lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:	Fri, 29 Aug 2008 14:08:19 -0700
From:	Ron Mercer <ron.mercer@...gic.com>
To:	jeff@...zik.org
Cc:	netdev@...r.kernel.org, linux-driver@...gic.com,
	ron.mercer@...gic.com
Subject: [PATCH 4/7] [RFC] qlge: New Driver: Add main source file qlge_main.c


Signed-off-by: Ron Mercer <ron.mercer@...gic.com>
---
 drivers/net/qlge/qlge_main.c | 4068 ++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 4068 insertions(+), 0 deletions(-)
 create mode 100755 drivers/net/qlge/qlge_main.c

diff --git a/drivers/net/qlge/qlge_main.c b/drivers/net/qlge/qlge_main.c
new file mode 100755
index 0000000..af4e1c3
--- /dev/null
+++ b/drivers/net/qlge/qlge_main.c
@@ -0,0 +1,4068 @@
+/*
+ * QLogic qlge NIC HBA Driver
+ * Copyright (c)  2003-2008 QLogic Corporation
+ * See LICENSE.qlge for copyright and licensing details.
+ * Author:     Linux qlge network device driver by
+ *                      Ron Mercer <ron.mercer@...gic.com>
+ */
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/module.h>
+#include <linux/list.h>
+#include <linux/pci.h>
+#include <linux/dma-mapping.h>
+#include <linux/pagemap.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/dmapool.h>
+#include <linux/mempool.h>
+#include <linux/spinlock.h>
+#include <linux/kthread.h>
+#include <linux/interrupt.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/in.h>
+#include <linux/ip.h>
+#include <linux/ipv6.h>
+#include <net/ipv6.h>
+#include <linux/tcp.h>
+#include <linux/udp.h>
+#include <linux/if_arp.h>
+#include <linux/if_ether.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/ethtool.h>
+#include <linux/skbuff.h>
+#include <linux/rtnetlink.h>
+#include <linux/if_vlan.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/mm.h>
+#include <linux/vmalloc.h>
+
+#include "qlge.h"
+
+char qlge_driver_name[] = DRV_NAME;
+const char qlge_driver_version[] = DRV_VERSION;
+
+MODULE_AUTHOR("Ron Mercer <ron.mercer@...gic.com>");
+MODULE_DESCRIPTION(DRV_STRING " ");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+
+static const u32 default_msg =
+    NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
+/* NETIF_MSG_TIMER |	*/
+    NETIF_MSG_IFDOWN |
+    NETIF_MSG_IFUP |
+    NETIF_MSG_RX_ERR |
+    NETIF_MSG_TX_ERR |
+    NETIF_MSG_TX_QUEUED |
+    NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
+/* NETIF_MSG_PKTDATA | */
+    NETIF_MSG_HW | NETIF_MSG_WOL | 0;
+
+static int debug = 0x00007fff;	/* defaults above */
+module_param(debug, int, 0);
+MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
+
+#define MSIX_IRQ 0
+#define MSI_IRQ 1
+#define LEG_IRQ 2
+static int irq_type = MSIX_IRQ;
+module_param(irq_type, int, MSIX_IRQ);
+MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
+
+static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
+	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
+	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
+	/* required last entry */
+	{0,}
+};
+
+MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
+
+/* This hardware semaphore causes exclusive access to
+ * resources shared between the NIC driver, MPI firmware,
+ * FCOE firmware and the FC driver.
+ */
+static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
+{
+	u32 sem_bits = 0;
+
+	switch (sem_mask) {
+	case SEM_XGMAC0_MASK:
+		sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
+		break;
+	case SEM_XGMAC1_MASK:
+		sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
+		break;
+	case SEM_ICB_MASK:
+		sem_bits = SEM_SET << SEM_ICB_SHIFT;
+		break;
+	case SEM_MAC_ADDR_MASK:
+		sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
+		break;
+	case SEM_FLASH_MASK:
+		sem_bits = SEM_SET << SEM_FLASH_SHIFT;
+		break;
+	case SEM_PROBE_MASK:
+		sem_bits = SEM_SET << SEM_PROBE_SHIFT;
+		break;
+	case SEM_RT_IDX_MASK:
+		sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
+		break;
+	case SEM_PROC_REG_MASK:
+		sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
+		break;
+	default:
+		QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
+		return -EINVAL;
+	}
+
+	ql_write32(qdev, SEM, sem_bits | sem_mask);
+	return !(ql_read32(qdev, SEM) & sem_bits);
+}
+
+int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
+{
+	unsigned int seconds = 3;
+	do {
+		if (!ql_sem_trylock(qdev, sem_mask))
+			return 0;
+		ssleep(1);
+	} while (--seconds);
+	return -ETIMEDOUT;
+}
+
+void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
+{
+	ql_write32(qdev, SEM, sem_mask);
+	ql_read32(qdev, SEM);	/* flush */
+}
+
+/* If the initialization process finds that another function
+ * or firmware module is bring up the port then it calls this
+ * to wait until the process is complete.
+ * Returns zero on success.
+ */
+static int ql_wait_port_init_cmplt(struct ql_adapter *qdev)
+{
+	int count = 100;
+	u32 temp;
+
+	while (count) {
+		temp = ql_read32(qdev, STS);
+		if (temp & qdev->port_init)
+			return 0;
+		mdelay(5);
+		QPRINTK(qdev, LINK, INFO, "Wait for MAC Port to Initialize.\n");
+		count--;
+	}
+	return -ETIMEDOUT;
+}
+
+/* The CFG register is used to download TX and RX control blocks
+ * to the chip. This function waits for an operation to complete.
+ */
+static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
+{
+	int count = MSLEEP_COUNT;
+	u32 temp;
+
+	while (count) {
+		temp = ql_read32(qdev, CFG);
+		if (!(temp & bit))
+			return 0;
+		if (temp & CFG_LE)
+			return -EIO;
+		spin_unlock(&qdev->hw_lock);
+		msleep(MSLEEP_DELAY);
+		spin_lock(&qdev->hw_lock);
+		count--;
+	}
+	return -ETIMEDOUT;
+}
+
+/* Used to issue init control blocks to hw. Maps control block,
+ * sets address, triggers download, waits for completion.
+ */
+int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
+		 u16 q_id)
+{
+	u64 map;
+	int status = 0;
+	int direction;
+	u32 mask;
+	u32 value;
+
+	direction =
+	    (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
+	    PCI_DMA_FROMDEVICE;
+
+	map = pci_map_single(qdev->pdev, ptr, size, direction);
+	if (pci_dma_mapping_error(map)) {
+		QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
+		return -ENOMEM;
+	}
+
+	status = ql_wait_cfg(qdev, bit);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR,
+			"Timed out waiting for CFG to come ready.\n");
+		goto exit;
+	}
+
+	status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
+	if (status)
+		goto exit;
+	ql_write32(qdev, ICB_L, (u32) map);
+	ql_write32(qdev, ICB_H, (u32) (map >> 32));
+	ql_sem_unlock(qdev, SEM_ICB_MASK);	/* does flush too */
+
+	mask = CFG_Q_MASK | (bit << 16);
+	value = bit | (q_id << CFG_Q_SHIFT);
+	ql_write32(qdev, CFG, (mask | value));
+
+	/*
+	 * Wait for the bit to clear after signaling hw.
+	 */
+	status = ql_wait_cfg(qdev, bit);
+exit:
+	pci_unmap_single(qdev->pdev, map, size, direction);
+	return status;
+}
+
+/* This chip has several addr/data register pairs that are used
+ * to index into another set of registers.  This function waits
+ * for a specified register set to be ready for access.
+ * Examples would be setting up the CAM with MAC addresses, setting
+ * up the frame routing table.
+ */
+static int ql_wait_idx_reg(struct ql_adapter *qdev, u32 reg, u32 flag)
+{
+	int count = 200;
+	u32 temp;
+
+	while (count) {
+		temp = ql_read32(qdev, reg);
+		if (temp & flag)
+			return 0;
+		mdelay(5);
+		count--;
+	}
+	return -ETIMEDOUT;
+}
+
+/* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
+int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
+			u32 *value)
+{
+	u32 offset = 0;
+	int status;
+
+	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
+	if (status)
+		return status;
+	switch (type) {
+	case MAC_ADDR_TYPE_MULTI_MAC:
+	case MAC_ADDR_TYPE_CAM_MAC:
+		{
+			status =
+			    ql_wait_idx_reg(qdev, MAC_ADDR_IDX, MAC_ADDR_MW);
+			if (status)
+				goto exit;
+			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
+				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
+			status =
+			    ql_wait_idx_reg(qdev, MAC_ADDR_IDX, MAC_ADDR_MR);
+			if (status)
+				goto exit;
+			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
+			status =
+			    ql_wait_idx_reg(qdev, MAC_ADDR_IDX, MAC_ADDR_MW);
+			if (status)
+				goto exit;
+			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
+				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
+			status =
+			    ql_wait_idx_reg(qdev, MAC_ADDR_IDX, MAC_ADDR_MR);
+			if (status)
+				goto exit;
+			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
+			if (type == MAC_ADDR_TYPE_CAM_MAC) {
+				status =
+				    ql_wait_idx_reg(qdev, MAC_ADDR_IDX,
+						    MAC_ADDR_MW);
+				if (status)
+					goto exit;
+				ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+					   (index << MAC_ADDR_IDX_SHIFT) | /* index */
+					   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
+				status =
+				    ql_wait_idx_reg(qdev, MAC_ADDR_IDX,
+						    MAC_ADDR_MR);
+				if (status)
+					goto exit;
+				*value++ = ql_read32(qdev, MAC_ADDR_DATA);
+			}
+			break;
+		}
+	case MAC_ADDR_TYPE_VLAN:
+	case MAC_ADDR_TYPE_MULTI_FLTR:
+	default:
+		QPRINTK(qdev, IFUP, CRIT,
+			"Address type %d not yet supported.\n", type);
+		status = -EPERM;
+	}
+exit:
+	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
+	return status;
+}
+
+/* Set up a MAC, multicast or VLAN address for the
+ * inbound frame matching.
+ */
+static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
+			       u16 index)
+{
+	u32 offset = 0;
+	int status = 0;
+
+	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
+	if (status)
+		return status;
+	switch (type) {
+	case MAC_ADDR_TYPE_MULTI_MAC:
+	case MAC_ADDR_TYPE_CAM_MAC:
+		{
+			u32 cam_output;
+			u32 upper = (addr[0] << 8) | addr[1];
+			u32 lower =
+			    (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
+			    (addr[5]);
+
+			QPRINTK(qdev, IFUP, INFO,
+				"Adding %s address %02x:%02x:%02x:%02x:%02x:%02x"
+				" at index %d in the CAM.\n",
+				((type ==
+				  MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
+				 "UNICAST"), addr[0], addr[1], addr[2], addr[3],
+				addr[4], addr[5], index);
+
+			status =
+			    ql_wait_idx_reg(qdev, MAC_ADDR_IDX, MAC_ADDR_MW);
+			if (status)
+				goto exit;
+			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
+				   type);	/* type */
+			ql_write32(qdev, MAC_ADDR_DATA, lower);
+			status =
+			    ql_wait_idx_reg(qdev, MAC_ADDR_IDX, MAC_ADDR_MW);
+			if (status)
+				goto exit;
+			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
+				   type);	/* type */
+			ql_write32(qdev, MAC_ADDR_DATA, upper);
+			status =
+			    ql_wait_idx_reg(qdev, MAC_ADDR_IDX, MAC_ADDR_MW);
+			if (status)
+				goto exit;
+			ql_write32(qdev, MAC_ADDR_IDX, (offset) |	/* offset */
+				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
+				   type);	/* type */
+			/* This field should also include the queue id
+			   and possibly the function id.  Right now we hardcode
+			   the route field to NIC core.
+			 */
+			if (type == MAC_ADDR_TYPE_CAM_MAC) {
+				cam_output = (CAM_OUT_ROUTE_NIC |
+					      (qdev->
+					       func << CAM_OUT_FUNC_SHIFT) |
+					      (qdev->
+					       rss_ring_first_cq_id <<
+					       CAM_OUT_CQ_ID_SHIFT));
+				if (qdev->vlgrp)
+					cam_output |= CAM_OUT_RV;
+				/* route to NIC core */
+				ql_write32(qdev, MAC_ADDR_DATA, cam_output);
+			}
+			break;
+		}
+	case MAC_ADDR_TYPE_VLAN:
+		{
+			u32 enable_bit = *((u32 *) &addr[0]);
+			/* For VLAN, the addr actually holds a bit that
+			 * either enables or disables the vlan id we are
+			 * addressing. It's either MAC_ADDR_E on or off.
+			 * That's bit-27 we're talking about.
+			 */
+			QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
+				(enable_bit ? "Adding" : "Removing"),
+				index, (enable_bit ? "to" : "from"));
+
+			status =
+			    ql_wait_idx_reg(qdev, MAC_ADDR_IDX, MAC_ADDR_MW);
+			if (status)
+				goto exit;
+			ql_write32(qdev, MAC_ADDR_IDX, offset |	/* offset */
+				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
+				   type |	/* type */
+				   enable_bit);	/* enable/disable */
+			break;
+		}
+	case MAC_ADDR_TYPE_MULTI_FLTR:
+	default:
+		QPRINTK(qdev, IFUP, CRIT,
+			"Address type %d not yet supported.\n", type);
+		status = -EPERM;
+	}
+exit:
+	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
+	return status;
+}
+
+/* Get a specific frame routing value from the CAM.
+ * Used for debug and reg dump.
+ */
+int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
+{
+	int status = 0;
+
+	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
+	if (status)
+		goto exit;
+
+	status = ql_wait_idx_reg(qdev, RT_IDX, RT_IDX_MW);
+	if (status)
+		goto exit;
+
+	ql_write32(qdev, RT_IDX,
+		   RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
+	status = ql_wait_idx_reg(qdev, RT_IDX, RT_IDX_MR);
+	if (status)
+		goto exit;
+	*value = ql_read32(qdev, RT_DATA);
+exit:
+	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
+	return status;
+}
+
+/* The NIC function for this chip has 16 routing indexes.  Each one can be used
+ * to route different frame types to various inbound queues.  We send broadcast/
+ * multicast/error frames to the default queue for slow handling,
+ * and CAM hit/RSS frames to the fast handling queues.
+ */
+static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
+			      int enable)
+{
+	int status;
+	u32 value = 0;
+
+	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
+	if (status)
+		return status;
+
+	QPRINTK(qdev, IFUP, DEBUG,
+		"%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
+		(enable ? "Adding" : "Removing"),
+		((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
+		((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
+		((index ==
+		  RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
+		((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
+		((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
+		((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
+		((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
+		((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
+		((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
+		((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
+		((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
+		((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
+		((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
+		((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
+		((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
+		((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
+		(enable ? "to" : "from"));
+
+	switch (mask) {
+	case RT_IDX_CAM_HIT:
+		{
+			value = RT_IDX_DST_CAM_Q |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	case RT_IDX_VALID:	/* Promiscuous Mode frames. */
+		{
+			value = RT_IDX_DST_DFLT_Q |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	case RT_IDX_ERR:	/* Pass up MAC,IP,TCP/UDP error frames. */
+		{
+			value = RT_IDX_DST_DFLT_Q |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	case RT_IDX_BCAST:	/* Pass up Broadcast frames to default Q. */
+		{
+			value = RT_IDX_DST_DFLT_Q |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	case RT_IDX_MCAST:	/* Pass up All Multicast frames. */
+		{
+			value = RT_IDX_DST_CAM_Q |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	case RT_IDX_MCAST_MATCH:	/* Pass up matched Multicast frames. */
+		{
+			value = RT_IDX_DST_CAM_Q |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	case RT_IDX_RSS_MATCH:	/* Pass up matched RSS frames. */
+		{
+			value = RT_IDX_DST_RSS |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	case 0:		/* Clear the E-bit on an entry. */
+		{
+			value = RT_IDX_DST_DFLT_Q |	/* dest */
+			    RT_IDX_TYPE_NICQ |	/* type */
+			    (index << RT_IDX_IDX_SHIFT);/* index */
+			break;
+		}
+	default:
+		QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
+			mask);
+		status = -EPERM;
+		goto exit;
+	}
+
+	if (value) {
+		status = ql_wait_idx_reg(qdev, RT_IDX, RT_IDX_MW);
+		if (status)
+			goto exit;
+		value |= (enable ? RT_IDX_E : 0);
+		ql_write32(qdev, RT_IDX, value);
+		ql_write32(qdev, RT_DATA, enable ? mask : 0);
+	}
+exit:
+	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
+	return status;
+}
+
+static void ql_enable_interrupts(struct ql_adapter *qdev)
+{
+	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
+}
+
+static void ql_disable_interrupts(struct ql_adapter *qdev)
+{
+	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
+}
+
+/* If we're running with multiple MSI-X vectors then we enable on the fly.
