initialize initialize initialize
L ccl c| P
read/update read/update read/update
L L el IIIEI
reverse
L c
read/update read/update read/update
EEEEEE OEEEEN HEENNE
- reverse()
ncl L]
read/update read/update read/update

L] c

(1) Total computation
latency: C

c L

(2) Total computation

latency: 2C

ncl |l

(3) Total computation
latency: nC

Pipelining in scenario (1)

Kept in memory

(Memory usage: we have
one row every third)

Pipeline’s
length: d =4

Kept in memory

initialize

initialize

¢ HiNEEN c:EEEEEEN

pipeline:t=1

initialize

read/update
o] | | [|]]

read/update

(row we need to read)

initialize

ENNNNEN o HEEEE > IEEEER
read/update
pipeline: t =2 ®
read/update
HEEEEEER
Kept in memory initialize initialize
HEREEEER ¢ HEEE © HEEEN
read/update
pipeline:t=3 \)
read/update
]
Kept in memory initialize initialize
HEREREER o HEN ¢]]
' (Time x memory) for rows: | read/update
E |ns(tgfg))(()€/;é(+z,/\év)e<hcave i pipeline:t=4 '\ g
| =l BN i
1 (perceived . ! read/update
: latency) | (intermediate 1
__ _ (rowskept) _ _states) _ i EENEEN

25/04/15

Pipelining in scenario (2)

(and in Lyra2)

Kept in memory initialize initialize

L]] |~

(one row every third) read
read/update
: --------- ': pipeline:t=1
: Pipeline’s : (after latency of 2C) read/update
' lengthid=2 I e
| nai-2 | SHENEEEN
.......................... i T read)
Kept in memory initialize initialize
d
_________________ rea read/update
1 .
(Time x memory) for rows:
1
I instead of Cx 1, we have ! o
L (Ce2C+d)X(1/3+d/C) > C | pipeline: t = 2
: et oo’ ‘—'_).. | read/update
1
1
1

[worst case) " (intermediate

(rows kept) ~ states)

25/04/15

Kept in memory initialize initialize

(one row every third)

(avg case) (intermediate

| __ rowskept) _ states) |

read/update
EREEEN A i
pipeline:t=1 : Pipeline’s :
(after latency of 1C) read/update 1 length:d=2 :
A 1
CHlNEEEN - - |
..................... (- r-(-);/;/t'o be read)
Kept in memory initialize initialize
HEEREEN EREEEEN
read/update
LT) f :
8 EEEEE oo
read/update : (C+&£+d)x(1£j(¥£) >cf2 :
1 ' !
| 1
1

: - Push average case toward worst case: the perceived latency is the max latency for

1 recomputing not only the row that is needed, but also those it depends upon

: - Recomputing those rows may even add extra latencies: the row needed cannot be initialized
: before the rows it depends on are initialized (and their initialization take extra pipelines...);

1 also, prev® and prev? are read in a pseudorandom order, so on average they can be used after
! half of their recomputation is complete, which has an average latency of C/2

Actual Lyra2 scenario:
May have been updated there are extra measures

since being used (probability ~ against TMTO attacks Have been updated
proportional to d) since being used

1
initialize m row?

1 prev®, prev read/update row!
]

! L]

I

: read/update row!
]

]

I

(row to be read)

25/04/15

