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Pipelining in scenario (1)
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Pipelining in scenario (2)

(and in Lyra2)
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Kept in memory initialize initialize

(one row every third)
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: - Push average case toward worst case: the perceived latency is the max latency for

1 recomputing not only the row that is needed, but also those it depends upon

: - Recomputing those rows may even add extra latencies: the row needed cannot be initialized
: before the rows it depends on are initialized (and their initialization take extra pipelines...);

1 also, prev® and prev? are read in a pseudorandom order, so on average they can be used after
! half of their recomputation is complete, which has an average latency of C/2

Actual Lyra2 scenario:
May have been updated  there are extra measures

since being used (probability ~ against TMTO attacks Have been updated
proportional to d) since being used
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