+ * Otherwise, we may have multiple outstanding workers and don't want to
+ * enable until the last one finishes. In this case, the irq_cnt gets
+ * incremented everytime we queue a worker and decremented everytime
+ * a worker finishes.  Once it hits zero we enable the interrupt.
+ */
+void ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
+{
+	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags)))
+		ql_write32(qdev, INTR_EN,
+			   qdev->intr_context[intr].intr_en_mask);
+	else {
+		if (qdev->legacy_check)
+			spin_lock(&qdev->legacy_lock);
+		if (atomic_dec_and_test(&qdev->intr_context[intr].irq_cnt)) {
+			QPRINTK(qdev, INTR, ERR, "Enabling interrupt %d.\n",
+				intr);
+			ql_write32(qdev, INTR_EN,
+				   qdev->intr_context[intr].intr_en_mask);
+		} else {
+			QPRINTK(qdev, INTR, ERR,
+				"Skip enable, other queue(s) are active.\n");
+		}
+		if (qdev->legacy_check)
+			spin_unlock(&qdev->legacy_lock);
+	}
+}
+
+static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
+{
+	u32 var = 0;
+
+	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags)))
+		goto exit;
+	else if (!atomic_read(&qdev->intr_context[intr].irq_cnt)) {
+		ql_write32(qdev, INTR_EN,
+			   qdev->intr_context[intr].intr_dis_mask);
+		var = ql_read32(qdev, STS);
+	}
+	atomic_inc(&qdev->intr_context[intr].irq_cnt);
+exit:
+	return var;
+}
+
+static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
+{
+	int i;
+	for (i = 0; i < qdev->intr_count; i++) {
+		/* The enable call does a atomic_dec_and_test
+		 * and enables only if the result is zero.
+		 * So we precharge it here.
+		 */
+		atomic_set(&qdev->intr_context[i].irq_cnt, 1);
+		ql_enable_completion_interrupt(qdev, i);
+	}
+
+}
+
+/* This function waits for an address index register to come ready.
+ * It is currenly used by processor, xgmac, and flash address
+ * registers.  Others may need to be added later.
+ */
+int ql_wait_addr_reg(struct ql_adapter *qdev, u32 reg, u32 bit)
+{
+	u32 temp;
+	int count = 20;
+
+	while (count) {
+		temp = ql_read32(qdev, reg);
+
+#ifdef PALLADIUM
+/* Palladium workaround start: */
+		if (temp == -1)
+			continue;
+/* Palladium workaround end: */
+#endif
+
+		/* check for errors */
+		if (temp & ADDR_ERR) {
+			QPRINTK(qdev, PROBE, ALERT,
+				"register 0x%.08x access error, value = 0x%.08x!.\n",
+				reg, temp);
+			return -EIO;
+		} else if (temp & bit) {
+			return 0;
+		} else {
+			mdelay(1);
+			count--;
+		}
+	}
+	QPRINTK(qdev, PROBE, ALERT,
+		"Timed out waiting for reg %x to come ready.\n", reg);
+	return -ETIMEDOUT;
+}
+
+static int ql_get_flash_params(struct ql_adapter *qdev)
+{
+	if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
+		return -ETIMEDOUT;
+	/* TODO: flash has yet to be defined. */
+	ql_sem_unlock(qdev, SEM_FLASH_MASK);
+	return 0;
+}
+
+/* xgmac register are located behind the xgmac_addr and xgmac_data
+ * register pair.  Each read/write requires us to wait for the ready
+ * bit before reading/writing the data.
+ */
+static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
+{
+	int status = 0;
+	/* wait for reg to come ready */
+	status = ql_wait_addr_reg(qdev, XGMAC_ADDR, XGMAC_ADDR_RDY);
+	if (status)
+		goto exit;
+	/* write the data to the data reg */
+	ql_write32(qdev, XGMAC_DATA, data);
+	/* trigger the write */
+	ql_write32(qdev, XGMAC_ADDR, reg);
+	/* wait for reg to come ready */
+	status = ql_wait_addr_reg(qdev, XGMAC_ADDR, XGMAC_ADDR_RDY);
+	if (status)
+		goto exit;
+exit:
+	return status;
+}
+
+/* xgmac register are located behind the xgmac_addr and xgmac_data
+ * register pair.  Each read/write requires us to wait for the ready
+ * bit before reading/writing the data.
+ */
+int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
+{
+	int status = 0;
+	/* wait for reg to come ready */
+	status = ql_wait_addr_reg(qdev, XGMAC_ADDR, XGMAC_ADDR_RDY);
+	if (status)
+		goto exit;
+	/* set up for reg read */
+	ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
+	/* wait for reg to come ready */
+	status = ql_wait_addr_reg(qdev, XGMAC_ADDR, XGMAC_ADDR_RDY);
+	if (status)
+		goto exit;
+	/* get the data */
+	*data = ql_read32(qdev, XGMAC_DATA);
+exit:
+	return status;
+}
+
+/* This is used for reading the 64-bit statistics regs. */
+int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
+{
+	int status = 0;
+	u32 hi = 0;
+	u32 lo = 0;
+
+	status = ql_read_xgmac_reg(qdev, reg, &lo);
+	if (status)
+		goto exit;
+
+	status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
+	if (status)
+		goto exit;
+
+	*data = (u64) lo | ((u64) hi << 32);
+
+exit:
+	return status;
+}
+
+static int ql_set_framesize(struct ql_adapter *qdev, u32 framesize)
+{
+	int status;
+	u32 data;
+
+	status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
+	if (status) {
+		QPRINTK(qdev, LINK, INFO,
+			"Couldn't get the XGMAC semaphore!.\n");
+		return status;
+	}
+
+	/*
+	 * Enable Jumbo frames if necessary.
+	 */
+	status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
+	if (status)
+		goto err;
+
+	/*
+	 * Turn on nic jumbo and statistics counters.
+	 */
+	data |=
+	    GLOBAL_CFG_TX_STAT_EN | GLOBAL_CFG_RX_STAT_EN | GLOBAL_CFG_JUMBO;
+	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data | GLOBAL_CFG_JUMBO);
+	if (status)
+		goto err;
+
+	data = MAC_TX_PARAMS_JUMBO | (framesize << MAC_TX_PARAMS_SIZE_SHIFT);
+	status = ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, data);
+	if (status)
+		goto err;
+	status = ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, framesize);
+err:
+	ql_sem_unlock(qdev, qdev->xg_sem_mask);
+
+	return status;
+}
+
+/* Take the MAC Core out of reset.
+ * Enable statistics counting.
+ * Take the transmitter/receiver out of reset.
+ * This functionality may be done in the MPI firmware at a
+ * later date.
+ */
+static int ql_port_initialize(struct ql_adapter *qdev)
+{
+	int status = 0;
+	u32 data;
+
+	if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
+		/* Another function has the semaphore, so
+		 * wait for the port init bit to come ready.
+		 */
+		QPRINTK(qdev, LINK, INFO,
+			"Another function has the semaphore, so wait for the port init bit to come ready.\n");
+		status = ql_wait_port_init_cmplt(qdev);
+		if (status) {
+			QPRINTK(qdev, LINK, CRIT,
+				"Port initialize timed out.\n");
+		}
+		return status;
+	}
+
+	QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
+	/* Set the core reset. */
+	status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
+	if (status)
+		goto end;
+	data |= GLOBAL_CFG_RESET;
+	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
+	if (status)
+		goto end;
+
+	mdelay(100);
+
+	/* Clear the core reset and turn on jumbo for receiver. */
+	data &= ~GLOBAL_CFG_RESET;	/* Clear core reset. */
+	data |= GLOBAL_CFG_JUMBO;	/* Turn on jumbo. */
+	data |= GLOBAL_CFG_TX_STAT_EN;
+	data |= GLOBAL_CFG_RX_STAT_EN;
+	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
+	if (status)
+		goto end;
+
+	/* Enable transmitter, and clear it's reset. */
+	status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
+	if (status)
+		goto end;
+	data &= ~TX_CFG_RESET;	/* Clear the TX MAC reset. */
+	data |= TX_CFG_EN;	/* Enable the transmitter. */
+	status = ql_write_xgmac_reg(qdev, TX_CFG, data);
+	if (status)
+		goto end;
+
+	/* Enable receiver and clear it's reset. */
+	status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
+	if (status)
+		goto end;
+	data &= ~RX_CFG_RESET;	/* Clear the RX MAC reset. */
+	data |= RX_CFG_EN;	/* Enable the receiver. */
+	status = ql_write_xgmac_reg(qdev, RX_CFG, data);
+	if (status)
+		goto end;
+
+	/* Turn on jumbo for transmitter. */
+	status = ql_read_xgmac_reg(qdev, MAC_TX_PARAMS, &data);
+	if (status)
+		goto end;
+	status =
+	    ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, data | MAC_TX_PARAMS_JUMBO);
+	if (status)
+		goto end;
+
+	/* Signal to the world that the port is enabled.        */
+	ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
+end:
+	ql_sem_unlock(qdev, qdev->xg_sem_mask);
+	return status;
+}
+
+/* Get the next large buffer. */
+struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
+{
+	struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
+	rx_ring->lbq_curr_idx++;
+	if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
+		rx_ring->lbq_curr_idx = 0;
+	rx_ring->lbq_free_cnt++;
+	return lbq_desc;
+}
+
+/* Get the next small buffer. */
+struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
+{
+	struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
+	rx_ring->sbq_curr_idx++;
+	if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
+		rx_ring->sbq_curr_idx = 0;
+	rx_ring->sbq_free_cnt++;
+	return sbq_desc;
+}
+
+/* Update an rx ring index. */
+static void ql_update_cq(struct rx_ring *rx_ring)
+{
+	rx_ring->cnsmr_idx++;
+	rx_ring->curr_entry++;
+	if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
+		rx_ring->cnsmr_idx = 0;
+		rx_ring->curr_entry = rx_ring->cq_base;
+	}
+}
+
+static void ql_write_cq_idx(struct rx_ring *rx_ring)
+{
+	ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
+}
+
+/* Process (refill) a large buffer queue. */
+static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+	int clean_idx = rx_ring->lbq_clean_idx;
+	struct bq_desc *lbq_desc;
+	struct bq_element *bq;
+	u64 map;
+	int i;
+
+	while (rx_ring->lbq_free_cnt > 16) {
+		for (i = 0; i < 16; i++) {
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"lbq: try cleaning clean_idx = %d.\n",
+				clean_idx);
+			lbq_desc = &rx_ring->lbq[clean_idx];
+			bq = lbq_desc->bq;
+			if (lbq_desc->p.lbq_page == NULL) {
+				QPRINTK(qdev, RX_STATUS, DEBUG,
+					"lbq: getting new page for index %d.\n",
+					lbq_desc->index);
+				lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
+				if (lbq_desc->p.lbq_page == NULL) {
+					QPRINTK(qdev, RX_STATUS, ERR,
+						"Couldn't get a page.\n");
+					return;
+				}
+				map = pci_map_page(qdev->pdev,
+						   lbq_desc->p.lbq_page,
+						   0, PAGE_SIZE,
+						   PCI_DMA_FROMDEVICE);
+				if (pci_dma_mapping_error(map)) {
+					QPRINTK(qdev, RX_STATUS, ERR,
+						"PCI mapping failed.\n");
+					return;
+				}
+				pci_unmap_addr_set(lbq_desc, mapaddr, map);
+				pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
+				bq->addr_lo =	/*lbq_desc->addr_lo = */
+				    cpu_to_le32(map);
+				bq->addr_hi =	/*lbq_desc->addr_hi = */
+				    cpu_to_le32(map >> 32);
+			}
+			clean_idx++;
+			if (clean_idx == rx_ring->lbq_len)
+				clean_idx = 0;
+		}
+
+		rx_ring->lbq_clean_idx = clean_idx;
+		rx_ring->lbq_prod_idx += 16;
+		if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
+			rx_ring->lbq_prod_idx = 0;
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"lbq: updating prod idx = %d.\n",
+			rx_ring->lbq_prod_idx);
+		ql_write_db_reg(rx_ring->lbq_prod_idx,
+				rx_ring->lbq_prod_idx_db_reg);
+		rx_ring->lbq_free_cnt -= 16;
+	}
+}
+
+/* Process (refill) a small buffer queue. */
+static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+	int clean_idx = rx_ring->sbq_clean_idx;
+	struct bq_desc *sbq_desc;
+	struct bq_element *bq;
+	u64 map;
+	int i;
+
+	while (rx_ring->sbq_free_cnt > 16) {
+		for (i = 0; i < 16; i++) {
+			sbq_desc = &rx_ring->sbq[clean_idx];
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"sbq: try cleaning clean_idx = %d.\n",
+				clean_idx);
+			bq = sbq_desc->bq;
+			if (sbq_desc->p.skb == NULL) {
+				QPRINTK(qdev, RX_STATUS, DEBUG,
+					"sbq: getting new skb for index %d.\n",
+					sbq_desc->index);
+				sbq_desc->p.skb =
+				    netdev_alloc_skb(qdev->ndev,
+						     rx_ring->sbq_buf_size);
+				if (sbq_desc->p.skb == NULL) {
+					QPRINTK(qdev, PROBE, ERR,
+						"Couldn't get an skb.\n");
+					rx_ring->sbq_clean_idx = clean_idx;
+					return;
+				}
+				map = pci_map_single(qdev->pdev,
+						     sbq_desc->p.skb->data,
+						     rx_ring->sbq_buf_size /
+						     2, PCI_DMA_FROMDEVICE);
+				pci_unmap_addr_set(sbq_desc, mapaddr, map);
+				pci_unmap_len_set(sbq_desc, maplen,
+						  rx_ring->sbq_buf_size / 2);
+				bq->addr_lo = cpu_to_le32(map);
+				bq->addr_hi = cpu_to_le32(map >> 32);
+			}
+
+			clean_idx++;
+			if (clean_idx == rx_ring->sbq_len)
+				clean_idx = 0;
+		}
+		rx_ring->sbq_clean_idx = clean_idx;
+		rx_ring->sbq_prod_idx += 16;
+		if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
+			rx_ring->sbq_prod_idx = 0;
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"sbq: updating prod idx = %d.\n",
+			rx_ring->sbq_prod_idx);
+		ql_write_db_reg(rx_ring->sbq_prod_idx,
+				rx_ring->sbq_prod_idx_db_reg);
+
+		rx_ring->sbq_free_cnt -= 16;
+	}
+}
+
+static void ql_update_buffer_queues(struct ql_adapter *qdev,
+				    struct rx_ring *rx_ring)
+{
+	ql_update_sbq(qdev, rx_ring);
+	ql_update_lbq(qdev, rx_ring);
+}
+
+/* Unmaps tx buffers.  Can be called from send() if a pci mapping
+ * fails at some stage, or from the interrupt when a tx completes.
