lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite for Android: free password hash cracker in your pocket
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:	Wed, 11 Dec 2013 12:37:10 -0800
From:	Stephen Hemminger <stephen@...workplumber.org>
To:	Terry Lam <vtlam@...gle.com>
Cc:	"David S. Miller" <davem@...emloft.net>, netdev@...r.kernel.org,
	Eric Dumazet <edumazet@...gle.com>,
	Nandita Dukkipati <nanditad@...gle.com>
Subject: Re: [PATCH] net-qdisc-hhf: Heavy-Hitter Filter (HHF) qdisc

On Tue, 10 Dec 2013 23:26:36 -0800
Terry Lam <vtlam@...gle.com> wrote:

> This patch implements the first size-based qdisc that attempts to
> differentiate between small flows and heavy-hitters.  The goal is to
> catch the heavy-hitters and move them to a separate queue with less
> priority so that bulk traffic does not affect the latency of critical
> traffic.  Currently "less priority" means less weight (2:1 in
> particular) in a Weighted Deficit Round Robin (WDRR) scheduler.
> 
> In essence, this patch addresses the "delay-bloat" problem due to
> bloated buffers. In some systems, large queues may be necessary for
> obtaining CPU efficiency, or due to the presence of unresponsive
> traffic like UDP, or just a large number of connections with each
> having a small amount of outstanding traffic. In these circumstances,
> HHF aims to reduce the HoL blocking for latency sensitive traffic,
> while not impacting the queues built up by bulk traffic.  HHF can also
> be used in conjunction with other AQM mechanisms such as CoDel.
> 
> To capture heavy-hitters, we implement the "multi-stage filter" design
> in the following paper:
> C. Estan and G. Varghese, "New Directions in Traffic Measurement and
> Accounting", in ACM SIGCOMM, 2002.
> 
> Some configurable qdisc settings through 'tc':
> - hhf_reset_timeout: period to reset counter values in the multi-stage
>                      filter (default 40ms)
> - hhf_admit_bytes:   threshold to classify heavy-hitters
>                      (default 128KB)
> - hhf_evict_timeout: threshold to evict idle heavy-hitters
>                      (default 1s)
> - hhf_non_hh_weight: Weighted Deficit Round Robin (WDRR) weight for
>                      non-heavy-hitters (default 2)
> - hh_flows_limit:    max number of heavy-hitter flow entries
>                      (default 2048)
> 
> Note that the ratio between hhf_admit_bytes and hhf_reset_timeout
> reflects the bandwidth of heavy-hitters that we attempt to capture
> (25Mbps with the above default settings).
> 
> The false negative rate (heavy-hitter flows getting away unclassified)
> is zero by the design of the multi-stage filter algorithm.
> With 100 heavy-hitter flows, using four hashes and 4000 counters yields
> a false positive rate (non-heavy-hitters mistakenly classified as
> heavy-hitters) of less than 1e-4.
> 
> Signed-off-by: Terry Lam <vtlam@...gle.com>
> ---
>  include/uapi/linux/pkt_sched.h |  25 ++
>  net/sched/Kconfig              |   9 +
>  net/sched/Makefile             |   1 +
>  net/sched/sch_hhf.c            | 746 +++++++++++++++++++++++++++++++++++++++++
>  4 files changed, 781 insertions(+)
>  create mode 100644 net/sched/sch_hhf.c
> 
> diff --git a/include/uapi/linux/pkt_sched.h b/include/uapi/linux/pkt_sched.h
> index a806687..4566993 100644
> --- a/include/uapi/linux/pkt_sched.h
> +++ b/include/uapi/linux/pkt_sched.h
> @@ -790,4 +790,29 @@ struct tc_fq_qd_stats {
>  	__u32	throttled_flows;
>  	__u32	pad;
>  };
> +
> +/* Heavy-Hitter Filter */
> +
> +enum {
> +	TCA_HHF_UNSPEC,
> +	TCA_HHF_BACKLOG_LIMIT,
> +	TCA_HHF_QUANTUM,
> +	TCA_HHF_HH_FLOWS_LIMIT,
> +	TCA_HHF_RESET_TIMEOUT,
> +	TCA_HHF_ADMIT_BYTES,
> +	TCA_HHF_EVICT_TIMEOUT,
> +	TCA_HHF_NON_HH_WEIGHT,
> +	__TCA_HHF_MAX
> +};
> +
> +#define TCA_HHF_MAX	(__TCA_HHF_MAX - 1)
> +
> +struct tc_hhf_xstats {
> +	__u32	drop_overlimit; /* number of times max qdisc packet limit
> +				 * was hit
> +				 */

