
25/04/15

1

0 C C 0

initialize

0 C

read/update

0 C

read/update

0 C

read/update

…

C 2C

(1) Total computation

latency: C

read/update

read/update

…

read/update

initialize

(2) Total computation

latency: 2C

C 0

initialize

C 2C

read/update

reverse()

read/update

2C 3C

reverse()

nC (n-1)C

read/update

nC nC

…
C 2C

C 2C

2C C

(3) Total computation

latency: nC

1

Pipelining in scenario (1)

2

25/04/15

2

initialize

read/update

read/update

initializeKept in memory

pipeline: t = 1

initialize

read/update

read/update

initializeKept in memory

pipeline: t = 2

Pipeline’s

length: d = 4

(Memory usage: we have

one row every third)

(row we need to read)

s s

s

s

s s

s

s

3

initialize

read/update

read/update

initializeKept in memory

pipeline: t = 3

initialize

read/update

read/update

initializeKept in memory

pipeline: t = 4

(Time x memory) for rows:

instead of C x 1, we have

(C+d)x(1/3+d/C) < C

(intermediate

states)(rows kept)

s s

s

s

s s

s

s

(perceived

latency)

4

25/04/15

3

Pipelining in scenario (2)

(and in Lyra2)

5

initialize

read/update

read/update

initializeKept in memory

Pipeline’s

length: d = 2

(one row every third)

(row to be read)

read

pipeline: t = 1

(after latency of 2C)

initialize

read/update

read/update

initializeKept in memory

read

pipeline: t = 2

(Time x memory) for rows:

instead of C x 1, we have

(C+2C+d)x(1/3+d/C) > C

(intermediate

states)(rows kept)

s

s

s

s
(worst case)

6

25/04/15

4

initialize

read/update

read/update

initializeKept in memory

(one row every third)

(row to be read)

pipeline: t = 1

(after latency of 1C)

initialize

read/update

read/update

initializeKept in memory

pipeline: t = 2

s

s

s

s

(Time x memory) for rows:

instead of C x 1, we have

(C+1C+d)x(1/3+d/C) > C/2

(intermediate

states)(rows kept)

(avg case)

Pipeline’s

length: d = 2

7

read/update

read/update

initialize

- Push average case toward worst case: the perceived latency is the max latency for

recomputing not only the row that is needed, but also those it depends upon

- Recomputing those rows may even add extra latencies: the row needed cannot be initialized

before the rows it depends on are initialized (and their initialization take extra pipelines…);

also, prev0 and prev1 are read in a pseudorandom order, so on average they can be used after

half of their recomputation is complete, which has an average latency of C/2

row1

row1

row1
prev0 , prev1

prev0 , prev1

prev0 , prev1

Have been updated

since being used

May have been updated

since being used (probability

proportional to d)

Actual Lyra2 scenario:

there are extra measures

against TMTO attacks

(row to be read)

s

s

8