+ */
+static void ql_unmap_send(struct ql_adapter *qdev,
+			  struct tx_ring_desc *tx_ring_desc, int mapped)
+{
+	int i;
+	for (i = 0; i < mapped; i++) {
+		if (i == 0 || (i == 7 && mapped > 7)) {
+			/*
+			 * Unmap the skb->data area, or the
+			 * external sglist (AKA the Outbound
+			 * Address List (OAL)).
+			 * If its the zeroeth element, then it's
+			 * the skb->data area.  If it's the 7th
+			 * element and there is more than 6 frags,
+			 * then its an OAL.
+			 */
+			if (i == 7) {
+				QPRINTK(qdev, TX_DONE, DEBUG,
+					"unmapping OAL area.\n");
+			}
+			pci_unmap_single(qdev->pdev,
+					 pci_unmap_addr(&tx_ring_desc->map[i],
+							mapaddr),
+					 pci_unmap_len(&tx_ring_desc->map[i],
+						       maplen),
+					 PCI_DMA_TODEVICE);
+		} else {
+			QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
+				i);
+			pci_unmap_page(qdev->pdev,
+				       pci_unmap_addr(&tx_ring_desc->map[i],
+						      mapaddr),
+				       pci_unmap_len(&tx_ring_desc->map[i],
+						     maplen), PCI_DMA_TODEVICE);
+		}
+	}
+
+}
+
+/* Map the buffers for this transmit.  This will return
+ * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
+ */
+static int ql_map_send(struct ql_adapter *qdev,
+		       struct ob_mac_iocb_req *mac_iocb_ptr,
+		       struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
+{
+	int len = skb_headlen(skb);
+	dma_addr_t map;
+	int frag_idx, err, map_idx = 0;
+	struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
+	int frag_cnt = skb_shinfo(skb)->nr_frags;
+
+	if (frag_cnt) {
+		QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
+	}
+	/*
+	 * Map the skb buffer first.
+	 */
+	map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
+
+	err = pci_dma_mapping_error(map);
+	if (err) {
+		QPRINTK(qdev, TX_QUEUED, ERR,
+			"PCI mapping failed with error: %d\n", err);
+
+		return NETDEV_TX_BUSY;
+	}
+
+	tbd->len = cpu_to_le32(len);
+	tbd->addr = cpu_to_le64(map);
+	pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
+	pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
+	map_idx++;
+
+	/*
+	 * This loop fills the remainder of the 8 address descriptors
+	 * in the IOCB.  If there are more than 7 fragments, then the
+	 * eighth address desc will point to an external list (OAL).
+	 * When this happens, the remainder of the frags will be stored
+	 * in this list.
+	 */
+	for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
+		skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
+		tbd++;
+		if (frag_idx == 6 && frag_cnt > 7) {
+			/* Let's tack on an sglist.
+			 * Our control block will now
+			 * look like this:
+			 * iocb->seg[0] = skb->data
+			 * iocb->seg[1] = frag[0]
+			 * iocb->seg[2] = frag[1]
+			 * iocb->seg[3] = frag[2]
+			 * iocb->seg[4] = frag[3]
+			 * iocb->seg[5] = frag[4]
+			 * iocb->seg[6] = frag[5]
+			 * iocb->seg[7] = ptr to OAL (external sglist)
+			 * oal->seg[0] = frag[6]
+			 * oal->seg[1] = frag[7]
+			 * oal->seg[2] = frag[8]
+			 * oal->seg[3] = frag[9]
+			 * oal->seg[4] = frag[10]
+			 *      etc...
+			 */
+			/* Tack on the OAL in the eighth segment of IOCB. */
+			map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
+					     sizeof(struct oal),
+					     PCI_DMA_TODEVICE);
+			err = pci_dma_mapping_error(map);
+			if (err) {
+				QPRINTK(qdev, TX_QUEUED, ERR,
+					"PCI mapping outbound address list with error: %d\n",
+					err);
+				goto map_error;
+			}
+
+			tbd->addr = cpu_to_le64(map);
+			/*
+			 * The length is the number of fragments
+			 * that remain to be mapped times the length
+			 * of our sglist (OAL).
+			 */
+			tbd->len =
+			    cpu_to_le32((sizeof(struct tx_buf_desc) *
+					 (frag_cnt - frag_idx)) | TX_DESC_C);
+			pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
+					   map);
+			pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
+					  sizeof(struct oal));
+			tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
+			map_idx++;
+		}
+
+		map =
+		    pci_map_page(qdev->pdev, frag->page,
+				 frag->page_offset, frag->size,
+				 PCI_DMA_TODEVICE);
+
+		err = pci_dma_mapping_error(map);
+		if (err) {
+			QPRINTK(qdev, TX_QUEUED, ERR,
+				"PCI mapping frags failed with error: %d.\n",
+				err);
+			goto map_error;
+		}
+
+		tbd->addr = cpu_to_le64(map);
+		tbd->len = cpu_to_le32(frag->size);
+		pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
+		pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
+				  frag->size);
+
+	}
+	/* Save the number of segments we've mapped. */
+	tx_ring_desc->map_cnt = map_idx;
+	/* Terminate the last segment. */
+	tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
+	return NETDEV_TX_OK;
+
+map_error:
+	/*
+	 * If the first frag mapping failed, then i will be zero.
+	 * This causes the unmap of the skb->data area.  Otherwise
+	 * we pass in the number of frags that mapped successfully
+	 * so they can be umapped.
+	 */
+	ql_unmap_send(qdev, tx_ring_desc, map_idx);
+	return NETDEV_TX_BUSY;
+}
+
+/*
+ * This function builds an skb for the given inbound
+ * completion.  It will be rewritten for readability in the near
+ * future, but for not it works well.
+ */
+static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
+				       struct rx_ring *rx_ring,
+				       struct ib_mac_iocb_rsp *ib_mac_rsp)
+{
+	struct bq_desc *lbq_desc;
+	struct bq_desc *sbq_desc;
+	struct sk_buff *skb = NULL;
+	u32 length = le32_to_cpu(ib_mac_rsp->data_len);
+
+	/*
+	 * Handle the header buffer if present.
+	 */
+	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
+	    ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
+		QPRINTK(qdev, RX_STATUS, DEBUG, "Header in small buffer.\n");
+		/*
+		 * Headers fit nicely into a small buffer.
+		 */
+		sbq_desc = ql_get_curr_sbuf(rx_ring);
+		skb = sbq_desc->p.skb;
+		skb_put(skb, le32_to_cpu(ib_mac_rsp->hdr_len));
+		sbq_desc->p.skb = NULL;
+	}
+
+	/*
+	 * Handle the data buffer(s).
+	 */
+	if (unlikely(!length)) {	/* Is there data too? */
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"No Data buffer in this packet.\n");
+		return skb;
+	}
+
+	if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
+		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Headers in small, data in small, combine them.\n");
+			/*
+			 * Data is less than small buffer size so it's
+			 * stuffed in a small buffer.
+			 * For this case we append the data
+			 * from the "data" small buffer to the "header" small
+			 * buffer.
+			 */
+			sbq_desc = ql_get_curr_sbuf(rx_ring);
+			pci_dma_sync_single_for_cpu(qdev->pdev,
+						    pci_unmap_addr
+						    (sbq_desc, mapaddr),
+						    pci_unmap_len
+						    (sbq_desc, maplen),
+						    PCI_DMA_FROMDEVICE);
+			memcpy(skb_put(skb, length),
+			       sbq_desc->p.skb->data, length);
+			pci_dma_sync_single_for_device(qdev->pdev,
+						       pci_unmap_addr
+						       (sbq_desc,
+							mapaddr),
+						       pci_unmap_len
+						       (sbq_desc,
+							maplen),
+						       PCI_DMA_FROMDEVICE);
+		} else {
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Everything in single small buffer.\n");
+			sbq_desc = ql_get_curr_sbuf(rx_ring);
+			skb = sbq_desc->p.skb;
+			skb_put(skb, length);
+			pci_unmap_single(qdev->pdev,
+					 pci_unmap_addr(sbq_desc,
+							mapaddr),
+					 pci_unmap_len(sbq_desc,
+						       maplen),
+					 PCI_DMA_FROMDEVICE);
+			sbq_desc->p.skb = NULL;
+		}
+	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
+		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Header in small, data in large. Chain large to small!\n");
+			/*
+			 * The data is in a single large buffer.  We
+			 * chain it to the header buffer's skb and let
+			 * it rip.
+			 */
+			lbq_desc = ql_get_curr_lbuf(rx_ring);
+			pci_unmap_page(qdev->pdev,
+				       pci_unmap_addr(lbq_desc,
+						      mapaddr),
+				       pci_unmap_len(lbq_desc, maplen),
+				       PCI_DMA_FROMDEVICE);
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Chaining page to skb.\n");
+			skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
+					   0, length);
+			skb->len += length;
+			skb->data_len += length;
+			skb->truesize += length;
+			lbq_desc->p.lbq_page = NULL;
+		} else {
+			/*
+			 * The headers and data are in a single large buffer. We
+			 * copy it to a new skb and let it go. This can happen with
+			 * jumbo mtu on a non-TCP/UDP frame.
+			 */
+			u8 *vaddr;
+			lbq_desc = ql_get_curr_lbuf(rx_ring);
+			skb = netdev_alloc_skb(qdev->ndev, length);
+			if (skb == NULL) {
+				QPRINTK(qdev, PROBE, DEBUG,
+					"No skb available, drop the packet.\n");
+				return NULL;
+			}
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Headers and data in large. Copy all to new skb.\n");
+			pci_dma_sync_single_for_cpu(qdev->pdev,
+						    pci_unmap_addr
+						    (lbq_desc, mapaddr),
+						    pci_unmap_len
+						    (lbq_desc, maplen),
+						    PCI_DMA_FROMDEVICE);
+			vaddr =
+			    kmap_atomic(lbq_desc->p.lbq_page,
+					KM_SKB_DATA_SOFTIRQ);
+			memcpy(skb_put(skb, length), vaddr, length);
+			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
+			pci_dma_sync_single_for_device(qdev->pdev,
+						       pci_unmap_addr
+						       (lbq_desc,
+							mapaddr),
+						       pci_unmap_len
+						       (lbq_desc,
+							maplen),
+						       PCI_DMA_FROMDEVICE);
+		}
+	} else {
+		int size, offset, i = 0;
+		/*
+		 * The data is in a chain of large buffers
+		 * pointed to by a small buffer.  We loop
+		 * thru and chain them to the our small header
+		 * buffer's skb.
+		 * frags:  There are 18 max frags and our small
+		 *         buffer will hold 32 of them. The thing is,
+		 *         we'll use 3 max for our 9000 byte jumbo
+		 *         frames.  If the MTU goes up we could
+		 *          eventually be in trouble.
+		 */
+		struct bq_element *bq, bq_array[8];
+		sbq_desc = ql_get_curr_sbuf(rx_ring);
+		pci_unmap_single(qdev->pdev,
+				 pci_unmap_addr(sbq_desc, mapaddr),
+				 pci_unmap_len(sbq_desc, maplen),
+				 PCI_DMA_FROMDEVICE);
+		if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Headers & Data in chain of large.\n");
+			skb = sbq_desc->p.skb;
+			/*
+			 * This is an non TCP/UDP IP frame, so
+			 * the headers aren't split into a small
+			 * buffer.  We have to use the small buffer
+			 * that contains our sg list as our skb to
+			 * send upstairs. Copy the sg list here to
+			 * a local buffer and use it to find the
+			 * pages to chain.
+			 */
+			bq = &bq_array[0];
+			memcpy(bq, skb->data, sizeof(bq_array));
+			sbq_desc->p.skb = NULL;
+		} else {
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Headers in small, Data in chain of large.\n");
+			bq = (struct bq_element *)sbq_desc->p.skb->data;
+		}
+		while (length > 0) {
+			lbq_desc = ql_get_curr_lbuf(rx_ring);
+			if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
+				QPRINTK(qdev, RX_STATUS, ERR,
+					"Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
+					lbq_desc->bq->addr_lo, bq->addr_lo);
+				return NULL;
+			}
+			pci_unmap_page(qdev->pdev,
+				       pci_unmap_addr(lbq_desc,
+						      mapaddr),
+				       pci_unmap_len(lbq_desc,
+						     maplen),
+				       PCI_DMA_FROMDEVICE);
+			if (i == 0 &&
+			    !(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
+				/*
+				 * Copy the mac and ip headers from the first
+				 * page to the skb->data area.  Not sure if
+				 * this is necessary on all platforms but we
+				 * won't worry about it for now.  This paragraph
+				 * really only services large pings in a jumbo
+				 * frame situation.
