} else {
+			EFX_ERR(efx, "hardware monitor detected a fault, "
+				"skipping reset\n");
+		}
+	}
+
+	queue_delayed_work(efx->workqueue, &efx->monitor_work,
+			   efx_monitor_interval);
+}
+
+/**************************************************************************
+ *
+ * ioctls
+ *
+ *************************************************************************/
+
+/* Net device ioctl
+ * Context: process, rtnl_lock() held.
+ */
+static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
+{
+	struct efx_nic *efx = net_dev->priv;
+	int rc;
+
+	EFX_ASSERT_RESET_SERIALISED(efx);
+
+	switch (cmd) {
+	case SIOCGMIIPHY:
+	case SIOCGMIIREG:
+		rc = generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
+		break;
+	case SIOCSMIIREG:
+		rc = generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
+		efx_reconfigure_port(efx);
+		break;
+	default:
+		rc = -EOPNOTSUPP;
+	}
+
+	return rc;
+}
+
+/**************************************************************************
+ *
+ * NAPI interface
+ *
+ **************************************************************************/
+
+/* Allocate the NAPI dev's.
+ * Called after we know how many channels there are.
+ */
+static int efx_init_napi(struct efx_nic *efx)
+{
+	struct efx_channel *channel;
+	int rc;
+
+	/* Allocate the NAPI dev for the port */
+	efx->net_dev = alloc_etherdev(0);
+	if (!efx->net_dev) {
+		rc = -ENOMEM;
+		goto err;
+	}
+	efx->net_dev->priv = efx;
+	efx->mii.dev = efx->net_dev;
+
+	efx->net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
+				   NETIF_F_HIGHDMA);
+	if (lro)
+		efx->net_dev->features |= NETIF_F_LRO;
+
+	/* Copy MAC address */
+	memcpy(&efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
+
+	/* Allocate the per channel devs */
+	efx_for_each_channel(channel, efx) {
+		channel->napi_dev = efx->net_dev;
+
+		/* Initialise LRO/SSR */
+		rc = efx_lro_init(&channel->lro_mgr, efx);
+		if (rc)
+			goto err;
+	}
+
+	return 0;
+ err:
+	efx_fini_napi(efx);
+	return rc;
+}
+
+/* Free the NAPI state for the port and channels */
+static void efx_fini_napi(struct efx_nic *efx)
+{
+	struct efx_channel *channel;
+
+	efx_for_each_channel(channel, efx) {
+		efx_lro_fini(&channel->lro_mgr);
+		channel->napi_dev = NULL;
+	}
+
+	if (efx->net_dev) {
+		efx->net_dev->priv = NULL;
+		free_netdev(efx->net_dev);
+		efx->net_dev = NULL;
+	}
+}
+
+/**************************************************************************
+ *
+ * Kernel netpoll interface
+ *
+ *************************************************************************/
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+
+/* Although in the common case interrupts will be disabled, this is not
+ * guaranteed. However, all our work happens inside the NAPI callback,
+ * so no locking is required.
+ */
+static void efx_netpoll(struct net_device *net_dev)
+{
+	struct efx_nic *efx = net_dev->priv;
+	struct efx_channel *channel;
+
+	efx_for_each_channel_with_interrupt(channel, efx)
+		efx_schedule_channel(channel);
+}
+
+#endif
+
+/**************************************************************************
+ *
+ * Kernel net device interface
+ *
+ *************************************************************************/
+
+/* Context: process, rtnl_lock() held. */
+static int efx_net_open(struct net_device *net_dev)
+{
+	struct efx_nic *efx = net_dev->priv;
+	EFX_ASSERT_RESET_SERIALISED(efx);
+
+	EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
+		raw_smp_processor_id());
+
+	/* Reverse the efx_port_drain() in efx_net_stop(), and ensure we
+	 * call efx_link_status_changed() at start of day even if no
+	 * PHY event is generated */
+	efx_reconfigure_port(efx);
+
+	efx_start_all(efx);
+	return 0;
+}
+
+/* Context: process, rtnl_lock() held.
+ * Note that the kernel will ignore our return code; this method
+ * should really be a void.
+ */
+static int efx_net_stop(struct net_device *net_dev)
+{
+	struct efx_nic *efx = net_dev->priv;
+	int rc;
+
+	EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
+		raw_smp_processor_id());
+
+	/* Stop the device and flush all the channels */
+	efx_stop_all(efx);
+	efx_drain_port(efx);
+	efx_fini_channels(efx);
+	rc = efx_init_channels(efx);
+	if (rc)
+		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
+
+	return 0;
+}
+
+/* Context: process, dev_base_lock held, non-blocking.