64 bit?

> +	__u32	hh_overlimit;   /* number of times max heavy-hitters was hit */
> +	__u32	hh_tot_count;   /* number of captured heavy-hitters so far */
> +	__u32	hh_cur_count;   /* number of current heavy-hitters */
> +};
>  #endif



> diff --git a/net/sched/sch_hhf.c b/net/sched/sch_hhf.c
> new file mode 100644
> index 0000000..91c723e
> --- /dev/null
> +++ b/net/sched/sch_hhf.c
> @@ -0,0 +1,746 @@

> +#define hhf_time_before(a, b)	\
> +	(typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0))

Why reinvent time_before?

> +
> +/* Heavy-hitter per-flow state */
> +struct hh_flow_state {
> +	u32		 hash_id;	/* hash of flow-id (e.g. TCP 5-tuple) */
> +	u32		 hit_timestamp;	/* last time heavy-hitter was seen */
> +	struct list_head flowchain;	/* chaining under hash collision */
> +};
> +
> +/* Weighted Deficit Round Robin (WDRR) scheduler */
> +struct wdrr_bucket {
> +	struct sk_buff	  *head;
> +	struct sk_buff	  *tail;
> +	struct list_head  bucketchain;
> +	int		  deficit;
> +};
> +
> +struct hhf_sched_data {
> +	struct wdrr_bucket buckets[WDRR_BUCKET_CNT];
> +	u32		   perturbation;   /* hash perturbation */
> +	u32		   quantum;        /* psched_mtu(qdisc_dev(sch)); */
> +	u32		   drop_overlimit; /* number of times max qdisc packet
> +					    * limit was hit
> +					    */
> +	struct list_head   *hh_flows;       /* table T (currently active HHs) */
> +	u32		   hh_flows_limit;            /* max active HH allocs */
> +	u32		   hh_flows_overlimit; /* num of disallowed HH allocs */
> +	u32		   hh_flows_total_cnt;          /* total admitted HHs */
> +	u32		   hh_flows_current_cnt;        /* total current HHs  */
> +	u32		   *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */
> +	u32		   hhf_arrays_reset_timestamp;  /* last time hhf_arrays
> +							 * was reset
> +							 */
> +	unsigned long	   *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits
> +							     * of hhf_arrays
> +							     */
> +	/* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */
> +	struct list_head   new_buckets; /* list of new buckets */
> +	struct list_head   old_buckets; /* list of old buckets */
> +
> +	/* Configurable HHF parameters */
> +	u32		   hhf_reset_timeout; /* interval to reset counter
> +					       * arrays in filter F
> +					       * (default 40ms)
> +					       */
> +	u32		   hhf_admit_bytes;   /* counter thresh to classify as
> +					       * HH (default 128KB).
> +					       * With these default values,
> +					       * 128KB / 40ms = 25 Mbps
> +					       * i.e., we expect to capture HHs
> +					       * sending > 25 Mbps.
> +					       */
> +	u32		   hhf_evict_timeout; /* aging threshold to evict idle
> +					       * HHs out of table T. This should
> +					       * be large enough to avoid
> +					       * reordering during HH eviction.
> +					       * (default 1s)
> +					       */
> +	u32		   hhf_non_hh_weight; /* WDRR weight for non-HHs
> +					       * (default 2,
> +					       *  i.e., non-HH : HH = 2 : 1)
> +					       */
> +};
> +
> +static inline u32 hhf_time_stamp(void)
> +{
> +	return jiffies;
> +}