+				 */
+				int copy_len = rx_ring->sbq_buf_size / 2;
+				u8 *vaddr = kmap_atomic(lbq_desc->p.lbq_page,
+							KM_SKB_DATA_SOFTIRQ);
+				memcpy(skb_put(skb, copy_len), vaddr, copy_len);
+				kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
+				length -= copy_len;
+				size = PAGE_SIZE - copy_len;
+				offset = copy_len;
+			} else {
+				size =
+				    (length < PAGE_SIZE) ? length : PAGE_SIZE;
+				offset = 0;
+			}
+
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Adding page %d to skb for %d bytes.\n",
+				i, size);
+			skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
+					   offset, size);
+			skb->len += size;
+			skb->data_len += size;
+			skb->truesize += size;
+			length -= size;
+			lbq_desc->p.lbq_page = NULL;
+			bq++;
+			i++;
+		}
+	}
+	return skb;
+}
+
+/* Process an inbound completion from an rx ring. */
+static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
+				   struct rx_ring *rx_ring,
+				   struct ib_mac_iocb_rsp *ib_mac_rsp)
+{
+	struct net_device *ndev = qdev->ndev;
+	struct sk_buff *skb = NULL;
+
+	QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
+
+	skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
+	if (unlikely(!skb)) {
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"No skb available, drop packet.\n");
+		return;
+	}
+
+	prefetch(skb->data);
+	skb->dev = ndev;
+	if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
+		QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
+			(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+			IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
+			(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+			IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
+			(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+			IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
+	}
+	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
+		QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
+	}
+	if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
+		QPRINTK(qdev, RX_STATUS, ERR,
+			"Bad checksum for this %s packet.\n",
+			((ib_mac_rsp->
+			  flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
+		skb->ip_summed = CHECKSUM_NONE;
+	} else if (qdev->rx_csum &&
+		   ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
+		    ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
+		     !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
+		QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
+		skb->ip_summed = CHECKSUM_UNNECESSARY;
+	}
+	qdev->stats.rx_packets++;
+	qdev->stats.rx_bytes += skb->len;
+	skb->protocol = eth_type_trans(skb, ndev);
+	if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"Passing a VLAN packet upstream.\n");
+		vlan_hwaccel_rx(skb, qdev->vlgrp,
+				le16_to_cpu(ib_mac_rsp->vlan_id));
+	} else {
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"Passing a normal packet upstream.\n");
+		netif_rx(skb);
+	}
+	ndev->last_rx = jiffies;
+}
+
+/* Process an outbound completion from an rx ring. */
+static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
+				   struct ob_mac_iocb_rsp *mac_rsp)
+{
+	struct tx_ring *tx_ring;
+	struct tx_ring_desc *tx_ring_desc;
+
+	QL_DUMP_OB_MAC_RSP(mac_rsp);
+	tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
+	tx_ring_desc = &tx_ring->q[mac_rsp->tid];
+	ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
+	qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
+	qdev->stats.tx_packets++;
+	dev_kfree_skb(tx_ring_desc->skb);
+	tx_ring_desc->skb = NULL;
+
+	if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
+					OB_MAC_IOCB_RSP_S |
+					OB_MAC_IOCB_RSP_L |
+					OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
+		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
+			QPRINTK(qdev, TX_DONE, WARNING,
+				"Total descriptor length did not match transfer length.\n");
+		}
+		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
+			QPRINTK(qdev, TX_DONE, WARNING,
+				"Frame too short to be legal, not sent.\n");
+		}
+		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
+			QPRINTK(qdev, TX_DONE, WARNING,
+				"Frame too long, but sent anyway.\n");
+		}
+		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_P) {
+			QPRINTK(qdev, TX_DONE, INFO,
+				"Frame was large enough to be padded and sent.\n");
+		}
+		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
+			QPRINTK(qdev, TX_DONE, WARNING,
+				"PCI backplane error. Frame not sent.\n");
+		}
+	}
+	atomic_inc(&tx_ring->tx_count);
+}
+
+/* Fire up a handler to reset the MPI processor. */
+void ql_queue_fw_error(struct ql_adapter *qdev)
+{
+	netif_stop_queue(qdev->ndev);
+	netif_carrier_off(qdev->ndev);
+	queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
+}
+
+void ql_queue_asic_error(struct ql_adapter *qdev)
+{
+	netif_stop_queue(qdev->ndev);
+	netif_carrier_off(qdev->ndev);
+	ql_disable_interrupts(qdev);
+	queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
+}
+
+static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
+				    struct ib_ae_iocb_rsp *ib_ae_rsp)
+{
+	switch (ib_ae_rsp->event) {
+	case MGMT_ERR_EVENT:
+		QPRINTK(qdev, RX_ERR, ERR,
+			"Management Processor Fatal Error.\n");
+		ql_queue_fw_error(qdev);
+		return;
+
+	case CAM_LOOKUP_ERR_EVENT:
+		QPRINTK(qdev, LINK, ERR,
+			"Multiple CAM hits lookup occurred.\n");
+		QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
+		ql_queue_asic_error(qdev);
+		return;
+
+	case SOFT_ECC_ERROR_EVENT:
+		QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
+		ql_queue_asic_error(qdev);
+		break;
+
+	case PCI_ERR_ANON_BUF_RD:
+		QPRINTK(qdev, RX_ERR, ERR,
+			"PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
+			ib_ae_rsp->q_id);
+		ql_queue_asic_error(qdev);
+		break;
+
+	default:
+		QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
+			ib_ae_rsp->event);
+		ql_queue_asic_error(qdev);
+		break;
+	}
+}
+
+static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
+{
+	struct ql_adapter *qdev = rx_ring->qdev;
+	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+	struct ob_mac_iocb_rsp *net_rsp = NULL;
+	int count = 0;
+
+	QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, TX_Q cq_id = %d.\n",
+		rx_ring->cq_id);
+	/* While there are entries in the completion queue. */
+	while (prod != rx_ring->cnsmr_idx) {
+
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
+			prod, rx_ring->cnsmr_idx);
+
+		net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
+		rmb();
+		switch (net_rsp->opcode) {
+
+		case OPCODE_OB_MAC_TSO_IOCB:
+		case OPCODE_OB_MAC_IOCB:
+			ql_process_mac_tx_intr(qdev, net_rsp);
+			break;
+		default:
+			QPRINTK(qdev, RX_STATUS, DEBUG,
+				"Hit default case, not handled! dropping the packet, opcode = %x.\n",
+				net_rsp->opcode);
+		}
+		count++;
+		ql_update_cq(rx_ring);
+		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+	}
+	ql_write_cq_idx(rx_ring);
+	if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
+		struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
+		if (atomic_read(&tx_ring->queue_stopped) &&
+		    (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
+			/*
+			 * The queue got stopped because the tx_ring was full.
+			 * Wake it up, because it's now at least 25% empty.
+			 */
+			netif_wake_queue(qdev->ndev);
+	}
+
+	return count;
+}
+
+static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
+{
+	struct ql_adapter *qdev = rx_ring->qdev;
+	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+	struct ql_net_rsp_iocb *net_rsp;
+	int count = 0;
+
+	QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, cq_id = %d.\n", rx_ring->cq_id);
+
+	/* While there are entries in the completion queue. */
+	while (prod != rx_ring->cnsmr_idx) {
+
+		QPRINTK(qdev, RX_STATUS, DEBUG,
+			"cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
+			prod, rx_ring->cnsmr_idx);
+
+		net_rsp = rx_ring->curr_entry;
+		rmb();
+		switch (net_rsp->opcode) {
+		case OPCODE_IB_MAC_IOCB:
+			ql_process_mac_rx_intr(qdev, rx_ring,
+					       (struct ib_mac_iocb_rsp *)
+					       net_rsp);
+			break;
+
+		case OPCODE_IB_AE_IOCB:
+			ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
+						net_rsp);
+			break;
+		default:
+			{
+				QPRINTK(qdev, RX_STATUS, DEBUG,
+					"Hit default case, not handled! dropping the packet, opcode = %x.\n",
+					net_rsp->opcode);
+			}
+		}
+		count++;
+		ql_update_cq(rx_ring);
+		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+		if (count == budget)
+			break;
+	}
+	ql_update_buffer_queues(qdev, rx_ring);
+	ql_write_cq_idx(rx_ring);
+	return count;
+}
+
+static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
+{
+	struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
+	struct ql_adapter *qdev = rx_ring->qdev;
+	int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
+
+	QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
+		rx_ring->cq_id);
+
+	if (work_done < budget) {
+		__netif_rx_complete(qdev->ndev, napi);
+		ql_enable_completion_interrupt(qdev, rx_ring->irq);
+	}
+	return work_done;
+}
+
+static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	qdev->vlgrp = grp;
+	if (grp) {
+		QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
+		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
+			   NIC_RCV_CFG_VLAN_MATCH_AND_NON);
+	} else {
+		QPRINTK(qdev, IFUP, DEBUG,
+			"Turning off VLAN in NIC_RCV_CFG.\n");
+		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
+	}
+}
+
+static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	u32 enable_bit = MAC_ADDR_E;
+
+	if (ql_set_mac_addr_reg
+	    (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
+	}
+}
+
+static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	u32 enable_bit = 0;
+
+	if (ql_set_mac_addr_reg
+	    (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
+	}
+
+}
+
+/* Worker thread to process a given rx_ring that is dedicated
+ * to outbound completions.
+ */
+static void ql_tx_clean(struct work_struct *work)
+{
+	struct rx_ring *rx_ring =
+	    container_of(work, struct rx_ring, rx_work.work);
+	ql_clean_outbound_rx_ring(rx_ring);
+	ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
+
+}
+
+/* Worker thread to process a given rx_ring that is dedicated
+ * to inbound completions.
+ */
+static void ql_rx_clean(struct work_struct *work)
+{
+	struct rx_ring *rx_ring =
+	    container_of(work, struct rx_ring, rx_work.work);
+	ql_clean_inbound_rx_ring(rx_ring, 64);
+	ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
+}
+
+/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
+static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
+{
+	struct rx_ring *rx_ring = dev_id;
+#ifndef QLGE_FAST_TXQ
+	queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
+			      &rx_ring->rx_work, 0);
+#else
+	ql_clean_outbound_rx_ring(rx_ring);
+	ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
+#endif
+	return IRQ_HANDLED;
+}
+
+/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
+static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
+{
+	struct rx_ring *rx_ring = dev_id;
+	struct ql_adapter *qdev = rx_ring->qdev;
+	netif_rx_schedule(qdev->ndev, &rx_ring->napi);
+	return IRQ_HANDLED;
+}
+
+/* We check here to see if we're already handling a legacy
+ * interrupt.  If we are, then it must belong to another
+ * chip with which we're sharing the interrupt line.
+ */
+int ql_legacy_check(struct ql_adapter *qdev)
+{
+	int err;
+	spin_lock(&qdev->legacy_lock);
+	err = atomic_read(&qdev->intr_context[0].irq_cnt);
+	spin_unlock(&qdev->legacy_lock);
+	return err;
+}
+
+/* This handles a fatal error, MPI activity, and the default
+ * rx_ring in an MSI-X multiple vector environment.
+ * In MSI/Legacy environment it also process the rest of
+ * the rx_rings.
+ */
+static irqreturn_t qlge_isr(int irq, void *dev_id)
+{
+	struct rx_ring *rx_ring = dev_id;
+	struct ql_adapter *qdev = rx_ring->qdev;
+	struct intr_context *intr_context = &qdev->intr_context[0];
+	u32 var;
+	int i;
+	int work_done = 0;
+
+	if (qdev->legacy_check && qdev->legacy_check(qdev)) {
+		printk(KERN_ERR "%s: Already busy, not our interrupt.\n",
+		       __func__);
+		QPRINTK(qdev, INTR, INFO, "Already busy, not our interrupt.\n");
+		return IRQ_NONE;	/* Not our interrupt */
+	}
+
+	var = ql_read32(qdev, STS);
+
+#ifdef PALLADIUM
+/* Palladium workaround start: */
+	while (var == -1) {
+		QPRINTK(qdev, INTR, DEBUG, "got STS == -1, reading again.\n");
+		var = ql_read32(qdev, STS);
+	}
+/* Palladium workaround end: */
+#endif
+
+	/*
+	 * Check for fatal error.
+	 */
+	if (var & STS_FE) {
+		netif_stop_queue(qdev->ndev);
+		netif_carrier_off(qdev->ndev);
+		ql_disable_interrupts(qdev);
+		queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
+		QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
+		var = ql_read32(qdev, ERR_STS);
+		QPRINTK(qdev, INTR, ERR,
+			"Resetting chip. Error Status Register = 0x%x\n", var);
+		return IRQ_HANDLED;
+	}
+
+	/*
+	 * Check MPI processor activity.
+	 */
+	if (var & STS_PI) {
+		/*
+		 * We've got an async event or mailbox completion.
+		 * Handle it and clear the source of the interrupt.
+		 */
+		QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
+		ql_disable_completion_interrupt(qdev, intr_context->intr);
+		queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
+				      &qdev->mpi_work, 0);
+		work_done++;
+	}
+
+	/*
+	 * Check the default queue and wake handler if active.
+	 */
+	rx_ring = &qdev->rx_ring[0];
+	if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
+		QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
+		ql_disable_completion_interrupt(qdev, intr_context->intr);
+		queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
+				      &rx_ring->rx_work, 0);
+		work_done++;
+	}
+
+	if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+		/*
+		 * Start the DPC for each active queue.
+		 */
+		for (i = 1; i < qdev->rx_ring_count; i++) {
+			rx_ring = &qdev->rx_ring[i];
+			if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
+			    rx_ring->cnsmr_idx) {
+				QPRINTK(qdev, INTR, INFO,
+					"Waking handler for rx_ring[%d].\n", i);
+				ql_disable_completion_interrupt(qdev,
+								intr_context->
+								intr);
+				if (i < qdev->rss_ring_first_cq_id)
+					queue_delayed_work_on(rx_ring->cpu,
+							      qdev->q_workqueue,
+							      &rx_ring->rx_work,
+							      0);
+				else
+					netif_rx_schedule(qdev->ndev,
+							  &rx_ring->napi);
+				work_done++;
+			}
+		}
+	}
+	return work_done ? IRQ_HANDLED : IRQ_NONE;
+}
+
+static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
+{
+
+	if (skb_is_gso(skb)) {
+		int err;
+		if (skb_header_cloned(skb)) {
+			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
+			if (err)
+				return err;
+		}
+
+		mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
+		mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
+		mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
+		mac_iocb_ptr->total_hdrs_len =
+		    cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
+		mac_iocb_ptr->net_trans_offset =
+		    cpu_to_le16(skb_network_offset(skb) |
+				skb_transport_offset(skb)
+				<< OB_MAC_TRANSPORT_HDR_SHIFT);
+		mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
+		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
+		if (likely(skb->protocol == htons(ETH_P_IP))) {
+			struct iphdr *iph = ip_hdr(skb);
+			iph->check = 0;
+			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
+			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
+								 iph->daddr, 0,
+								 IPPROTO_TCP,
+								 0);
+		} else if (skb->protocol == htons(ETH_P_IPV6)) {
+			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
+			tcp_hdr(skb)->check =
+			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
+					     &ipv6_hdr(skb)->daddr,
+					     0, IPPROTO_TCP, 0);
+		}
+		return 1;
+	}
+	return 0;
+}
+
+static void ql_hw_csum_setup(struct sk_buff *skb,
+			     struct ob_mac_tso_iocb_req *mac_iocb_ptr)
+{
+	int len;
+	struct iphdr *iph = ip_hdr(skb);
+	u16 *check;
+	mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
+	mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
+	mac_iocb_ptr->net_trans_offset =
+              cpu_to_le16(skb_network_offset(skb) |
+              skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
+
+	mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
+	len = (ntohs(iph->tot_len) - (iph->ihl << 2));
+	if (likely(iph->protocol == IPPROTO_TCP)) {
+		check = &(tcp_hdr(skb)->check);
+		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
+		mac_iocb_ptr->total_hdrs_len =
+		    cpu_to_le16(skb_transport_offset(skb) +
+				(tcp_hdr(skb)->doff << 2));
+	} else {
+		check = &(udp_hdr(skb)->check);
+		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
+		mac_iocb_ptr->total_hdrs_len =
+		    cpu_to_le16(skb_transport_offset(skb) +
+				sizeof(struct udphdr));
+	}
+	*check = ~csum_tcpudp_magic(iph->saddr,
+				    iph->daddr, len, iph->protocol, 0);
+}
+
+static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
+{
+	struct tx_ring_desc *tx_ring_desc;
+	struct ob_mac_iocb_req *mac_iocb_ptr;
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	int tso;
+	struct tx_ring *tx_ring;
+	u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
+
+	tx_ring = &qdev->tx_ring[tx_ring_idx];
+
+	if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
+		QPRINTK(qdev, TX_QUEUED, INFO,
+			"%s: shutting down tx queue %d du to lack of resources.\n",
+			__func__, tx_ring_idx);
+		netif_stop_queue(ndev);
+		atomic_inc(&tx_ring->queue_stopped);
+		return NETDEV_TX_BUSY;
+	}
+	tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
+	mac_iocb_ptr = tx_ring_desc->queue_entry;
+	memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
+	if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
+		QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
+		return NETDEV_TX_BUSY;
+	}
+
+	mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
+	mac_iocb_ptr->tid = tx_ring_desc->index;
+	/* We use the upper 32-bits to store the tx queue for this IO.
+	 * When we get the completion we can use it to establish the context.