+ * Statistics are taken directly from the MAC.
+ */
+static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
+{
+	struct efx_nic *efx = net_dev->priv;
+	struct efx_mac_stats *mac_stats = &efx->mac_stats;
+	struct net_device_stats *stats = &net_dev->stats;
+
+	if (!spin_trylock(&efx->stats_lock))
+		return stats;
+	if (efx->state == STATE_RUNNING)
+		falcon_update_stats_xmac(efx);
+	spin_unlock(&efx->stats_lock);
+
+	stats->rx_packets = mac_stats->rx_packets;
+	stats->tx_packets = mac_stats->tx_packets;
+	stats->rx_bytes = mac_stats->rx_bytes;
+	stats->tx_bytes = mac_stats->tx_bytes;
+	stats->multicast = mac_stats->rx_multicast;
+	stats->collisions = mac_stats->tx_collision;
+	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
+				   mac_stats->rx_length_error);
+	stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
+	stats->rx_crc_errors = mac_stats->rx_bad;
+	stats->rx_frame_errors = mac_stats->rx_align_error;
+	stats->rx_fifo_errors = mac_stats->rx_overflow;
+	stats->rx_missed_errors = mac_stats->rx_missed;
+	stats->tx_window_errors = mac_stats->tx_late_collision;
+
+	stats->rx_errors = (stats->rx_length_errors +
+			    stats->rx_over_errors +
+			    stats->rx_crc_errors +
+			    stats->rx_frame_errors +
+			    stats->rx_fifo_errors +
+			    stats->rx_missed_errors +
+			    mac_stats->rx_symbol_error);
+	stats->tx_errors = (stats->tx_window_errors +
+			    mac_stats->tx_bad);
+
+	return stats;
+}
+
+/* Context: netif_tx_lock held, BHs disabled. */
+static void efx_watchdog(struct net_device *net_dev)
+{
+	struct efx_nic *efx = net_dev->priv;
+
+	EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
+		atomic_read(&efx->netif_stop_count), efx->port_enabled,
+		monitor_reset ? "resetting channels" : "skipping reset");
+
+	if (monitor_reset)
+		efx_schedule_reset(efx, RESET_TYPE_MONITOR);
+}
+
+
+/* Context: process, rtnl_lock() held. */
+static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
+{
+	struct efx_nic *efx = net_dev->priv;
+	int rc = 0;
+
+	EFX_ASSERT_RESET_SERIALISED(efx);
+
+	if (new_mtu > EFX_MAX_MTU)
+		return -EINVAL;
+
+	efx_stop_all(efx);
+
+	EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
+
+	efx_drain_port(efx);
+	efx_fini_channels(efx);
+	net_dev->mtu = new_mtu;
+	rc = efx_init_channels(efx);
+	if (rc)
+		goto fail;
+
+	/* Reconfigure the MAC */
+	efx_reconfigure_port(efx);
+
+	efx_start_all(efx);
+	return rc;
+
+ fail:
+	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
+	return rc;
+}
+
+static int efx_set_mac_address(struct net_device *net_dev, void *data)
+{
+	struct efx_nic *efx = net_dev->priv;
+	struct sockaddr *addr = data;
+	char *new_addr = addr->sa_data;
+
+	EFX_ASSERT_RESET_SERIALISED(efx);
+
+	if (!is_valid_ether_addr(new_addr)) {
+		DECLARE_MAC_BUF(mac);
+		EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
+			print_mac(mac, new_addr));
+		return -EINVAL;
+	}
+
+	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
+
+	/* Reconfigure the MAC */
+	efx_reconfigure_port(efx);
+
+	return 0;
+}
+
+/* Context: netif_tx_lock held, BHs disabled. */
+static void efx_set_multicast_list(struct net_device *net_dev)
+{
+	struct efx_nic *efx = net_dev->priv;
+	struct dev_mc_list *mc_list = net_dev->mc_list;
+	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
+	unsigned long flags __attribute__ ((unused));
+	int promiscuous;
+	u32 crc;
+	int bit;
+	int i;
+
+	/* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
+	promiscuous = (net_dev->flags & IFF_PROMISC) ? 1 : 0;
+	if (efx->promiscuous != promiscuous) {
+		if (efx->port_enabled) {
+			efx->promiscuous = promiscuous;
+			queue_work(efx->workqueue, &efx->reconfigure_work);
+		}
+	}
+
+	/* Build multicast hash table */