Why wrap jiffies needlessly


> +static unsigned int skb_hash(const struct hhf_sched_data *q,
> +			     const struct sk_buff *skb)
> +{
> +	struct flow_keys keys;
> +	unsigned int hash;
> +
> +	if (skb->sk && skb->sk->sk_hash)
> +		return skb->sk->sk_hash;
> +
> +	skb_flow_dissect(skb, &keys);
> +	hash = jhash_3words((__force u32)keys.dst,
> +			    (__force u32)keys.src ^ keys.ip_proto,
> +			    (__force u32)keys.ports, q->perturbation);
> +	return hash;
> +}

Why not reuse flow dissect logic that exists in SFQ?


> +/* Looks up a heavy-hitter flow in a chaining list of table T. */
> +static inline struct hh_flow_state *seek_list(const u32 hash,
> +					      struct list_head *head,
> +					      struct hhf_sched_data *q)

Don't use inline. Let compiler decide.

> +{
> +	struct hh_flow_state *flow, *next;
> +	u32 now = hhf_time_stamp();
> +
> +	if (list_empty(head))
> +		return NULL;
> +
> +	list_for_each_entry_safe(flow, next, head, flowchain) {
> +		u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
> +
> +		if (hhf_time_before(prev, now)) {
> +			/* Delete expired heavy-hitters, but preserve one entry
> +			 * to avoid kzalloc() when next time this slot is hit.
> +			 */
> +			if (list_is_last(&flow->flowchain, head))
> +				return NULL;
> +			list_del(&flow->flowchain);
> +			kfree(flow);
> +			q->hh_flows_current_cnt--;
> +		} else if (flow->hash_id == hash) {
> +			return flow;
> +		}
> +	}
> +	return NULL;
> +}
> +
> +/* Returns a flow state entry for a new heavy-hitter.  Either reuses an expired
> + * entry or dynamically alloc a new entry.
> + */
> +static inline struct hh_flow_state *alloc_new_hh(struct list_head *head,
> +						 struct hhf_sched_data *q)
> +{
> +	struct hh_flow_state *flow;
> +	u32 now = hhf_time_stamp();
> +
> +	if (!list_empty(head)) {
> +		/* Find an expired heavy-hitter flow entry. */
> +		list_for_each_entry(flow, head, flowchain) {
> +			u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
> +
> +			if (hhf_time_before(prev, now))
> +				return flow;
> +		}
> +	}
> +
> +	if (q->hh_flows_current_cnt >= q->hh_flows_limit) {
> +		q->hh_flows_overlimit++;
> +		return NULL;
> +	}
> +	/* Create new entry. */
> +	flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC);
> +	if (!flow)
> +		return NULL;
> +
> +	q->hh_flows_current_cnt++;
> +	INIT_LIST_HEAD(&flow->flowchain);
> +	list_add_tail(&flow->flowchain, head);
> +
> +	return flow;
> +}
> +
> +/* Assigns packets to WDRR buckets.  Implements a multi-stage filter to
> + * classify heavy-hitters.
> + */
> +static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch)
> +{
> +	struct hhf_sched_data *q = qdisc_priv(sch);
> +	u32 tmp_hash, hash;
> +	u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos;
> +	struct hh_flow_state *flow;