+	 */
+	mac_iocb_ptr->txq_idx = tx_ring_idx;
+	tx_ring_desc->skb = skb;
+
+	mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
+
+	if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
+		QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
+			vlan_tx_tag_get(skb));
+		mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
+		mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
+	}
+	tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
+	if (tso < 0) {
+		dev_kfree_skb_any(skb);
+		return NETDEV_TX_OK;
+	} else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
+		ql_hw_csum_setup(skb,
+				 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
+	}
+	QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
+	tx_ring->prod_idx++;
+	if (tx_ring->prod_idx == tx_ring->wq_len)
+		tx_ring->prod_idx = 0;
+	wmb();
+
+	ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
+	ndev->trans_start = jiffies;
+	QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
+		tx_ring->prod_idx, skb->len);
+
+	atomic_dec(&tx_ring->tx_count);
+	return NETDEV_TX_OK;
+}
+
+static void ql_free_shadow_space(struct ql_adapter *qdev)
+{
+	if (qdev->rx_ring_shadow_reg_area) {
+		pci_free_consistent(qdev->pdev,
+				    PAGE_SIZE,
+				    qdev->rx_ring_shadow_reg_area,
+				    qdev->rx_ring_shadow_reg_dma);
+		qdev->rx_ring_shadow_reg_area = NULL;
+	}
+	if (qdev->tx_ring_shadow_reg_area) {
+		pci_free_consistent(qdev->pdev,
+				    PAGE_SIZE,
+				    qdev->tx_ring_shadow_reg_area,
+				    qdev->tx_ring_shadow_reg_dma);
+		qdev->tx_ring_shadow_reg_area = NULL;
+	}
+}
+
+static int ql_alloc_shadow_space(struct ql_adapter *qdev)
+{
+	qdev->rx_ring_shadow_reg_area =
+	    pci_alloc_consistent(qdev->pdev,
+				 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
+	if (qdev->rx_ring_shadow_reg_area == NULL) {
+		QPRINTK(qdev, IFUP, ERR,
+			"Allocation of RX shadow space failed.\n");
+		return -ENOMEM;
+	}
+	qdev->tx_ring_shadow_reg_area =
+	    pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
+				 &qdev->tx_ring_shadow_reg_dma);
+	if (qdev->tx_ring_shadow_reg_area == NULL) {
+		QPRINTK(qdev, IFUP, ERR,
+			"Allocation of TX shadow space failed.\n");
+		goto err_wqp_sh_area;
+	}
+	return 0;
+
+err_wqp_sh_area:
+	pci_free_consistent(qdev->pdev,
+			    PAGE_SIZE,
+			    qdev->rx_ring_shadow_reg_area,
+			    qdev->rx_ring_shadow_reg_dma);
+	return -ENOMEM;
+}
+
+static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
+{
+	struct tx_ring_desc *tx_ring_desc;
+	int i;
+	struct ob_mac_iocb_req *mac_iocb_ptr;
+
+	mac_iocb_ptr = tx_ring->wq_base;
+	tx_ring_desc = tx_ring->q;
+	for (i = 0; i < tx_ring->wq_len; i++) {
+		tx_ring_desc->index = i;
+		tx_ring_desc->skb = NULL;
+		tx_ring_desc->queue_entry = mac_iocb_ptr;
+		mac_iocb_ptr++;
+		tx_ring_desc++;
+	}
+	atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
+	atomic_set(&tx_ring->queue_stopped, 0);
+}
+
+static void ql_free_tx_resources(struct ql_adapter *qdev,
+				 struct tx_ring *tx_ring)
+{
+	if (tx_ring->wq_base) {
+		pci_free_consistent(qdev->pdev, tx_ring->wq_size,
+				    tx_ring->wq_base, tx_ring->wq_base_dma);
+		tx_ring->wq_base = NULL;
+	}
+	kfree(tx_ring->q);
+	tx_ring->q = NULL;
+}
+
+static int ql_alloc_tx_resources(struct ql_adapter *qdev,
+				 struct tx_ring *tx_ring)
+{
+	tx_ring->wq_base =
+	    pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
+				 &tx_ring->wq_base_dma);
+
+	if ((tx_ring->wq_base == NULL)
+	    || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
+		QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
+		return -ENOMEM;
+	}
+	tx_ring->q =
+	    kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
+	if (tx_ring->q == NULL)
+		goto err;
+
+	return 0;
+err:
+	pci_free_consistent(qdev->pdev, tx_ring->wq_size,
+			    tx_ring->wq_base, tx_ring->wq_base_dma);
+	return -ENOMEM;
+}
+
+void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+	int i;
+	struct bq_desc *lbq_desc;
+
+	for (i = 0; i < rx_ring->lbq_len; i++) {
+		lbq_desc = &rx_ring->lbq[i];
+		if (lbq_desc->p.lbq_page) {
+			pci_unmap_page(qdev->pdev,
+				       pci_unmap_addr(lbq_desc, mapaddr),
+				       pci_unmap_len(lbq_desc, maplen),
+				       PCI_DMA_FROMDEVICE);
+
+			put_page(lbq_desc->p.lbq_page);
+			lbq_desc->p.lbq_page = NULL;
+		}
+		lbq_desc->bq->addr_lo = 0;
+		lbq_desc->bq->addr_hi = 0;
+	}
+}
+
+/*
+ * Allocate and map a page for each element of the lbq.
+ */
+static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
+				struct rx_ring *rx_ring)
+{
+	int i;
+	struct bq_desc *lbq_desc;
+	u64 map;
+	struct bq_element *bq = rx_ring->lbq_base;
+
+	for (i = 0; i < rx_ring->lbq_len; i++) {
+		lbq_desc = &rx_ring->lbq[i];
+		memset(lbq_desc, 0, sizeof(lbq_desc));
+		lbq_desc->bq = bq;
+		lbq_desc->index = i;
+		lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
+		if (unlikely(!lbq_desc->p.lbq_page)) {
+			QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
+			goto mem_error;
+		} else {
+			map = pci_map_page(qdev->pdev,
+					   lbq_desc->p.lbq_page,
+					   0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
+			if (pci_dma_mapping_error(map)) {
+				QPRINTK(qdev, IFUP, ERR,
+					"PCI mapping failed.\n");
+				goto mem_error;
+			}
+			pci_unmap_addr_set(lbq_desc, mapaddr, map);
+			pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
+			bq->addr_lo = cpu_to_le32(map);
+			bq->addr_hi = cpu_to_le32(map >> 32);
+		}
+		bq++;
+	}
+	return 0;
+mem_error:
+	ql_free_lbq_buffers(qdev, rx_ring);
+	return -ENOMEM;
+}
+
+void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+	int i;
+	struct bq_desc *sbq_desc;
+
+	for (i = 0; i < rx_ring->sbq_len; i++) {
+		sbq_desc = &rx_ring->sbq[i];
+		if (sbq_desc == NULL) {
+			QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
+			return;
+		}
+		if (sbq_desc->p.skb) {
+			pci_unmap_single(qdev->pdev,
+					 pci_unmap_addr(sbq_desc, mapaddr),
+					 pci_unmap_len(sbq_desc, maplen),
+					 PCI_DMA_FROMDEVICE);
+			dev_kfree_skb(sbq_desc->p.skb);
+			sbq_desc->p.skb = NULL;
+		}
+		if (sbq_desc->bq == NULL) {
+			QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
+				i);
+			return;
+		}
+		sbq_desc->bq->addr_lo = 0;
+		sbq_desc->bq->addr_hi = 0;
+	}
+}
+
+/* Allocate and map an skb for each element of the sbq. */
+static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
+				struct rx_ring *rx_ring)
+{
+	int i;
+	struct bq_desc *sbq_desc;
+	struct sk_buff *skb;
+	u64 map;
+	struct bq_element *bq = rx_ring->sbq_base;
+
+	for (i = 0; i < rx_ring->sbq_len; i++) {
+		sbq_desc = &rx_ring->sbq[i];
+		memset(sbq_desc, 0, sizeof(sbq_desc));
+		sbq_desc->index = i;
+		sbq_desc->bq = bq;
+		skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
+		if (unlikely(!skb)) {
+			/* Better luck next round */
+			QPRINTK(qdev, IFUP, ERR,
+				"small buff alloc failed for %d bytes at index %d.\n",
+				rx_ring->sbq_buf_size, i);
+			goto mem_err;
+		}
+		sbq_desc->p.skb = skb;
+		/*
+		 * Map only half the buffer. Because the
+		 * other half may get some data copied to it
+		 * when the completion arrives.
+		 */
+		map = pci_map_single(qdev->pdev,
+				     skb->data,
+				     rx_ring->sbq_buf_size / 2,
+				     PCI_DMA_FROMDEVICE);
+		if (pci_dma_mapping_error(map)) {
+			QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
+			goto mem_err;
+		}
+		pci_unmap_addr_set(sbq_desc, mapaddr, map);
+		pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
+		bq->addr_lo =	/*sbq_desc->addr_lo = */
+		    cpu_to_le32(map);
+		bq->addr_hi =	/*sbq_desc->addr_hi = */
+		    cpu_to_le32(map >> 32);
+		bq++;
+	}
+	return 0;
+mem_err:
+	ql_free_sbq_buffers(qdev, rx_ring);
+	return -ENOMEM;
+}
+
+static void ql_free_rx_resources(struct ql_adapter *qdev,
+				 struct rx_ring *rx_ring)
+{
+	if (rx_ring->sbq_len)
+		ql_free_sbq_buffers(qdev, rx_ring);
+	if (rx_ring->lbq_len)
+		ql_free_lbq_buffers(qdev, rx_ring);
+
+	/* Free the small buffer queue. */
+	if (rx_ring->sbq_base) {
+		pci_free_consistent(qdev->pdev,
+				    rx_ring->sbq_size,
+				    rx_ring->sbq_base, rx_ring->sbq_base_dma);
+		rx_ring->sbq_base = NULL;
+	}
+
+	/* Free the small buffer queue control blocks. */
+	kfree(rx_ring->sbq);
+	rx_ring->sbq = NULL;
+
+	/* Free the large buffer queue. */
+	if (rx_ring->lbq_base) {
+		pci_free_consistent(qdev->pdev,
+				    rx_ring->lbq_size,
+				    rx_ring->lbq_base, rx_ring->lbq_base_dma);
+		rx_ring->lbq_base = NULL;
+	}
+
+	/* Free the large buffer queue control blocks. */
+	kfree(rx_ring->lbq);
+	rx_ring->lbq = NULL;
+
+	/* Free the rx queue. */
+	if (rx_ring->cq_base) {
+		pci_free_consistent(qdev->pdev,
+				    rx_ring->cq_size,
+				    rx_ring->cq_base, rx_ring->cq_base_dma);
+		rx_ring->cq_base = NULL;
+	}
+}
+
+/* Allocate queues and buffers for this completions queue based
+ * on the values in the parameter structure. */
+static int ql_alloc_rx_resources(struct ql_adapter *qdev,
+				 struct rx_ring *rx_ring)
+{
+
+	/*
+	 * Allocate the completion queue for this rx_ring.
+	 */
+	rx_ring->cq_base =
+	    pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
+				 &rx_ring->cq_base_dma);
+
+	if (rx_ring->cq_base == NULL) {
+		QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
+		return -ENOMEM;
+	}
+
+	if (rx_ring->sbq_len) {
+		/*
+		 * Allocate small buffer queue.
+		 */
+		rx_ring->sbq_base =
+		    pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
+					 &rx_ring->sbq_base_dma);
+
+		if (rx_ring->sbq_base == NULL) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Small buffer queue allocation failed.\n");
+			goto err_mem;
+		}
+
+		/*
+		 * Allocate small buffer queue control blocks.
+		 */
+		rx_ring->sbq =
+		    kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
+			    GFP_KERNEL);
+		if (rx_ring->sbq == NULL) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Small buffer queue control block allocation failed.\n");
+			goto err_mem;
+		}
+
+		if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Small buffer allocation failed.\n");
+			goto err_mem;
+		}
+	}
+
+	if (rx_ring->lbq_len) {
+		/*
+		 * Allocate large buffer queue.
+		 */
+		rx_ring->lbq_base =
+		    pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
+					 &rx_ring->lbq_base_dma);
+
+		if (rx_ring->lbq_base == NULL) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Large buffer queue allocation failed.\n");
+			goto err_mem;
+		}
+		/*
+		 * Allocate large buffer queue control blocks.
+		 */
+		rx_ring->lbq =
+		    kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
+			    GFP_KERNEL);
+		if (rx_ring->lbq == NULL) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Large buffer queue control block allocation failed.\n");
+			goto err_mem;
+		}
+
+		/*
+		 * Allocate the buffers.
+		 */
+		if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Large buffer allocation failed.\n");
+			goto err_mem;
+		}
+	}
+
+	return 0;
+
+err_mem:
+	ql_free_rx_resources(qdev, rx_ring);
+	return -ENOMEM;
+}
+
+static void ql_tx_ring_clean(struct ql_adapter *qdev)
+{
+	struct tx_ring *tx_ring;
+	struct tx_ring_desc *tx_ring_desc;
+	int i, j;
+
+	/*
+	 * Loop through all queues and free
+	 * any resources.
+	 */
+	for (j = 0; j < qdev->tx_ring_count; j++) {
+		tx_ring = &qdev->tx_ring[j];
+		for (i = 0; i < tx_ring->wq_len; i++) {
+			tx_ring_desc = &tx_ring->q[i];
+			if (tx_ring_desc && tx_ring_desc->skb) {
+				QPRINTK(qdev, IFDOWN, ERR,
+				"Freeing lost SKB %p, from queue %d, index %d.\n",
+					tx_ring_desc->skb, j,
+					tx_ring_desc->index);
+				ql_unmap_send(qdev, tx_ring_desc,
+					      tx_ring_desc->map_cnt);
+				dev_kfree_skb(tx_ring_desc->skb);
+				tx_ring_desc->skb = NULL;
+			}
+		}
+	}
+}
+
+static void ql_free_ring_cb(struct ql_adapter *qdev)
+{
+	kfree(qdev->ring_mem);
+}
+
+static int ql_alloc_ring_cb(struct ql_adapter *qdev)
+{
+	/* Allocate space for tx/rx ring control blocks. */
+	qdev->ring_mem_size =
+	    (qdev->tx_ring_count * sizeof(struct tx_ring)) +
+	    (qdev->rx_ring_count * sizeof(struct rx_ring));
+	qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
+	if (qdev->ring_mem == NULL) {
+		return -ENOMEM;
+	} else {
+		qdev->rx_ring = qdev->ring_mem;
+		qdev->tx_ring = qdev->ring_mem +
+		    (qdev->rx_ring_count * sizeof(struct rx_ring));
+	}
+	return 0;
+}
+
+static void ql_free_mem_resources(struct ql_adapter *qdev)
+{
+	int i;
+
+	for (i = 0; i < qdev->tx_ring_count; i++)
+		ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
+	for (i = 0; i < qdev->rx_ring_count; i++)
+		ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
+	ql_free_shadow_space(qdev);
+}
+
+static int ql_alloc_mem_resources(struct ql_adapter *qdev)
+{
+	int i;
+
+	/* Allocate space for our shadow registers and such. */
+	if (ql_alloc_shadow_space(qdev))
+		return -ENOMEM;
+
+	for (i = 0; i < qdev->rx_ring_count; i++) {
+		if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
+			QPRINTK(qdev, IFUP, ERR,
+				"RX resource allocation failed.\n");
+			goto err_mem;
+		}
+	}
+	/* Allocate tx queue resources */
+	for (i = 0; i < qdev->tx_ring_count; i++) {
+		if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
+			QPRINTK(qdev, IFUP, ERR,
+				"TX resource allocation failed.\n");
+			goto err_mem;
+		}
+	}
+	return 0;
+
+err_mem:
+	ql_free_mem_resources(qdev);
+	return -ENOMEM;
+}
+
+/* Set up the rx ring control block and pass it to the chip.
+ * The control block is defined as
+ * "Completion Queue Initialization Control Block", or cqicb.