+	if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
+		memset(mc_hash, 0xff, sizeof(*mc_hash));
+	} else {
+		memset(mc_hash, 0x00, sizeof(*mc_hash));
+		for (i = 0; i < net_dev->mc_count; i++) {
+			crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
+			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
+			set_bit_le(bit, mc_hash->byte);
+			mc_list = mc_list->next;
+		}
+	}
+
+	/* Create and activate new global multicast hash table */
+	falcon_set_multicast_hash(efx);
+}
+
+static int efx_netdev_event(struct notifier_block *this,
+			    unsigned long event, void *ptr)
+{
+	struct net_device *net_dev = (struct net_device *)ptr;
+
+	if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
+		struct efx_nic *efx = net_dev->priv;
+
+		strcpy(efx->name, net_dev->name);
+	}
+
+	return NOTIFY_DONE;
+}
+
+static struct notifier_block efx_netdev_notifier = {
+	.notifier_call = efx_netdev_event,
+};
+
+static int efx_register_netdev(struct efx_nic *efx)
+{
+	struct net_device *net_dev = efx->net_dev;
+	int rc;
+
+	net_dev->watchdog_timeo = 5 * HZ;
+	net_dev->irq = efx->pci_dev->irq;
+	net_dev->open = efx_net_open;
+	net_dev->stop = efx_net_stop;
+	net_dev->get_stats = efx_net_stats;
+	net_dev->tx_timeout = &efx_watchdog;
+	net_dev->hard_start_xmit = efx_hard_start_xmit;
+	net_dev->do_ioctl = efx_ioctl;
+	net_dev->change_mtu = efx_change_mtu;
+	net_dev->set_mac_address = efx_set_mac_address;
+	net_dev->set_multicast_list = efx_set_multicast_list;
+#ifdef CONFIG_NET_POLL_CONTROLLER
+	net_dev->poll_controller = efx_netpoll;
+#endif
+	SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
+	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
+
+	/* Always start with carrier off; PHY events will detect the link */
+	netif_carrier_off(efx->net_dev);
+
+	BUG_ON(efx->net_dev_registered);
+
+	/* Clear MAC statistics */
+	falcon_update_stats_xmac(efx);
+	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
+
+	rc = register_netdev(net_dev);
+	if (rc) {
+		EFX_ERR(efx, "could not register net dev\n");
+		return rc;
+	}
+	strcpy(efx->name, net_dev->name);
+
+	/* Allow link change notifications to be sent to the operating
+	 * system.  The must happen after register_netdev so that
+	 * there are no outstanding link changes if that call fails.
+	 * It must happen before efx_reconfigure_port so that the
+	 * initial state of the link is reported. */
+	mutex_lock(&efx->mac_lock);
+	efx->net_dev_registered = 1;
+	mutex_unlock(&efx->mac_lock);
+
+	return 0;
+}
+
+static void efx_unregister_netdev(struct efx_nic *efx)
+{
+	int was_registered = efx->net_dev_registered;
+	struct efx_tx_queue *tx_queue;
+
+	if (!efx->net_dev)
+		return;
+
+	BUG_ON(efx->net_dev->priv != efx);
+
+	/* SFC Bug 5356: Ensure that no more link status notifications get
+	 * sent to the stack.  Bad things happen if there's an
+	 * outstanding notification after the net device is freed, but
+	 * they only get flushed out by unregister_netdev, not by
+	 * free_netdev. */
+	mutex_lock(&efx->mac_lock);
+	efx->net_dev_registered = 0;
+	mutex_unlock(&efx->mac_lock);
+
+	/* Free up any skbs still remaining. This has to happen before
+	 * we try to unregister the netdev as running their destructors
+	 * may be needed to get the device ref. count to 0. */
+	efx_for_each_tx_queue(tx_queue, efx)
+		efx_release_tx_buffers(tx_queue);
+
+	if (was_registered) {
+		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
+		unregister_netdev(efx->net_dev);
+	}
+}
+
+/**************************************************************************
+ *
+ * Device reset and suspend
+ *
+ **************************************************************************/
+
+/* The final hardware and software finalisation before reset. */
