
 1

CVE-2004-0719: Microsoft SSL PCT vulnerability

Kyle C. Quest
kquest@toplayer.com

Abstract

This paper describes some of my research
findings. It’s an attempt to answer the question I
had just before I started my research.

It’s always frustrating to hear about a newly
discovered vulnerability and not know what the
actual problem is. This is true especially if you
are responsible for figuring out how to stop
network attacks exploiting the vulnerability.

Juliano Rizzo already provided a great description
for the actual buffer overflow and the exploits that
are out there right now shedding the light on the
mystery behind the SSL message they use. I’ll
build upon his work answering additional
question people might have.

Note:

I used Windows 2000 with no service packs for
my research. The diagrams I provide may not be
accurate for latter versions of Windows.

1. Overview

The vulnerability lies in the
Pct1SrvHandleUniHello function (schannel.dll)
where it tries to modify the SSL 2 challenge data.
It can be exploited by a ClientHello SSL 2
message (or a message falsely believed to be SSL
2) that signals the use of Microsoft PCT 1
extensions to SSL 2 by means of a special Cipher
Spec that starts with 0x8f. The message would
have to contain a Challenge field more than 16
bytes long and less than or equal to 32 bytes.

2. SSL 2 Protocol

Attacks exploiting this vulnerability will use SSL
2 Client Hello messages that must have a special
Microsoft Cipher Spec as the first Cipher Spec in
the list. It looks like Microsoft created a private

cipher spec early on when they were designing
their PCT 1 protocol. PCT 1 protocol doesn’t use
SSL 2 Client Hello packets anymore, but the
functionality to handle them is still there. If you
capture PCT 1 handshake messages generated by
Internet Explorer, you’ll see that it uses native
PCT 1 Client Hello message format.

SSL 2 Client Hello Format:

char MSG-LENGTH[2 or 3]
char MSG-CLIENT-HELLO(Value:1)
char CLIENT-VERSION[2]
char CIPHER-SPECS-LENGTH[2]
char SESSION-ID-LENGTH[2]
char CHALLENGE-LENGTH[2]
char CIPHER-SPECS-DATA[LENGTH]
char SESSION-ID-DATA[LENGTH]
char CHALLENGE-DATA[LENGTH]

The last 3 fields are optional and may not be
present if their corresponding length fields are set
to 0.

Note that the CIPHER-SPECS-LENGTH field
contains the total size of the CIPHER-SPECS-
DATA section in bytes (it’s not the number of
Cipher Specs)!

The SSL 2 Cipher Specs themselves are 3 bytes
long with the following format:

Byte 1: Cipher Spec ID
Byte 2: Cipher Spec Sub ID
Byte 3: Key Size (in bits)

The Cipher Spec ID is usually a unique number
with the Cipher Spec Sub ID set to 0. However,
when Cipher Specs differ only by the hash
algorithm they use, their Cipher Spec IDs match.
In this case the Cipher Spec Sub ID field is used
to uniquely distinguish them.

Microsoft overloaded the meaning of Cipher
Specs by creating a special one with Cipher Spec

 2

ID set to 0x86. They also overloaded the meaning
of bytes 2 and 3 using them to provide the PCT
protocol version.

3. Chasing the Vulnerability

There are many different attack vectors for this
vulnerability. I chose IIS web server as an
example. Refer to Appendix A for a diagram
showing the path SSL2/PCT1 Client Hello packet
takes.

IIS uses an extensible web server architecture
where new processing functionality can be
provided using filters. This is actually how IIS
implements URLScan and, more importantly, this
is how it implements secure communication
protocols (sspifilt.dll). These filters register for
the processing events they are interested in. The
SSPIFILT filter registers for a number of events
including the
SF_NOTIFY_READ_RAW_DATA, which
instructs IIS to send raw data to SSPIFILT for
preprocessing. Any filter can register for this
event (you can wrap OpenSSL or some other SSL
code in one of those filters and replace
Microsoft’s SSL code if you wish).

When a Client Hello packet arrives, it causes the
IIS server to create a new HTTP_REQUEST
object that reads data in a loop in the DoWork()
function. This function reads the Client Hello
packet and passes it to the SSPIFILT filter where
it processes the Client Hello sending a Server
Hello in reply, which is done by calling the
AcceptSecurityContext() function. This is actually
the same function you’d have to call if you
wanted to create an SSL server using MS SSL
libraries (refer to Microsoft documentation for the
detailed function description).

The call to AcceptSecurityContext() eventually
ends up in schannel DLL, which is where all of
the secure protocols are implemented. To make it
all the way there, the Client Hello packet had to
go through another DLL, secur32.dll, which made
a Local Procedure Call to the LSASS.EXE, the
process that’s responsible for all kinds of security
requests.

Once in LSASS.EXE, the Client Hello message is
delivered to schannel.dll where the security
protocol is determined for the message passing it
to the appropriate protocol handler.

Our PCT 1 Client Hello message is passed to
Pct1ServerProtocolHandler().

A malicious PCT 1 Client Hello message must
come in an SSL 2 formatted message described
above for the vulnerability to be triggered (Native
PCT 1 Client Hello messages will not get to the
bug).

The Pct1ServerProtocolHandler() function calls
Pct1SrvHandleUniHello() after decoding the
Client Hello message filling in some of the
response message fields including the Challenge
Data field.

The rest is history…

 3

Appendix A: SSL PCT 1 Client Hello Processing Trace.