+ */
+static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+	struct cqicb *cqicb = &rx_ring->cqicb;
+	void *shadow_reg = qdev->rx_ring_shadow_reg_area +
+	    (rx_ring->cq_id * sizeof(u64) * 4);
+	u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
+	    (rx_ring->cq_id * sizeof(u64) * 4);
+	void __iomem *doorbell_area =
+	    qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
+	int err = 0;
+	u16 bq_len;
+
+	/* Set up the shadow registers for this ring. */
+	rx_ring->prod_idx_sh_reg = shadow_reg;
+	rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
+	shadow_reg += sizeof(u64);
+	shadow_reg_dma += sizeof(u64);
+	rx_ring->lbq_base_indirect = shadow_reg;
+	rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
+	shadow_reg += sizeof(u64);
+	shadow_reg_dma += sizeof(u64);
+	rx_ring->sbq_base_indirect = shadow_reg;
+	rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
+
+	/* PCI doorbell mem area + 0x00 for consumer index register */
+	rx_ring->cnsmr_idx_db_reg = (u32 *) doorbell_area;
+	rx_ring->cnsmr_idx = 0;
+	rx_ring->curr_entry = rx_ring->cq_base;
+
+	/* PCI doorbell mem area + 0x04 for valid register */
+	rx_ring->valid_db_reg = doorbell_area + 0x04;
+
+	/* PCI doorbell mem area + 0x18 for large buffer consumer */
+	rx_ring->lbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x18);
+
+	/* PCI doorbell mem area + 0x1c */
+	rx_ring->sbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x1c);
+
+	memset((void *)cqicb, 0, sizeof(struct cqicb));
+	cqicb->msix_vect = rx_ring->irq;
+
+	cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
+
+	cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
+	cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
+
+	cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
+	cqicb->prod_idx_addr_hi =
+	    cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
+
+	/*
+	 * Set up the control block load flags.
+	 */
+	cqicb->flags = FLAGS_LC |	/* Load queue base address */
+	    FLAGS_LV |		/* Load MSI-X vector */
+	    FLAGS_LI;		/* Load irq delay values */
+	if (rx_ring->lbq_len) {
+		cqicb->flags |= FLAGS_LL;	/* Load lbq values */
+		*((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
+		cqicb->lbq_addr_lo =
+		    cpu_to_le32(rx_ring->lbq_base_indirect_dma);
+		cqicb->lbq_addr_hi =
+		    cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
+		cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
+		bq_len = (u16) rx_ring->lbq_len;
+		cqicb->lbq_len = cpu_to_le16(bq_len);
+		rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
+		rx_ring->lbq_curr_idx = 0;
+		rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
+		rx_ring->lbq_free_cnt = 16;
+	}
+	if (rx_ring->sbq_len) {
+		cqicb->flags |= FLAGS_LS;	/* Load sbq values */
+		*((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
+		cqicb->sbq_addr_lo =
+		    cpu_to_le32(rx_ring->sbq_base_indirect_dma);
+		cqicb->sbq_addr_hi =
+		    cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
+		cqicb->sbq_buf_size =
+		    cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
+		bq_len = (u16) rx_ring->sbq_len;
+		cqicb->sbq_len = cpu_to_le16(bq_len);
+		rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
+		rx_ring->sbq_curr_idx = 0;
+		rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
+		rx_ring->sbq_free_cnt = 16;
+	}
+	switch (rx_ring->type) {
+	case TX_Q:
+		/* If there's only one interrupt, then we use
+		 * worker threads to process the outbound
+		 * completion handling rx_rings. We do this so
+		 * they can be run on multiple CPUs. There is
+		 * room to play with this more where we would only
+		 * run in a worker if there are more than x number
+		 * of outbound completions on the queue and more
+		 * than one queue active.  Some threshold that
+		 * would indicate a benefit in spite of the cost
+		 * of a context switch.
+		 * If there's more than one interrupt, then the
+		 * outbound completions are processed in the ISR.
+		 */
+		if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
+			INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
+		else {
+#ifndef QLGE_FAST_TXQ
+			/* With all debug warnings on we see a WARN_ON message
+			 * when we free the skb in the interrupt context.
+			 */
+			INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
+#endif
+		}
+		cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
+		cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
+		break;
+	case DEFAULT_Q:
+		INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
+		cqicb->irq_delay = 0;
+		cqicb->pkt_delay = 0;
+		break;
+	case RX_Q:
+		/* Inbound completion handling rx_rings run in
+		 * separate NAPI contexts.
+		 */
+		netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
+			       64);
+		cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
+		cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
+		break;
+	default:
+		QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
+			rx_ring->type);
+	}
+	QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
+	err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
+			   CFG_LCQ, rx_ring->cq_id);
+	if (err) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
+		return err;
+	}
+	QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
+	/*
+	 * Advance the producer index for the buffer queues.
+	 */
+	wmb();
+	if (rx_ring->lbq_len)
+		ql_write_db_reg(rx_ring->lbq_prod_idx,
+				rx_ring->lbq_prod_idx_db_reg);
+	if (rx_ring->sbq_len)
+		ql_write_db_reg(rx_ring->sbq_prod_idx,
+				rx_ring->sbq_prod_idx_db_reg);
+	return err;
+}
+
+static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
+{
+	struct wqicb *wqicb = (struct wqicb *)tx_ring;
+	void __iomem *doorbell_area =
+	    qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
+	void *shadow_reg = qdev->tx_ring_shadow_reg_area +
+	    (tx_ring->wq_id * sizeof(u64));
+	u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
+	    (tx_ring->wq_id * sizeof(u64));
+	int err = 0;
+
+	/*
+	 * Assign doorbell registers for this tx_ring.
+	 */
+	/* TX PCI doorbell mem area for tx producer index */
+	tx_ring->prod_idx_db_reg = (u32 *) doorbell_area;
+	tx_ring->prod_idx = 0;
+	/* TX PCI doorbell mem area + 0x04 */
+	tx_ring->valid_db_reg = doorbell_area + 0x04;
+
+	/*
+	 * Assign shadow registers for this tx_ring.
+	 */
+	tx_ring->cnsmr_idx_sh_reg = shadow_reg;
+	tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
+
+	wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
+	wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
+				   Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
+	wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
+	wqicb->rid = 0;
+	wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
+	wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
+
+	wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
+	wqicb->cnsmr_idx_addr_hi =
+	    cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
+
+	ql_init_tx_ring(qdev, tx_ring);
+
+	err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
+			   (u16) tx_ring->wq_id);
+	if (err) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
+		return err;
+	}
+	QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
+	return err;
+}
+
+static void ql_disable_msix(struct ql_adapter *qdev)
+{
+	if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+		pci_disable_msix(qdev->pdev);
+		clear_bit(QL_MSIX_ENABLED, &qdev->flags);
+		kfree(qdev->msi_x_entry);
+		qdev->msi_x_entry = NULL;
+	} else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
+		pci_disable_msi(qdev->pdev);
+		clear_bit(QL_MSI_ENABLED, &qdev->flags);
+	}
+}
+
+static void ql_enable_msix(struct ql_adapter *qdev)
+{
+	int i;
+
+	qdev->intr_count = 1;
+	/* Get the MSIX vectors. */
+	if (irq_type == MSIX_IRQ) {
+		/* Try to alloc space for the msix struct,
+		 * if it fails then go to MSI/legacy.
+		 */
+		qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
+					    sizeof(struct msix_entry),
+					    GFP_KERNEL);
+		if (!qdev->msi_x_entry) {
+			irq_type = MSI_IRQ;
+			goto msi;
+		}
+
+		for (i = 0; i < qdev->rx_ring_count; i++)
+			qdev->msi_x_entry[i].entry = i;
+
+		if (!pci_enable_msix
+		    (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
+			set_bit(QL_MSIX_ENABLED, &qdev->flags);
+			qdev->intr_count = qdev->rx_ring_count;
+			QPRINTK(qdev, IFUP, INFO,
+				"MSI-X Enabled, got %d vectors.\n",
+				qdev->intr_count);
+			return;
+		} else {
+			kfree(qdev->msi_x_entry);
+			qdev->msi_x_entry = NULL;
+			QPRINTK(qdev, IFUP, WARNING,
+				"MSI-X Enable failed, trying MSI.\n");
+			irq_type = MSI_IRQ;
+		}
+	}
+msi:
+	if (irq_type == MSI_IRQ) {
+		if (!pci_enable_msi(qdev->pdev)) {
+			set_bit(QL_MSI_ENABLED, &qdev->flags);
+			QPRINTK(qdev, IFUP, INFO,
+				"Running with MSI interrupts.\n");
+			return;
+		}
+	}
+	irq_type = LEG_IRQ;
+	spin_lock_init(&qdev->legacy_lock);
+	qdev->legacy_check = ql_legacy_check;
+	QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
+}
+
+/*
+ * Here we build the intr_context structures based on
+ * our rx_ring count and intr vector count.
+ * The intr_context structure is used to hook each vector
+ * to possibly different handlers.
+ */
+static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
+{
+	int i = 0;
+	struct intr_context *intr_context = &qdev->intr_context[0];
+
+	ql_enable_msix(qdev);
+
+	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
+		/* Each rx_ring has it's
+		 * own intr_context since we have separate
+		 * vectors for each queue.
+		 * This only true when MSI-X is enabled.
+		 */
+		for (i = 0; i < qdev->intr_count; i++, intr_context++) {
+			qdev->rx_ring[i].irq = i;
+			intr_context->intr = i;
+			intr_context->qdev = qdev;
+			/*
+			 * We set up each vectors enable/disable/read bits so
+			 * there's no bit/mask calculations in the critical path.
+			 */
+			intr_context->intr_en_mask =
+			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+			    INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
+			    | i;
+			intr_context->intr_dis_mask =
+			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+			    INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
+			    INTR_EN_IHD | i;
+			intr_context->intr_read_mask =
+			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+			    INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
+			    i;
+
+			if (i == 0) {
+				/*
+				 * Default queue handles bcast/mcast plus
+				 * async events.  Needs buffers.
+				 */
+				intr_context->handler = qlge_isr;
+				sprintf(intr_context->name, "%s-default-queue",
+					qdev->ndev->name);
+			} else if (i < qdev->rss_ring_first_cq_id) {
+				/*
+				 * Outbound queue is for outbound completions only.
+				 */
+				intr_context->handler = qlge_msix_tx_isr;
+				sprintf(intr_context->name, "%s-txq-%d",
+					qdev->ndev->name, i);
+			} else {
+				/*
+				 * Inbound queues handle unicast frames only.
+				 */
+				intr_context->handler = qlge_msix_rx_isr;
+				sprintf(intr_context->name, "%s-rxq-%d",
+					qdev->ndev->name, i);
+			}
+		}
+	} else {
+		/*
+		 * All rx_rings use the same intr_context since
+		 * there is only one vector.
+		 */
+		intr_context->intr = 0;
+		intr_context->qdev = qdev;
+		/*
+		 * We set up each vectors enable/disable/read bits so
+		 * there's no bit/mask calculations in the critical path.
+		 */
+		intr_context->intr_en_mask =
+		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
+		intr_context->intr_dis_mask =
+		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+		    INTR_EN_TYPE_DISABLE;
+		intr_context->intr_read_mask =
+		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
+		/*
+		 * Single interrupt means one handler for all rings.
+		 */
+		intr_context->handler = qlge_isr;
+		sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
+		for (i = 0; i < qdev->rx_ring_count; i++)
+			qdev->rx_ring[i].irq = 0;
+	}
+}
+
+static void ql_free_irq(struct ql_adapter *qdev)
+{
+	int i;
+	struct intr_context *intr_context = &qdev->intr_context[0];
+
+	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
+		if (intr_context->hooked) {
+			if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+				free_irq(qdev->msi_x_entry[i].vector,
+					 &qdev->rx_ring[i]);
+				QPRINTK(qdev, IFDOWN, ERR,
+					"freeing msix interrupt %d.\n", i);
+			} else {
+				free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
+				QPRINTK(qdev, IFDOWN, ERR,
+					"freeing msi interrupt %d.\n", i);
+			}
+		}
+	}
+	ql_disable_msix(qdev);
+}
+
+static int ql_request_irq(struct ql_adapter *qdev)
+{
+	int i;
+	int status = 0;
+	struct pci_dev *pdev = qdev->pdev;
+	struct intr_context *intr_context = &qdev->intr_context[0];
+
+	ql_resolve_queues_to_irqs(qdev);
+
+	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
+		atomic_set(&intr_context->irq_cnt, 0);
+		if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+			status = request_irq(qdev->msi_x_entry[i].vector,
+					     intr_context->handler,
+					     0,
+					     intr_context->name,
+					     &qdev->rx_ring[i]);
+			if (status) {
+				QPRINTK(qdev, IFUP, ERR,
+					"Failed request for MSIX interrupt %d.\n",
+					i);
+				goto err_irq;
+			} else {
+				QPRINTK(qdev, IFUP, INFO,
+					"Hooked intr %d, queue type %s%s%s, with name %s.\n",
+					i,
+					qdev->rx_ring[i].type ==
+					DEFAULT_Q ? "DEFAULT_Q" : "",
+					qdev->rx_ring[i].type ==
+					TX_Q ? "TX_Q" : "",
+					qdev->rx_ring[i].type ==
+					RX_Q ? "RX_Q" : "", intr_context->name);
+			}
+		} else {
+			QPRINTK(qdev, IFUP, DEBUG,
+				"trying msi or legacy interrupts.\n");
+			printk(KERN_ERR "%s: irq = %d.\n", __func__, pdev->irq);
+			printk(KERN_ERR "%s: context->name = %s.\n", __func__,
+			       intr_context->name);
+			printk(KERN_ERR "%s: dev_id = 0x%p.\n", __func__,
+			       &qdev->rx_ring[0]);
+			status =
+			    request_irq(pdev->irq, qlge_isr,
+					test_bit(QL_MSI_ENABLED,
+						 &qdev->
+						 flags) ? 0 : IRQF_SHARED,
+					intr_context->name, &qdev->rx_ring[0]);
+			if (status)
+				goto err_irq;
+
+			QPRINTK(qdev, IFUP, ERR,
+				"Hooked intr %d, queue type %s%s%s, with name %s.\n",
+				i,
+				qdev->rx_ring[0].type ==
+				DEFAULT_Q ? "DEFAULT_Q" : "",
+				qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
+				qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
+				intr_context->name);
+		}
+		intr_context->hooked = 1;
+	}
+	return status;
+err_irq:
+	QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
+	ql_free_irq(qdev);
+	return status;
+}
+
+static int ql_start_rss(struct ql_adapter *qdev)
+{
+	struct ricb *ricb = &qdev->ricb;
+	int status = 0;
+	int i;
+	u8 *hash_id = (u8 *) ricb->hash_cq_id;
+
+	memset((void *)ricb, 0, sizeof(ricb));
+
+	ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
+	ricb->flags =
+	    (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
+	     RSS_RT6);
+	ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
+
+	/*
+	 * Fill out the Indirection Table.
+	 */
+	for (i = 0; i < 32; i++)
+		hash_id[i] = i & 1;
+
+	/*
+	 * Random values for the IPv6 and IPv4 Hash Keys.
+	 */
+	get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
+	get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
+
+	QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
+
+	status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
+		return status;
+	}
+	QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
+	return status;
+}
+
+/* Initialize the frame-to-queue routing. */
+static int ql_route_initialize(struct ql_adapter *qdev)
+{
+	int status = 0;
+	int i;
+
+	/* Clear all the entries in the routing table. */
+	for (i = 0; i < 16; i++) {
+		status = ql_set_routing_reg(qdev, i, 0, 0);
+		if (status) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Failed to init routing register for CAM packets.\n");
+			return status;
+		}
+	}
+
+	status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR,
+			"Failed to init routing register for error packets.\n");
+		return status;
+	}
+	status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR,
+			"Failed to init routing register for broadcast packets.\n");
+		return status;
+	}
+	/* If we have more than one inbound queue, then turn on RSS in the
+	 * routing block.
