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Pipelining in scenario (2) 

(and in Lyra2)
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- Push average case toward worst case: the perceived latency is the max latency for 

recomputing not only the row that is needed, but also those it depends upon

- Recomputing those rows may even add extra latencies: the row needed cannot be initialized 

before the rows it depends on are initialized (and their initialization take extra pipelines…);  

also, prev0 and prev1 are read in a pseudorandom order, so on average they can be used after 

half of their recomputation is complete, which has an average latency of C/2
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