> +	u32 pkt_len, min_hhf_val;
> +	int i;
> +	u32 prev;
> +	u32 now = hhf_time_stamp();
> +
> +	/* Reset the HHF counter arrays if this is the right time. */
> +	prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout;
> +	if (hhf_time_before(prev, now)) {
> +		for (i = 0; i < HHF_ARRAYS_CNT; i++)
> +			bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN);
> +		q->hhf_arrays_reset_timestamp = now;
> +	}
> +
> +	/* Get hashed flow-id of the skb. */
> +	hash = skb_hash(q, skb);
> +
> +	/* Check if this packet belongs to an already established HH flow. */
> +	flow_pos = hash & HHF_BIT_MASK;
> +	flow = seek_list(hash, &q->hh_flows[flow_pos], q);
> +	if (flow) { /* found its HH flow */
> +		flow->hit_timestamp = now;
> +		return WDRR_BUCKET_FOR_HH;
> +	}
> +
> +	/* Now pass the packet through the multi-stage filter. */
> +	tmp_hash = hash;
> +	xorsum = 0;
> +	for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) {
> +		/* Split the skb_hash into three 10-bit chunks. */
> +		filter_pos[i] = tmp_hash & HHF_BIT_MASK;
> +		xorsum ^= filter_pos[i];
> +		tmp_hash >>= HHF_BIT_MASK_LEN;
> +	}
> +	/* The last chunk is computed as XOR sum of other chunks. */
> +	filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash;
> +
> +	pkt_len = qdisc_pkt_len(skb);
> +	min_hhf_val = ~0U;
> +	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
> +		u32 val;
> +
> +		if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) {
> +			q->hhf_arrays[i][filter_pos[i]] = 0;
> +			__set_bit(filter_pos[i], q->hhf_valid_bits[i]);
> +		}
> +
> +		val = q->hhf_arrays[i][filter_pos[i]] + pkt_len;
> +		if (min_hhf_val > val)
> +			min_hhf_val = val;
> +	}
> +
> +	/* Found a new HH iff all counter values > HH admit threshold. */
> +	if (min_hhf_val > q->hhf_admit_bytes) {
> +		/* Just captured a new heavy-hitter. */
> +		flow = alloc_new_hh(&q->hh_flows[flow_pos], q);
> +		if (!flow) /* memory alloc problem */
> +			return WDRR_BUCKET_FOR_NON_HH;
> +		flow->hash_id = hash;
> +		flow->hit_timestamp = now;
> +		q->hh_flows_total_cnt++;
> +
> +		/* By returning without updating counters in q->hhf_arrays,
> +		 * we implicitly implement "shielding" (see Optimization O1).
> +		 */
> +		return WDRR_BUCKET_FOR_HH;
> +	}
> +
> +	/* Conservative update of HHF arrays (see Optimization O2). */
> +	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
> +		if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val)
> +			q->hhf_arrays[i][filter_pos[i]] = min_hhf_val;
> +	}
> +	return WDRR_BUCKET_FOR_NON_HH;
> +}
> +
> +/* Removes one skb from head of bucket. */
> +static inline struct sk_buff *dequeue_head(struct wdrr_bucket *bucket)
> +{
> +	struct sk_buff *skb = bucket->head;
> +
> +	bucket->head = skb->next;
> +	skb->next = NULL;
> +	return skb;
> +}