+	 */
+	if (qdev->rss_ring_count > 1) {
+              status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
+					RT_IDX_RSS_MATCH, 1);
+		if (status) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Failed to init routing register for MATCH RSS packets.\n");
+			return status;
+		}
+	}
+
+	status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
+				    RT_IDX_CAM_HIT, 1);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR,
+			"Failed to init routing register for CAM packets.\n");
+		return status;
+	}
+	return status;
+}
+
+static int ql_adapter_initialize(struct ql_adapter *qdev)
+{
+	u32 value, mask;
+	int i;
+	int status = 0;
+
+	/*
+	 * Set up the System register to halt on errors.
+	 */
+	value = SYS_EFE | SYS_FAE;
+	mask = value << 16;
+	ql_write32(qdev, SYS, mask | value);
+
+	/* Set the default queue. */
+	value = NIC_RCV_CFG_DFQ;
+	mask = NIC_RCV_CFG_DFQ_MASK;
+	ql_write32(qdev, NIC_RCV_CFG, (mask | value));
+
+	/* Set the MPI interrupt to enabled. */
+	ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
+
+	/* Enable the function, set pagesize, enable error checking. */
+	value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
+	    FSC_EC | FSC_VM_PAGE_4K;
+
+	/* Set the framesize based on the MTU. */
+	if (qdev->ndev->mtu == 9000) {
+		QPRINTK(qdev, IFUP, INFO, "turning on split headers.\n");
+		value |= FSC_SH;
+	}
+
+	/* Set/clear header splitting. */
+	mask = FSC_VM_PAGESIZE_MASK |
+	    FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
+	ql_write32(qdev, FSC, mask | value);
+
+	if (ql_set_framesize
+	    (qdev,
+	     (qdev->ndev->mtu == 1500) ? NORMAL_FRAME_SIZE : JUMBO_FRAME_SIZE))
+		return -EIO;
+
+	/* Start up the rx queues. */
+	for (i = 0; i < qdev->rx_ring_count; i++) {
+		status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
+		if (status) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Failed to start rx ring[%d].\n", i);
+			return status;
+		}
+	}
+
+	/* If there is more than one inbound completion queue
+	 * then download a RICB to configure RSS.
+	 */
+	if (qdev->rss_ring_count > 1) {
+		status = ql_start_rss(qdev);
+		if (status) {
+			QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
+			return status;
+		}
+	}
+
+	/* Start up the tx queues. */
+	for (i = 0; i < qdev->tx_ring_count; i++) {
+		status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
+		if (status) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Failed to start tx ring[%d].\n", i);
+			return status;
+		}
+	}
+
+	status = ql_port_initialize(qdev);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
+		return status;
+	}
+
+	status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
+				     MAC_ADDR_TYPE_CAM_MAC, qdev->func);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
+		return status;
+	}
+
+	status = ql_route_initialize(qdev);
+	if (status) {
+		QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
+		return status;
+	}
+
+	/* Start NAPI for the RSS queues. */
+	for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
+		QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
+			i);
+		napi_enable(&qdev->rx_ring[i].napi);
+	}
+
+	return status;
+}
+
+/* Issue soft reset to chip. */
+static int ql_adapter_reset(struct ql_adapter *qdev)
+{
+	u32 value;
+	int max_wait_time;
+	int status = 0;
+	int resetCnt = 0;
+
+#define MAX_RESET_CNT   1
+issueReset:
+	resetCnt++;
+	QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
+	ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
+	/* Wait for reset to complete. */
+	max_wait_time = 3;
+	QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
+		max_wait_time);
+	do {
+		value = ql_read32(qdev, RST_FO);
+		if ((value & RST_FO_FR) == 0)
+			break;
+
+		ssleep(1);
+	} while ((--max_wait_time));
+	if (value & RST_FO_FR) {
+		QPRINTK(qdev, IFDOWN, ERR,
+			"Stuck in SoftReset:  FSC_SR:0x%08x\n", value);
+		if (resetCnt < MAX_RESET_CNT)
+			goto issueReset;
+	}
+	if (max_wait_time == 0) {
+		status = -ETIMEDOUT;
+		QPRINTK(qdev, IFDOWN, ERR,
+			"ETIMEOUT!!! errored out of resetting the chip!\n");
+	}
+
+	return status;
+}
+
+static void ql_display_dev_info(struct net_device *ndev)
+{
+	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
+
+	QPRINTK(qdev, PROBE, INFO,
+		"Function #%d, NIC Roll %d, NIC Rev = %d, "
+              "XG Roll = %d, XG Rev = %d.\n",
+		qdev->func,
+		qdev->chip_rev_id & 0x0000000f,
+		qdev->chip_rev_id >> 4 & 0x0000000f,
+		qdev->chip_rev_id >> 8 & 0x0000000f,
+		qdev->chip_rev_id >> 12 & 0x0000000f);
+	QPRINTK(qdev, PROBE, INFO,
+		"MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
+		ndev->dev_addr[0], ndev->dev_addr[1],
+		ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
+		ndev->dev_addr[5]);
+}
+
+static int ql_adapter_down(struct ql_adapter *qdev)
+{
+	struct net_device *ndev = qdev->ndev;
+	int i, status = 0;
+	struct rx_ring *rx_ring;
+
+	netif_stop_queue(ndev);
+	netif_carrier_off(ndev);
+
+	cancel_delayed_work_sync(&qdev->asic_reset_work);
+	cancel_delayed_work_sync(&qdev->mpi_reset_work);
+	cancel_delayed_work_sync(&qdev->mpi_work);
+
+	/* The default queue at index 0 is always processed in
+	 * a workqueue.
+	 */
+	cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
+
+	/* The rest of the rx_rings are processed in
+	 * a workqueue only if it's a single interrupt
+	 * environment (MSI/Legacy).
+	 */
+	for (i = 1; i > qdev->rx_ring_count; i++) {
+		rx_ring = &qdev->rx_ring[i];
+		/* Only the RSS rings use NAPI on multi irq
+		 * environment.  Outbound completion processing
+		 * is done in interrupt context.
+		 */
+		if (i >= qdev->rss_ring_first_cq_id) {
+			napi_disable(&rx_ring->napi);
+		} else {
+			cancel_delayed_work_sync(&rx_ring->rx_work);
+		}
+	}
+
+	clear_bit(QL_ADAPTER_UP, &qdev->flags);
+
+	ql_disable_interrupts(qdev);
+
+	ql_tx_ring_clean(qdev);
+
+	spin_lock(&qdev->hw_lock);
+	status = ql_adapter_reset(qdev);
+	if (status) {
+		QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
+			qdev->func);
+		goto out;
+	}
+
+	QPRINTK(qdev, IFDOWN, INFO, "reset(func #%d) success!\n", qdev->func);
+out:
+	spin_unlock(&qdev->hw_lock);
+	return status;
+}
+
+static int ql_adapter_up(struct ql_adapter *qdev)
+{
+	int err = 0;
+
+	spin_lock(&qdev->hw_lock);
+	err = ql_adapter_initialize(qdev);
+	if (err) {
+		QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
+		spin_unlock(&qdev->hw_lock);
+		goto err_init;
+	}
+	spin_unlock(&qdev->hw_lock);
+	set_bit(QL_ADAPTER_UP, &qdev->flags);
+	ql_enable_interrupts(qdev);
+	ql_enable_all_completion_interrupts(qdev);
+	if ((ql_read32(qdev, STS) & qdev->port_init)) {
+		netif_carrier_on(qdev->ndev);
+		netif_start_queue(qdev->ndev);
+	}
+
+	return 0;
+err_init:
+	ql_adapter_reset(qdev);
+	return err;
+}
+
+static int ql_cycle_adapter(struct ql_adapter *qdev)
+{
+	int status;
+
+	status = ql_adapter_down(qdev);
+	if (status)
+		goto error;
+
+	status = ql_adapter_up(qdev);
+	if (status)
+		goto error;
+
+	return status;
+error:
+	QPRINTK(qdev, IFUP, ALERT,
+		"Driver up/down cycle failed, closing device\n");
+	rtnl_lock();
+	dev_close(qdev->ndev);
+	rtnl_unlock();
+	return status;
+}
+
+static void ql_release_adapter_resources(struct ql_adapter *qdev)
+{
+	ql_free_mem_resources(qdev);
+	ql_free_irq(qdev);
+}
+
+static int ql_get_adapter_resources(struct ql_adapter *qdev)
+{
+	int status = 0;
+
+	if (ql_alloc_mem_resources(qdev)) {
+		QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
+		return -ENOMEM;
+	}
+	status = ql_request_irq(qdev);
+	if (status)
+		goto err_irq;
+	return status;
+err_irq:
+	ql_free_mem_resources(qdev);
+	return status;
+}
+
+static int qlge_close(struct net_device *ndev)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	/*
+	 * Wait for device to recover from a reset.
+	 * (Rarely happens, but possible.)
+	 */
+	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
+		msleep(MSLEEP_DELAY);
+	ql_adapter_down(qdev);
+	ql_release_adapter_resources(qdev);
+	ql_free_ring_cb(qdev);
+	return 0;
+}
+
+static int ql_configure_rings(struct ql_adapter *qdev)
+{
+	int i;
+	struct rx_ring *rx_ring;
+	struct tx_ring *tx_ring;
+	int cpu_cnt = num_online_cpus();
+
+	/*
+	 * For each processor present we allocate one
+	 * rx_ring for outbound completions, and one
+	 * rx_ring for inbound completions.  Plus there is
+	 * always the one default queue.  For the CPU
+	 * counts we end up with the following rx_rings:
+	 * rx_ring count =
+	 *  one default queue +
+	 *  (CPU count * outbound completion rx_ring) +
+	 *  (CPU count * inbound (RSS) completion rx_ring)
+	 * To keep it simple we limit the total number of
+	 * queues to < 32, so we truncate CPU to 8.
+	 * This limitation can be removed when requested.
+	 */
+
+	if (cpu_cnt > 8)
+		cpu_cnt = 8;
+
+	/*
+	 * rx_ring[0] is always the default queue.
+	 */
+	/* Allocate outbound completion ring for each CPU. */
+	qdev->tx_ring_count = cpu_cnt;
+	/* Allocate inbound completion (RSS) ring for each CPU. */
+	qdev->rss_ring_count = cpu_cnt;
+	/* cq_id for the first inbound ring handler. */
+	qdev->rss_ring_first_cq_id = cpu_cnt + 1;
+	/*
+	 * qdev->rx_ring_count:
+	 * Total number of rx_rings.  This includes the one
+	 * default queue, a number of outbound completion
+	 * handler rx_rings, and the number of inbound
+	 * completion handler rx_rings.
+	 */
+	qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
+
+	if (ql_alloc_ring_cb(qdev))
+		return -ENOMEM;
+
+	for (i = 0; i < qdev->tx_ring_count; i++) {
+		tx_ring = &qdev->tx_ring[i];
+		memset((void *)tx_ring, 0, sizeof(tx_ring));
+		tx_ring->qdev = qdev;
+		tx_ring->wq_id = i;
+		tx_ring->wq_len = qdev->tx_ring_size;
+		tx_ring->wq_size =
+		    tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
+
+		/*
+		 * The completion queue ID for the tx rings start
+		 * immediately after the default Q ID, which is zero.
+		 */
+		tx_ring->cq_id = i + 1;
+	}
+
+	for (i = 0; i < qdev->rx_ring_count; i++) {
+		rx_ring = &qdev->rx_ring[i];
+		memset((void *)rx_ring, 0, sizeof(rx_ring));
+		rx_ring->qdev = qdev;
+		rx_ring->cq_id = i;
+		rx_ring->cpu = i % cpu_cnt;	/* CPU to run handler on. */
+		if (i == 0) {	/* Default queue at index 0. */
+			/*
+			 * Default queue handles bcast/mcast plus
+			 * async events.  Needs buffers.
+			 */
+			rx_ring->cq_len = qdev->rx_ring_size;
+			rx_ring->cq_size =
+			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
+			rx_ring->lbq_len = NUM_LARGE_BUFFERS;
+			rx_ring->lbq_size =
+			    rx_ring->lbq_len * sizeof(struct bq_element);
+			rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
+			rx_ring->sbq_len = NUM_SMALL_BUFFERS;
+			rx_ring->sbq_size =
+			    rx_ring->sbq_len * sizeof(struct bq_element);
+			rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
+			rx_ring->type = DEFAULT_Q;
+		} else if (i < qdev->rss_ring_first_cq_id) {
+			/*
+			 * Outbound queue handles outbound completions only.
+			 */
+			/* outbound cq is same size as tx_ring it services. */
+			rx_ring->cq_len = qdev->tx_ring_size;
+			rx_ring->cq_size =
+			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
+			rx_ring->lbq_len = 0;
+			rx_ring->lbq_size = 0;
+			rx_ring->lbq_buf_size = 0;
+			rx_ring->sbq_len = 0;
+			rx_ring->sbq_size = 0;
+			rx_ring->sbq_buf_size = 0;
+			rx_ring->type = TX_Q;
+		} else {	/* Inbound completions (RSS) queues */
+			/*
+			 * Inbound queues handle unicast frames only.
+			 */
+			rx_ring->cq_len = qdev->rx_ring_size;
+			rx_ring->cq_size =
+			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
+			rx_ring->lbq_len = NUM_LARGE_BUFFERS;
+			rx_ring->lbq_size =
+			    rx_ring->lbq_len * sizeof(struct bq_element);
+			rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
+			rx_ring->sbq_len = NUM_SMALL_BUFFERS;
+			rx_ring->sbq_size =
+			    rx_ring->sbq_len * sizeof(struct bq_element);
+			rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
+			rx_ring->type = RX_Q;
+		}
+	}
+	return 0;
+}
+
+static int qlge_open(struct net_device *ndev)
+{
+	int err = 0;
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	err = ql_configure_rings(qdev);
+	if (err)
+		return err;
+
+	err = ql_get_adapter_resources(qdev);
+	if (err)
+		goto error_resource;
+
+	err = ql_adapter_up(qdev);
+	if (err)
+		goto error_up;
+
+	return err;
+
+error_resource:
+	ql_free_ring_cb(qdev);
+error_up:
+	ql_release_adapter_resources(qdev);
+	QL_DUMP_ALL(qdev);
+	return err;
+}
+
+static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	if (ndev->mtu == 1500 && new_mtu == 9000) {
+		QPRINTK(qdev, IFUP, ERR, "Turning on split headers.\n");
+		ql_write32(qdev, FSC, (FSC_SH << 16) | FSC_SH);
+		if (ql_set_framesize(qdev, JUMBO_FRAME_SIZE))
+			return -EIO;
+	} else if (ndev->mtu == 9000 && new_mtu == 1500) {
+		QPRINTK(qdev, IFUP, ERR, "Turning off split headers.\n");
+		ql_write32(qdev, FSC, (FSC_SH << 16));
+		if (ql_set_framesize(qdev, NORMAL_FRAME_SIZE))
+			return -EIO;
+	} else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
+		   (ndev->mtu == 9000 && new_mtu == 9000)) {
+		return 0;
+	} else
+		return -EINVAL;
+	ndev->mtu = new_mtu;
+	return 0;
+}
+
+static struct net_device_stats *qlge_get_stats(struct net_device
+					       *ndev)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	return &qdev->stats;
+}
+
+static void qlge_set_multicast_list(struct net_device *ndev)
+{
+	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
+	struct dev_mc_list *mc_ptr;
+	int i;
+
+	/*
+	 * Set or clear promiscuous mode if a
+	 * transition is taking place.