+static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
+{
+	int rc;
+
+	EFX_ASSERT_RESET_SERIALISED(efx);
+
+	rc = falcon_xmac_get_settings(efx, ecmd);
+	if (rc) {
+		EFX_ERR(efx, "could not back up PHY settings\n");
+		goto fail;
+	}
+
+	__efx_drain_port(efx);
+	efx_fini_channels(efx);
+	return 0;
+
+ fail:
+	return rc;
+}
+
+/* The first part of software initialisation after a hardware reset
+ * This function does not handle serialisation with the kernel, it
+ * assumes the caller has done this */
+static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
+{
+	int rc;
+
+	rc = efx_init_channels(efx);
+	if (rc)
+		goto fail1;
+
+	/* Restore MAC and PHY settings. */
+	rc = falcon_xmac_set_settings(efx, ecmd);
+	if (rc) {
+		EFX_ERR(efx, "could not restore PHY settings\n");
+		goto fail2;
+	}
+
+	/* Push the settings to the MAC and PHY */
+	__efx_reconfigure_port(efx);
+
+	return 0;
+
+ fail2:
+	efx_fini_channels(efx);
+ fail1:
+	return rc;
+}
+
+/* Reset the NIC as transparently as possible. Do not reset the PHY
+ * Note that the reset may fail, in which case the card will be left
+ * in a most-probably-unusable state.
+ *
+ * This function will sleep.  You cannot reset from within an atomic
+ * state; use efx_schedule_reset() instead.
+ *
+ * Grabs the rtnl_lock.
+ */
+static int efx_reset(struct efx_nic *efx)
+{
+	struct ethtool_cmd ecmd;
+	unsigned long flags __attribute__ ((unused));
+	enum reset_type method = efx->reset_pending;
+	int rc;
+
+	/* Serialise with kernel interfaces */
+	rtnl_lock();
+
+	/* If we're not RUNNING then don't reset. Leave the reset_pending
+	 * flag set so that efx_pci_probe_main will be retried */
+	if (efx->state != STATE_RUNNING) {
+		EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
+		goto unlock_rtnl;
+	}
+
+	efx->state = STATE_RESETTING;
+	EFX_INFO(efx, "resetting (%d)\n", method);
+
+	/* The net_dev->get_stats handler is quite slow, and will fail
+	 * if a fetch is pending over reset. Serialise against it. */
+	spin_lock(&efx->stats_lock);
+	spin_unlock(&efx->stats_lock);
+
+	efx_stop_all(efx);
+	mutex_lock(&efx->mac_lock);
+
+	rc = efx_reset_down(efx, &ecmd);
+	if (rc)
+		goto fail1;
+
+	rc = falcon_reset_hw(efx, method);
+	if (rc) {
+		EFX_ERR(efx, "failed to reset hardware\n");
+		goto fail2;
+	}
+
+	/* Allow resets to be rescheduled. */
+	efx->reset_pending = RESET_TYPE_NONE;
+
+	/* Reinitialise bus-mastering, which may have been turned off before
+	 * the reset was scheduled. This is still appropriate, even in the
+	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
+	 * can respond to requests. */
+	pci_set_master(efx->pci_dev);
+
+	/* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
+	 * case so the driver can talk to external SRAM */
+	rc = falcon_init_nic(efx);
+	if (rc) {
+		EFX_ERR(efx, "failed to initialise NIC\n");
+		goto fail3;
+	}
+
+	/* Leave device stopped if necessary */
+	if (method == RESET_TYPE_DISABLE) {
+		/* Reinitialise the device anyway so the driver unload sequence
+		 * can talk to the external SRAM */
+		(void) falcon_init_nic(efx);
+		rc = -EIO;
+		goto fail4;
+	}
+
+	rc = efx_reset_up(efx, &ecmd);
+	if (rc)
+		goto fail5;
+
+	mutex_unlock(&efx->mac_lock);
+	EFX_LOG(efx, "reset complete\n");
+
+	efx->state = STATE_RUNNING;
+	efx_start_all(efx);
+
+ unlock_rtnl:
+	rtnl_unlock();
+	return 0;
+
+ fail5:
+ fail4:
+ fail3:
+ fail2:
+ fail1:
+	EFX_ERR(efx, "has been disabled\n");
+	efx->state = STATE_DISABLED;
+
+	mutex_unlock(&efx->mac_lock);
+	rtnl_unlock();
+	efx_unregister_netdev(efx);
+	efx_fini_port(efx);
+	return rc;
+}
+
+/* The worker thread exists so that code that cannot sleep can
+ * schedule a reset for later.