Seems like reinvention of sk_list??

> +
> +/* Tail-adds skb to bucket. */
> +static inline void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb)
> +{
> +	if (bucket->head == NULL)
> +		bucket->head = skb;
> +	else
> +		bucket->tail->next = skb;
> +	bucket->tail = skb;
> +	skb->next = NULL;
> +}
> +
> +static unsigned int hhf_drop(struct Qdisc *sch)
> +{
> +	struct hhf_sched_data *q = qdisc_priv(sch);
> +	struct wdrr_bucket *bucket;
> +
> +	/* Always try to drop from heavy-hitters first. */
> +	bucket = &q->buckets[WDRR_BUCKET_FOR_HH];
> +	if (!bucket->head)
> +		bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH];
> +
> +	if (bucket->head) {
> +		struct sk_buff *skb = dequeue_head(bucket);
> +
> +		sch->q.qlen--;
> +		sch->qstats.drops++;
> +		sch->qstats.backlog -= qdisc_pkt_len(skb);
> +		kfree_skb(skb);
> +	}
> +
> +	/* Return id of the bucket from which the packet was dropped. */
> +	return bucket - q->buckets;
> +}
> +
> +static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
> +{
> +	struct hhf_sched_data *q = qdisc_priv(sch);
> +	enum wdrr_bucket_idx idx;
> +	struct wdrr_bucket *bucket;
> +
> +	idx = hhf_classify(skb, sch);
> +
> +	bucket = &q->buckets[idx];
> +	bucket_add(bucket, skb);
> +	sch->qstats.backlog += qdisc_pkt_len(skb);
> +
> +	if (list_empty(&bucket->bucketchain)) {
> +		unsigned int weight;
> +
> +		/* The logic of new_buckets vs. old_buckets is the same as
> +		 * new_flows vs. old_flows in the implementation of fq_codel,
> +		 * i.e., short bursts of non-HHs should have strict priority.
> +		 */
> +		if (idx == WDRR_BUCKET_FOR_HH) {
> +			/* Always move heavy-hitters to old bucket. */
> +			weight = 1;
> +			list_add_tail(&bucket->bucketchain, &q->old_buckets);
> +		} else {
> +			weight = q->hhf_non_hh_weight;
> +			list_add_tail(&bucket->bucketchain, &q->new_buckets);
> +		}
> +		bucket->deficit = weight * q->quantum;
> +	}
> +	if (++sch->q.qlen < sch->limit)
> +		return NET_XMIT_SUCCESS;
> +
> +	q->drop_overlimit++;
> +	/* Return Congestion Notification only if we dropped a packet from this
> +	 * bucket.
> +	 */
> +	if (hhf_drop(sch) == idx)
> +		return NET_XMIT_CN;
> +
> +	/* As we dropped a packet, better let upper stack know this. */
> +	qdisc_tree_decrease_qlen(sch, 1);
> +	return NET_XMIT_SUCCESS;
> +}
> +
> +static struct sk_buff *hhf_dequeue(struct Qdisc *sch)
> +{
> +	struct hhf_sched_data *q = qdisc_priv(sch);
> +	struct sk_buff *skb = NULL;
> +	struct wdrr_bucket *bucket;
> +	struct list_head *head;
> +
> +begin:
> +	head = &q->new_buckets;
> +	if (list_empty(head)) {
> +		head = &q->old_buckets;
> +		if (list_empty(head))
> +			return NULL;
> +	}
> +	bucket = list_first_entry(head, struct wdrr_bucket, bucketchain);
> +
> +	if (bucket->deficit <= 0) {
> +		int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ?
> +			      1 : q->hhf_non_hh_weight;
> +
> +		bucket->deficit += weight * q->quantum;
> +		list_move_tail(&bucket->bucketchain, &q->old_buckets);
> +		goto begin;
> +	}
> +
> +	if (bucket->head) {
> +		skb = dequeue_head(bucket);
> +		sch->q.qlen--;
> +		sch->qstats.backlog -= qdisc_pkt_len(skb);
> +	}
> +
> +	if (!skb) {
> +		/* Force a pass through old_buckets to prevent starvation. */
> +		if ((head == &q->new_buckets) && !list_empty(&q->old_buckets))
> +			list_move_tail(&bucket->bucketchain, &q->old_buckets);
> +		else
> +			list_del_init(&bucket->bucketchain);
> +		goto begin;
> +	}
> +	qdisc_bstats_update(sch, skb);
> +	bucket->deficit -= qdisc_pkt_len(skb);
> +
> +	return skb;
> +}
> +
> +static void hhf_reset(struct Qdisc *sch)
> +{
> +	struct sk_buff *skb;
> +
> +	while ((skb = hhf_dequeue(sch)) != NULL)
> +		kfree_skb(skb);
> +}
> +
> +static void *hhf_zalloc(size_t sz)
> +{
> +	void *ptr = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN);
> +
> +	if (!ptr)
> +		ptr = vzalloc(sz);
> +
> +	return ptr;
> +}

Are you really allocating thing so big that kmalloc fails?
If so, please base it on size > PAGE_SIZE
--
To unsubscribe from this list: send the line "unsubscribe netdev" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