lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:	Wed, 30 Oct 2013 07:02:14 -0400
From:	Neil Horman <nhorman@...driver.com>
To:	Doug Ledford <dledford@...hat.com>
Cc:	Ingo Molnar <mingo@...nel.org>,
	Eric Dumazet <eric.dumazet@...il.com>,
	linux-kernel@...r.kernel.org, netdev@...r.kernel.org
Subject: Re: [PATCH] x86: Run checksumming in parallel accross multiple alu's

On Wed, Oct 30, 2013 at 01:25:39AM -0400, Doug Ledford wrote:
> * Neil Horman <nhorman@...driver.com> wrote:
> > 3) The run times are proportionally larger, but still indicate that Parallel ALU
> > execution is hurting rather than helping, which is counter-intuitive.  I'm
> > looking into it, but thought you might want to see these results in case
> > something jumped out at you
> 
> So here's my theory about all of this.
> 
> I think that the original observation some years back was a fluke caused by
> either a buggy CPU or a CPU design that is no longer used.
> 
> The parallel ALU design of this patch seems OK at first glance, but it means
> that two parallel operations are both trying to set/clear both the overflow
> and carry flags of the EFLAGS register of the *CPU* (not the ALU).  So, either
> some CPU in the past had a set of overflow/carry flags per ALU and did some
> sort of magic to make sure that the last state of those flags across multiple
> ALUs that might have been used in parallelizing work were always in the CPU's
> logical EFLAGS register, or the CPU has a buggy microcode that allowed two
> ALUs to operate on data at the same time in situations where they would
> potentially stomp on the carry/overflow flags of the other ALUs operations.
> 
> It's my theory that all modern CPUs have this behavior fixed, probably via a
> microcode update, and so trying to do parallel ALU operations like this simply
> has no effect because the CPU (rightly so) serializes the operations to keep
> them from clobbering the overflow/carry flags of the other ALUs operations.
> 
> My additional theory then is that the reason you see a slowdown from this
> patch is because the attempt to parallelize the ALU operation has caused
> us to write a series of instructions that, once serialized, are non-optimal
> and hinder smooth pipelining of the data (aka going 0*8, 2*8, 4*8, 6*8, 1*8,
> 3*8, 5*8, and 7*8 in terms of memory accesses is worse than doing them in
> order, and since we aren't getting the parallel operation we want, this
> is the net result of the patch).
> 
> It would explain things anyway.
> 

That does makes sense, but it then begs the question, whats the advantage of
having multiple alu's at all?  If they're just going to serialize on the
updating of the condition register, there doesn't seem to be much advantage in
having multiple alu's at all, especially if a common use case (parallelizing an
operation on a large linear dataset) resulted in lower performance.

/me wonders if rearranging the instructions into this order:
adcq 0*8(src), res1
adcq 1*8(src), res2
adcq 2*8(src), res1

would prevent pipeline stalls.  That would be interesting data, and (I think)
support your theory, Doug.  I'll give that a try

Neil

--
To unsubscribe from this list: send the line "unsubscribe netdev" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