+ */
+static void efx_reset_work(struct work_struct *data)
+{
+	struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
+
+	efx_reset(nic);
+}
+
+void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
+{
+	enum reset_type method;
+
+	if (efx->reset_pending != RESET_TYPE_NONE) {
+		EFX_INFO(efx, "quenching already scheduled reset\n");
+		return;
+	}
+
+	switch (type) {
+	case RESET_TYPE_INVISIBLE:
+	case RESET_TYPE_ALL:
+	case RESET_TYPE_WORLD:
+	case RESET_TYPE_DISABLE:
+		method = type;
+		break;
+	case RESET_TYPE_RX_RECOVERY:
+	case RESET_TYPE_RX_DESC_FETCH:
+	case RESET_TYPE_TX_DESC_FETCH:
+		method = RESET_TYPE_INVISIBLE;
+		break;
+	default:
+		method = RESET_TYPE_ALL;
+		break;
+	}
+
+	if (method != type)
+		EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
+	else
+		EFX_LOG(efx, "scheduling reset (%d)\n", method);
+
+	efx->reset_pending = method;
+
+	queue_work(efx->workqueue, &efx->reset_work);
+}
+
+/**************************************************************************
+ *
+ * List of NICs we support
+ *
+ **************************************************************************/
+
+/* PCI device ID table */
+static struct pci_device_id efx_pci_table[] __devinitdata = {
+	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
+	 .driver_data = (unsigned long) &falcon_a_nic_type},
+	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
+	 .driver_data = (unsigned long) &falcon_b_nic_type},
+	{0}			/* end of list */
+};
+
+/**************************************************************************
+ *
+ * Dummy PHY/MAC/Board operations
+ *
+ * Can be used where the MAC does not implement this operation
+ * Needed so all function pointers are valid and do not have to be tested
+ * before use
+ *
+ **************************************************************************/
+int efx_port_dummy_op_int(struct efx_nic *efx)
+{
+	return 0;
+}
+void efx_port_dummy_op_void(struct efx_nic *efx) {}
+void efx_port_dummy_op_blink(struct efx_nic *efx, int blink) {}
+
+static struct efx_phy_operations efx_dummy_phy_operations = {
+	.init		 = efx_port_dummy_op_int,
+	.reconfigure	 = efx_port_dummy_op_void,
+	.check_hw        = efx_port_dummy_op_int,
+	.fini		 = efx_port_dummy_op_void,
+	.clear_interrupt = efx_port_dummy_op_void,
+	.reset_xaui      = efx_port_dummy_op_void,
+};
+
+/* Dummy board operations */
+static int efx_nic_dummy_op_int(struct efx_nic *nic)
+{
+	return 0;
+}
+
+static struct efx_board efx_dummy_board_info = {
+	.init    = efx_nic_dummy_op_int,
+	.init_leds = efx_port_dummy_op_int,
+	.set_fault_led = efx_port_dummy_op_blink,
+};
+
+/**************************************************************************
+ *
+ * Data housekeeping
+ *
+ **************************************************************************/
+
+/* This zeroes out and then fills in the invariants in a struct
+ * efx_nic (including all sub-structures).