+	 */
+	if (ndev->flags & IFF_PROMISC) {
+		if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
+			if (ql_set_routing_reg
+			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
+				QPRINTK(qdev, HW, ERR,
+					"Failed to set promiscous mode.\n");
+			} else {
+				set_bit(QL_PROMISCUOUS, &qdev->flags);
+			}
+		}
+	} else {
+		if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
+			if (ql_set_routing_reg
+			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
+				QPRINTK(qdev, HW, ERR,
+					"Failed to clear promiscous mode.\n");
+			} else {
+				clear_bit(QL_PROMISCUOUS, &qdev->flags);
+			}
+		}
+	}
+
+	/*
+	 * Set or clear all multicast mode if a
+	 * transition is taking place.
+	 */
+	if ((ndev->flags & IFF_ALLMULTI) ||
+	    (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
+		if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
+			if (ql_set_routing_reg
+			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
+				QPRINTK(qdev, HW, ERR,
+					"Failed to set all-multi mode.\n");
+			} else {
+				set_bit(QL_ALLMULTI, &qdev->flags);
+			}
+		}
+	} else {
+		if (test_bit(QL_ALLMULTI, &qdev->flags)) {
+			if (ql_set_routing_reg
+			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
+				QPRINTK(qdev, HW, ERR,
+					"Failed to clear all-multi mode.\n");
+			} else {
+				clear_bit(QL_ALLMULTI, &qdev->flags);
+			}
+		}
+	}
+
+	if (ndev->mc_count) {
+		for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
+		     i++, mc_ptr = mc_ptr->next)
+			if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
+                                          MAC_ADDR_TYPE_MULTI_MAC, i)) {
+				QPRINTK(qdev, HW, ERR,
+					"Failed to loadmulticast address.\n");
+				return;
+			}
+		if (ql_set_routing_reg
+		    (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
+			QPRINTK(qdev, HW, ERR,
+				"Failed to set multicast match mode.\n");
+		} else {
+			set_bit(QL_ALLMULTI, &qdev->flags);
+		}
+	}
+}
+
+static int qlge_set_mac_address(struct net_device *ndev, void *p)
+{
+	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
+	struct sockaddr *addr = p;
+	unsigned long hw_flags;
+
+	if (netif_running(ndev))
+		return -EBUSY;
+
+	if (!is_valid_ether_addr(addr->sa_data))
+		return -EADDRNOTAVAIL;
+	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
+
+	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
+	if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
+                            MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
+		QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
+		return -1;
+	}
+	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
+
+	return 0;
+}
+
+static void qlge_tx_timeout(struct net_device *ndev)
+{
+	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
+	queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
+}
+
+static void ql_asic_reset_work(struct work_struct *work)
+{
+	struct ql_adapter *qdev =
+	    container_of(work, struct ql_adapter, asic_reset_work.work);
+	ql_cycle_adapter(qdev);
+}
+
+static void ql_get_board_info(struct ql_adapter *qdev)
+{
+	qdev->func =
+	    (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
+	if (qdev->func) {
+		qdev->xg_sem_mask = SEM_XGMAC1_MASK;
+		qdev->port_link_up = STS_PL1;
+		qdev->port_init = STS_PI1;
+		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
+		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
+	} else {
+		qdev->xg_sem_mask = SEM_XGMAC0_MASK;
+		qdev->port_link_up = STS_PL0;
+		qdev->port_init = STS_PI0;
+		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
+		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
+	}
+	qdev->chip_rev_id = ql_read32(qdev, REV_ID);
+}
+
+static void ql_release_all(struct pci_dev *pdev)
+{
+	struct net_device *ndev = pci_get_drvdata(pdev);
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	if (qdev->workqueue) {
+		destroy_workqueue(qdev->workqueue);
+		qdev->workqueue = NULL;
+	}
+	if (qdev->q_workqueue) {
+		destroy_workqueue(qdev->q_workqueue);
+		qdev->q_workqueue = NULL;
+	}
+	if (qdev->reg_base)
+		iounmap((void *)qdev->reg_base);
+	if (qdev->doorbell_area)
+		iounmap(qdev->doorbell_area);
+	pci_release_regions(pdev);
+	pci_set_drvdata(pdev, NULL);
+}
+
+static int __devinit ql_init_device(struct pci_dev *pdev,
+				    struct net_device *ndev, int cards_found)
+{
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	int pos, err = 0;
+	u16 val16;
+
+	memset((void *)qdev, 0, sizeof(qdev));
+	err = pci_enable_device(pdev);
+	if (err) {
+		dev_err(&pdev->dev, "PCI device enable failed.\n");
+		return err;
+	}
+
+	pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
+	if (pos <= 0) {
+		dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
+			"aborting.\n");
+		goto err_out;
+	} else {
+		pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
+		val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
+		val16 |= (PCI_EXP_DEVCTL_CERE |
+			  PCI_EXP_DEVCTL_NFERE |
+			  PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
+		pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
+	}
+
+	err = pci_request_regions(pdev, DRV_NAME);
+	if (err) {
+		dev_err(&pdev->dev, "PCI region request failed.\n");
+		goto err_out;
+	}
+
+	pci_set_master(pdev);
+	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
+		set_bit(QL_DMA64, &qdev->flags);
+		err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
+	} else {
+              err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
+              if (!err)
+		       err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
+	}
+
+	if (err) {
+		dev_err(&pdev->dev, "No usable DMA configuration.\n");
+		goto err_out;
+	}
+
+	pci_set_drvdata(pdev, ndev);
+	qdev->reg_base =
+	    ioremap_nocache(pci_resource_start(pdev, 1),
+			    pci_resource_len(pdev, 1));
+	if (!qdev->reg_base) {
+		dev_err(&pdev->dev, "Register mapping failed.\n");
+		err = -ENOMEM;
+		goto err_out;
+	}
+
+	qdev->doorbell_area_size = pci_resource_len(pdev, 3);
+	qdev->doorbell_area =
+	    ioremap_nocache(pci_resource_start(pdev, 3),
+			    pci_resource_len(pdev, 3));
+	if (!qdev->doorbell_area) {
+		dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
+		err = -ENOMEM;
+		goto err_out;
+	}
+
+	ql_get_board_info(qdev);
+	qdev->ndev = ndev;
+	qdev->pdev = pdev;
+	qdev->msg_enable = netif_msg_init(debug, default_msg);
+	spin_lock_init(&qdev->hw_lock);
+	spin_lock_init(&qdev->stats_lock);
+
+	/* make sure the EEPROM is good */
+	err = ql_get_flash_params(qdev);
+	if (err) {
+		dev_err(&pdev->dev, "Invalid FLASH.\n");
+		goto err_out;
+	}
+#if 0
+	/*
+	 * Flash parameters are TBD.
+	 */
+#else
+	if (!cards_found) {
+		u8 addr[6] = { 0x00, 0xc0, 0xdd, 0x03, 0xda, 0x39 };
+		memcpy(ndev->dev_addr, &addr, ETH_ALEN);
+	} else {
+		u8 addr[6] = { 0x00, 0xc0, 0xdd, 0x03, 0xda, 0x3a };
+		memcpy(ndev->dev_addr, &addr, ETH_ALEN);
+	}
+#endif
+	memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
+
+	/* Set up the default ring sizes. */
+	qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
+	qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
+
+	/* Set up the coalescing parameters. */
+	qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
+	qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
+	qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
+	qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
+
+	/*
+	 * Set up the operating parameters.
+	 */
+	qdev->rx_csum = 1;
+
+	qdev->q_workqueue = create_workqueue(ndev->name);
+	qdev->workqueue = create_singlethread_workqueue(ndev->name);
+	INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
+	INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
+	INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
+
+	if (!cards_found) {
+		dev_info(&pdev->dev, "%s\n", DRV_STRING);
+		dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
+			 DRV_NAME, DRV_VERSION);
+	}
+	return 0;
+err_out:
+	ql_release_all(pdev);
+	pci_disable_device(pdev);
+	return err;
+}
+
+static int __devinit qlge_probe(struct pci_dev *pdev,
+				const struct pci_device_id *pci_entry)
+{
+	struct net_device *ndev = NULL;
+	struct ql_adapter *qdev = NULL;
+	static int cards_found = 0;
+	int err = 0;
+
+	ndev = alloc_etherdev(sizeof(struct ql_adapter));
+	if (!ndev)
+		return -ENOMEM;
+
+	err = ql_init_device(pdev, ndev, cards_found);
+	if (err < 0) {
+		free_netdev(ndev);
+		return err;
+	}
+
+	qdev = netdev_priv(ndev);
+	SET_NETDEV_DEV(ndev, &pdev->dev);
+	ndev->features = (0
+			  | NETIF_F_IP_CSUM
+			  | NETIF_F_SG
+			  | NETIF_F_TSO
+			  | NETIF_F_TSO6
+			  | NETIF_F_TSO_ECN
+			  | NETIF_F_HW_VLAN_TX
+			  | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
+
+	if (test_bit(QL_DMA64, &qdev->flags))
+		ndev->features |= NETIF_F_HIGHDMA;
+
+	/*
+	 * Set up net_device structure.
+	 */
+	ndev->tx_queue_len = qdev->tx_ring_size;
+	ndev->irq = pdev->irq;
+	ndev->open = qlge_open;
+	ndev->stop = qlge_close;
+	ndev->hard_start_xmit = qlge_send;
+	ql_set_ethtool_ops(ndev);
+	ndev->change_mtu = qlge_change_mtu;
+	ndev->get_stats = qlge_get_stats;
+	ndev->set_multicast_list = qlge_set_multicast_list;
+	ndev->set_mac_address = qlge_set_mac_address;
+	ndev->tx_timeout = qlge_tx_timeout;
+	ndev->watchdog_timeo = 10 * HZ;
+	ndev->vlan_rx_register = ql_vlan_rx_register;
+	ndev->vlan_rx_add_vid = ql_vlan_rx_add_vid;
+	ndev->vlan_rx_kill_vid = ql_vlan_rx_kill_vid;
+	err = register_netdev(ndev);
+	if (err) {
+		dev_err(&pdev->dev, "net device registration failed.\n");
+		ql_release_all(pdev);
+		pci_disable_device(pdev);
+		return err;
+	}
+	netif_carrier_off(ndev);
+	netif_stop_queue(ndev);
+	ql_display_dev_info(ndev);
+	cards_found++;
+	return 0;
+}
+
+static void __devexit qlge_remove(struct pci_dev *pdev)
+{
+	struct net_device *ndev = pci_get_drvdata(pdev);
+	unregister_netdev(ndev);
+	ql_release_all(pdev);
+	pci_disable_device(pdev);
+	free_netdev(ndev);
+}
+
+/*
+ * This callback is called by the PCI subsystem whenever
+ * a PCI bus error is detected.
+ */
+static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
+					       enum pci_channel_state state)
+{
+	struct net_device *ndev = pci_get_drvdata(pdev);
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	printk(KERN_ERR "%s: Enter, pdev = 0x%p.\n", __func__, pdev);
+	if (netif_running(ndev))
+		ql_adapter_down(qdev);
+
+	pci_disable_device(pdev);
+
+	/* Request a slot reset. */
+	return PCI_ERS_RESULT_NEED_RESET;
+}
+
+/*
+ * This callback is called after the PCI buss has been reset.
+ * Basically, this tries to restart the card from scratch.
+ * This is a shortened version of the device probe/discovery code,
+ * it resembles the first-half of the () routine.
+ */
+static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
+{
+	struct net_device *ndev = pci_get_drvdata(pdev);
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	printk(KERN_ERR "%s: Enter, pdev = 0x%p.\n", __func__, pdev);
+	if (pci_enable_device(pdev)) {
+		QPRINTK(qdev, IFUP, ERR,
+			"Cannot re-enable PCI device after reset.\n");
+		return PCI_ERS_RESULT_DISCONNECT;
+	}
+
+	pci_set_master(pdev);
+
+	netif_carrier_off(ndev);
+	netif_stop_queue(ndev);
+	ql_adapter_reset(qdev);
+
+	/* Make sure the EEPROM is good */
+	memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
+
+	if (!is_valid_ether_addr(ndev->perm_addr)) {
+		QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
+		return PCI_ERS_RESULT_DISCONNECT;
+	}
+
+	return PCI_ERS_RESULT_RECOVERED;
+}
+
+static void qlge_io_resume(struct pci_dev *pdev)
+{
+	struct net_device *ndev = pci_get_drvdata(pdev);
+	struct ql_adapter *qdev = netdev_priv(ndev);
+
+	printk(KERN_ERR "%s: Enter, pdev = 0x%p.\n", __func__, pdev);
+	pci_set_master(pdev);
+
+	if (netif_running(ndev)) {
+		if (ql_adapter_up(qdev)) {
+			QPRINTK(qdev, IFUP, ERR,
+				"Device initialization failed after reset.\n");
+			return;
+		}
+	}
+
+	netif_device_attach(ndev);
+}
+
+static struct pci_error_handlers qlge_err_handler = {
+	.error_detected = qlge_io_error_detected,
+	.slot_reset = qlge_io_slot_reset,
+	.resume = qlge_io_resume,
+};
+
+static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
+{
+	struct net_device *ndev = pci_get_drvdata(pdev);
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	int err;
+
+	printk(KERN_ERR "%s: Enter, pdev = 0x%p, qdev = 0x%p.\n", __func__,
+	       pdev, qdev);
+
+	netif_device_detach(ndev);
+
+	if (netif_running(ndev)) {
+		err = ql_adapter_down(qdev);
+		if (!err)
+			return err;
+	}
+
+	err = pci_save_state(pdev);
+	if (err)
+		return err;
+
+	pci_disable_device(pdev);
+
+	pci_set_power_state(pdev, pci_choose_state(pdev, state));
+
+	return 0;
+}
+
+static int qlge_resume(struct pci_dev *pdev)
+{
+	struct net_device *ndev = pci_get_drvdata(pdev);
+	struct ql_adapter *qdev = netdev_priv(ndev);
+	int err;
+
+	printk(KERN_ERR "%s: Enter, pdev = 0x%p.\n", __func__, pdev);
+
+	pci_set_power_state(pdev, PCI_D0);
+	pci_restore_state(pdev);
+	err = pci_enable_device(pdev);
+	if (err) {
+		printk(KERN_ERR "%s: Cannot enable PCI device from suspend\n",
+		       __func__);
+		return err;
+	}
+	pci_set_master(pdev);
+
+	pci_enable_wake(pdev, PCI_D3hot, 0);
+	pci_enable_wake(pdev, PCI_D3cold, 0);
+
+	if (netif_running(ndev)) {
+		err = ql_adapter_up(qdev);
+		if (err)
+			return err;
+	}
+
+	netif_device_attach(ndev);
+
+	return 0;
+}
+
+static void qlge_shutdown(struct pci_dev *pdev)
+{
+	printk(KERN_ERR "%s: Enter, pdev = 0x%p.\n", __func__, pdev);
+	qlge_suspend(pdev, PMSG_SUSPEND);
+}
+
+static struct pci_driver qlge_driver = {
+	.name = DRV_NAME,
+	.id_table = qlge_pci_tbl,
+	.probe = qlge_probe,
+	.remove = __devexit_p(qlge_remove),
+#ifdef CONFIG_PM
+	.suspend = qlge_suspend,
+	.resume = qlge_resume,
+#endif
+	.shutdown = qlge_shutdown,
+	.err_handler = &qlge_err_handler
+};
+
+static int __init qlge_init_module(void)
+{
+	return pci_register_driver(&qlge_driver);
+}
+
+static void __exit qlge_exit(void)
+{
+	pci_unregister_driver(&qlge_driver);
+}
+
+module_init(qlge_init_module);
+module_exit(qlge_exit);
-- 
1.5.0.rc4.16.g9e258

--
To unsubscribe from this list: send the line "unsubscribe netdev" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