+ */
+static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
+			   struct pci_dev *pci_dev)
+{
+	struct efx_channel *channel;
+	struct efx_tx_queue *tx_queue;
+	struct efx_rx_queue *rx_queue;
+	int i, rc;
+
+	/* Initialise common structures */
+	memset(efx, 0, sizeof(*efx));
+	spin_lock_init(&efx->biu_lock);
+	spin_lock_init(&efx->phy_lock);
+	mutex_init(&efx->spi_lock);
+	INIT_WORK(&efx->reset_work, efx_reset_work);
+	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
+	efx->pci_dev = pci_dev;
+	efx->state = STATE_INIT;
+	efx->reset_pending = RESET_TYPE_NONE;
+	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
+	efx->board_info = efx_dummy_board_info;
+
+	efx->rx_checksum_enabled = 1;
+	spin_lock_init(&efx->netif_stop_lock);
+	spin_lock_init(&efx->stats_lock);
+	mutex_init(&efx->mac_lock);
+	efx->phy_op = &efx_dummy_phy_operations;
+	INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
+	atomic_set(&efx->netif_stop_count, 1);
+
+	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
+		channel = &efx->channel[i];
+		channel->efx = efx;
+		channel->channel = i;
+		channel->evqnum = i;
+		channel->work_pending = 0;
+	}
+	for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
+		tx_queue = &efx->tx_queue[i];
+		tx_queue->efx = efx;
+		tx_queue->queue = i;
+		tx_queue->buffer = NULL;
+		tx_queue->channel = &efx->channel[0]; /* for safety */
+	}
+	for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
+		rx_queue = &efx->rx_queue[i];
+		rx_queue->efx = efx;
+		rx_queue->queue = i;
+		rx_queue->channel = &efx->channel[0]; /* for safety */
+		rx_queue->buffer = NULL;
+		spin_lock_init(&rx_queue->add_lock);
+		INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
+	}
+
+	efx->type = type;
+
+	/* Sanity-check NIC type */
+	EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
+			    (efx->type->txd_ring_mask + 1));
+	EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
+			    (efx->type->rxd_ring_mask + 1));
+	EFX_BUG_ON_PARANOID(efx->type->evq_size &
+			    (efx->type->evq_size - 1));
+	/* As close as we can get to guaranteeing that we don't overflow */
+	EFX_BUG_ON_PARANOID(efx->type->evq_size <
+			    (efx->type->txd_ring_mask + 1 +
+			     efx->type->rxd_ring_mask + 1));
+	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
+
+	/* Higher numbered interrupt modes are less capable! */
+	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
+				  interrupt_mode);
+
+	efx->workqueue = create_singlethread_workqueue("sfc_work");
+	if (!efx->workqueue) {
+		rc = -ENOMEM;
+		goto fail1;
+	}
+
+	return 0;
+
+ fail1:
+	return rc;
+}
+
+static void efx_fini_struct(struct efx_nic *efx)
+{
+	if (efx->workqueue) {
+		destroy_workqueue(efx->workqueue);
+		efx->workqueue = NULL;
+	}
+}
+
+/**************************************************************************
+ *
+ * PCI interface
+ *
+ **************************************************************************/
+
+/* Main body of final NIC shutdown code
+ * This is called only at module unload (or hotplug removal).
+ */
+static void efx_pci_remove_main(struct efx_nic *efx)
+{
+	EFX_ASSERT_RESET_SERIALISED(efx);
+
+	/* Skip everything if we never obtained a valid membase */
+	if (!efx->membase)
+		return;
+
+	efx_drain_port(efx);
+	efx_fini_channels(efx);
+	efx_fini_port(efx);
+
+	/* Shutdown the board, then the NIC and board state */
+	falcon_fini_interrupt(efx);
+
+	efx_fini_napi(efx);
+	efx_remove_all(efx);
+}
+
+/* Final NIC shutdown
+ * This is called only at module unload (or hotplug removal).
+ */
+static void efx_pci_remove(struct pci_dev *pci_dev)
+{
+	struct efx_nic *efx;
+
+	efx = pci_get_drvdata(pci_dev);
+	if (!efx)
+		return;
+
+	/* Mark the NIC as fini, then stop the interface */
+	rtnl_lock();
+	efx->state = STATE_FINI;
+	if (efx->net_dev_registered)
+		dev_close(efx->net_dev);
+
+	/* Allow any queued efx_resets() to complete */
+	rtnl_unlock();
+
+	if (efx->membase == NULL)
+		goto out;
+
+	efx_unregister_netdev(efx);
+
+	/* Wait for any scheduled resets to complete. No more will be
+	 * scheduled from this point because efx_stop_all() has been
+	 * called, we are no longer registered with driverlink, and
+	 * the net_device's have been removed. */
+	flush_workqueue(efx->workqueue);
+
+	efx_pci_remove_main(efx);
+
+out:
+	efx_fini_io(efx);
+	EFX_LOG(efx, "shutdown successful\n");
+
+	pci_set_drvdata(pci_dev, NULL);
+	efx_fini_struct(efx);
+	kfree(efx);
+};
+
+/* Main body of NIC initialisation
+ * This is called at module load (or hotplug insertion, theoretically).
+ */
+static int efx_pci_probe_main(struct efx_nic *efx)
+{
+	int rc;
+
+	/* Do start-of-day initialisation */
+	rc = efx_probe_all(efx);
+	if (rc)
+		goto fail1;
+
+	rc = efx_init_napi(efx);
+	if (rc)
+		goto fail2;
+
+	/* Initialise the board */
+	rc = efx->board_info.init(efx);
+	if (rc) {
+		EFX_ERR(efx, "failed to initialise board\n");
+		goto fail3;
+	}
+
+	rc = falcon_init_nic(efx);
+	if (rc) {
+		EFX_ERR(efx, "failed to initialise NIC\n");
+		goto fail4;
+	}
+
+	rc = efx_init_port(efx);
+	if (rc) {
+		EFX_ERR(efx, "failed to initialise port\n");
+		goto fail5;
+	}
+
+	rc = efx_init_channels(efx);
+	if (rc)
+		goto fail6;
+
+	rc = falcon_init_interrupt(efx);
+	if (rc)
+		goto fail7;
+
+	return 0;
+
+ fail7:
+	efx_drain_port(efx);
+	efx_fini_channels(efx);
+ fail6:
+	efx_fini_port(efx);
+ fail5:
+ fail4:
+ fail3:
+	efx_fini_napi(efx);
+ fail2:
+	efx_remove_all(efx);
+ fail1:
+	return rc;
+}
+
+/* NIC initialisation
+ *
+ * This is called at module load (or hotplug insertion,
+ * theoretically).  It sets up PCI mappings, tests and resets the NIC,
+ * sets up and registers the network devices with the kernel and hooks
+ * the interrupt service routine.  It does not prepare the device for
+ * transmission; this is left to the first time one of the network
+ * interfaces is brought up (i.e. efx_net_open).
+ */
+static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
+				   const struct pci_device_id *entry)
+{
+	struct efx_nic *efx;
+	struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
+	int i, rc;
+
+	/* Allocate and initialise a struct efx_nic */
+	efx = kmalloc(sizeof(*efx), GFP_KERNEL);
+	if (!efx) {
+		rc = -ENOMEM;
+		goto fail1;
+	}
+	pci_set_drvdata(pci_dev, efx);
+	rc = efx_init_struct(efx, type, pci_dev);
+	if (rc)
+		goto fail2;
+
+	EFX_INFO(efx, "Solarflare Communications NIC detected\n");
+
+	/* Set up basic I/O (BAR mappings etc) */
+	rc = efx_init_io(efx);
+	if (rc)
+		goto fail3;
+
+	/* No serialisation is required with the reset path because
+	 * we're in STATE_INIT. */
+	for (i = 0; i < 5; i++) {
+		rc = efx_pci_probe_main(efx);
+		if (rc == 0)
+			break;
+
+		/* Serialise against efx_reset(). No more resets will be
+		 * scheduled since efx_stop_all() has been called, and we
+		 * have not and never have been registered with either
+		 * the rtnetlink or driverlink layers. */
+		cancel_work_sync(&efx->reset_work);
+
+		/* Retry if a recoverably reset event has been scheduled */
+		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
+		    (efx->reset_pending != RESET_TYPE_ALL))
+			goto fail4;
+
+		efx->reset_pending = RESET_TYPE_NONE;
+	}
+
+	if (rc) {
+		EFX_ERR(efx, "Could not reset NIC\n");
+		goto fail5;
+	}
+
+	/* Switch to the running state before we expose the device to
+	 * the OS.  This is to ensure that the initial gathering of
+	 * MAC stats succeeds. */
+	rtnl_lock();
+	efx->state = STATE_RUNNING;
+	rtnl_unlock();
+
+	rc = efx_register_netdev(efx);
+	if (rc)
+		goto fail7;
+
+	EFX_LOG(efx, "initialisation successful\n");
+
+	return 0;
+
+ fail7:
+	efx_pci_remove_main(efx);
+ fail5:
+ fail4:
+	efx_fini_io(efx);
+ fail3:
+	efx_fini_struct(efx);
+ fail2:
+	kfree(efx);
+ fail1:
+	EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
+	return rc;
+}
+
+static struct pci_driver efx_pci_driver = {
+	.name		= EFX_DRIVER_NAME,
+	.id_table	= efx_pci_table,
+	.probe		= efx_pci_probe,
+	.remove		= efx_pci_remove,
+};
+
+/**************************************************************************
+ *
+ * Kernel module interface
+ *
+ *************************************************************************/
+
+module_param(interrupt_mode, uint, 0444);
+MODULE_PARM_DESC(interrupt_mode,
+		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
+
+static int __init efx_init_module(void)
+{
+	int rc;
+
+	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
+
+	rc = register_netdevice_notifier(&efx_netdev_notifier);
+	if (rc)
+		goto err_notifier;
+
+	refill_workqueue = create_workqueue("sfc_refill");
+	if (!refill_workqueue) {
+		rc = -ENOMEM;
+		goto err_refill;
+	}
+
+	rc = pci_register_driver(&efx_pci_driver);
+	if (rc < 0)
+		goto err_pci;
+
+	return 0;
+
+ err_pci:
+	destroy_workqueue(refill_workqueue);
+ err_refill:
+	unregister_netdevice_notifier(&efx_netdev_notifier);
+ err_notifier:
+	return rc;
+}
+
+static void __exit efx_exit_module(void)
+{
+	printk(KERN_INFO "Solarflare NET driver unloading\n");
+
+	pci_unregister_driver(&efx_pci_driver);
+	destroy_workqueue(refill_workqueue);
+	unregister_netdevice_notifier(&efx_netdev_notifier);
+
+}
+
+module_init(efx_init_module);
+module_exit(efx_exit_module);
+
+MODULE_AUTHOR("Michael Brown <mbrown@...systems.co.uk> and "
+	      "Solarflare Communications");
+MODULE_DESCRIPTION("Solarflare Communications network driver");
+MODULE_LICENSE("GPL");
+MODULE_DEVICE_TABLE(pci, efx_pci_table);
diff --git a/drivers/net/sfc/efx.h b/drivers/net/sfc/efx.h
new file mode 100644
index 0000000..3b2f69f
--- /dev/null
+++ b/drivers/net/sfc/efx.h
@@ -0,0 +1,67 @@
+/****************************************************************************
+ * Driver for Solarflare Solarstorm network controllers and boards
+ * Copyright 2005-2006 Fen Systems Ltd.
+ * Copyright 2006-2008 Solarflare Communications Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation, incorporated herein by reference.
+ */
+
+#ifndef EFX_EFX_H
+#define EFX_EFX_H
+
+#include "net_driver.h"
+
+/* PCI IDs */
+#define EFX_VENDID_SFC	        0x1924
+#define FALCON_A_P_DEVID	0x0703
+#define FALCON_A_S_DEVID        0x6703
+#define FALCON_B_P_DEVID        0x0710
+
+/* TX */
+extern int efx_xmit(struct efx_nic *efx,
+		    struct efx_tx_queue *tx_queue, struct sk_buff *skb);
+extern void efx_stop_queue(struct efx_nic *efx);
+extern void efx_wake_queue(struct efx_nic *efx);
+
+/* RX */
+extern void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index);
+extern void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
+			  unsigned int len, int checksummed, int discard);
+extern void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay);
+
+/* Channels */
+extern void efx_process_channel_now(struct efx_channel *channel);
+extern int efx_flush_queues(struct efx_nic *efx);
+
+/* Ports */
+extern void efx_reconfigure_port(struct efx_nic *efx);
+
+/* Global */
+extern void efx_schedule_reset(struct efx_nic *efx, enum reset_type type);
+extern void efx_suspend(struct efx_nic *efx);
+extern void efx_resume(struct efx_nic *efx);
+extern void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs,
+				    int rx_usecs);
+extern int efx_request_power(struct efx_nic *efx, int mw, const char *name);
+extern void efx_hex_dump(const u8 *, unsigned int, const char *);
+
+/* Dummy PHY ops for PHY drivers */
+extern int efx_port_dummy_op_int(struct efx_nic *efx);
+extern void efx_port_dummy_op_void(struct efx_nic *efx);
+extern void efx_port_dummy_op_blink(struct efx_nic *efx, int blink);
+
+
+extern unsigned int efx_monitor_interval;
+
+static inline void efx_schedule_channel(struct efx_channel *channel)
+{
+	EFX_TRACE(channel->efx, "channel %d scheduling NAPI poll on CPU%d\n",
+		  channel->channel, raw_smp_processor_id());
+	channel->work_pending = 1;
+
+	netif_rx_schedule(channel->napi_dev, &channel->napi_str);
+}
+
+#endif /* EFX_EFX_H */

-- 
Ben Hutchings, Senior Software Engineer, Solarflare Communications
Not speaking for my employer; that's the marketing department's job.
--
To unsubscribe from this list: send the line "unsubscribe netdev" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