INETINFO.EXE

w3svc.dll
sspifilt.dll

secur32.dll

ntdll.dll ZwRequestWaitReplyPort()

AccpetSecurityContext()

LsaAcceptSecurityContext()

SecpAcceptSecurityContext()

CallSPM()

LSASS.EXE schannel.dll

L
P

C
 m

sg

HttpFilterProc()

OnAuthorizationInfo()

AcceptSecurityContext()

HTTP_REQUEST->DoWork()

HTTP_REQ_BASE->OnFillClientReq()

HTTP_REQ_BASE->ReadFile()

HTTP_REQ_BASE->UnWrapRequest()

HTTP_FILTER->NotifyRawReadDataFilters()

CLIENT_CONN->ReadFile()

isatq.dll AtqReadSocket()

ws2_32.dllWSARecv()TCP
packet

SpAcceptLsaModeContext()

lsasrv.dll
LpcHandler()

DispatchAPI()

LpcAcceptContext()

WLsaAcceptContext()

ServerProtocolHandler()

Pct1ServerProtocolHandler()

Pct1SrvHandleUniHello()

 4

Appendix B: SpAcceptLsaModeContext() function.

NTSTATUS
SpAcceptLsaModeContext(LSA_SEC_HANDLE CredHandle,
 LSA_SEC_HANDLE ContextHandle, /*[ebp+0x0c]*/
 SecBufferDesc* InputBuffer, /*[ebp+0x10]*/
 ULONG ContextRequirements, /*[ebp+0x14]*/
 ULONG TargetDataRep,
 LSA_SEC_HANDLE* NewContextHandle,/*[ebp+0x1c] */
 SecBufferDesc* OutputBuffer, /*[ebp+0x20] */
 ULONG* ContextAttributes,/*[ebp+0x24]*/
 TimeStamp* ExpirationTime,
 BOOLEAN* MappedContext,
 SecBuffer* ContextData
)
{
 SecBuffer* local1 = NULL;
 SecBuffer* local4 = NULL;
 DWORD local5 = 0x1001C;
 ULONG ctxAttrs; /* edx */
 SecBuffer* inTokenBuf = NULL;
 SecBuffer* outBuf = NULL;
 SecBuffer* curBuf;
 DWORD bufCount;
 DWORD bufType;
 LSA_SEC_HANDLE* context;
 SecBuffer in;
 SecBuffer out;

 // test dword ptr [ebp+0x14],0x20001
 if(ContextRequirements & (ASC_REQ_DELEGATE|ASC_REQ_INTEGRITY))
 return SEC_E_UNSUPPORTED_FUNCTION;
 if((ContextRequirements & 0xff000000) == 0x02000000)
 local3 = 0x100;

 // Process the input buffers (looking for token buffers)
 for(bufCount=InputBuffer->cBuffers,
 curBuf = InputBuffer->pBuffers;
 bufCount > 0;
 bufCount--,curBuf += sizeof(SecBuffer))
 {
 bufType = curBuf->BufferType;
 if(bufType &= 0x0fffffff) // mask off the buffer attributes
 {
 if(bufType == SECBUFFER_TOKEN)
 {
 local1 = curBuf;
 inTokenBuf = curBuf;
 }
 else
 {
 // cmp edx,0x80000002
 //it can never be true because
 //the MSB is masked off???
 if(bufType ==
 (SECBUFFER_READONLY|SECBUFFER_TOKEN))

 5

 {
 local1 = curBuf;
 inTokenBuf = curBuf;
 }
 }
 }
 else
 {
 //this buf is SECBUFFER_EMPTY
 if(inTokenBuf == NULL)
 {
 local1 = curBuf;
 inTokenBuf = curBuf;
 }
 else
 {
 if(local4 == NULL)
 local4 = curBuf;
 }
 }
 }
 //Process the output buffers (looking for empty buffers)
 for(bufCount=OutputBuffer->cBuffers,
 curBuf = OutputBuffer->pBuffers;
 bufCount > 0;
 bufCount--,curBuf += sizeof(SecBuffer))
 {
 bufType = curBuf->BufferType;
 if((bufType &= 0x0fffffff) == 0)
 {
 //It's SECBUFFER_EMPTY
 if(outVar == NULL)
 {
 local2 = curBuf;
 outBuf = curBuf;
 }
 }
 else
 {
 //See if it's SECBUFFER_TOKEN
 bufType -= 2;
 if(bufType == 0)
 {
 local2 = curBuf;
 outBuf = curBuf;
 }
 }
 }
 if(outBuf == NULL)
 return SEC_E_INVALID_TOKEN;

 outBuf->BufferType = SECBUFFER_TOKEN;

 //omitted...

 if(ContextRequirements & 0x00ff0000) == ASC_REQ_STREAM)
 {

 6

 ctxAttrs /*edx*/ = local5;
 }
 else
 {
 ctxAttrs = 0x1011C;
 outBuf->pvBuffer = 0;
 outBuf->ulVersion = 0;
 }

 out.pvBuffer = outBuf->pvBuffer;
 out.ulVersion = outBuf->ulVersion;
 out.BufferType = 0;

 if(ContextRequirements & ASC_REQ_EXTENDED_ERROR)
 {
 ctxAttrs |= ASC_RET_EXTENDED_ERROR;
 local3 |= ASC_RET_INTEGRITY;
 }
 if(ContextRequirements & ASC_REQ_CONNECTION)
 {
 ctxAttrs |= ASC_RET_CONNECTION;
 //or byte ptr [ebp-0Bh],10h
 }
 if(ContextAttributes != NULL)
 *ContextAttributes = ctxAttrs;

 //we need to create the context handle
 //when the function is called for the first time
 if(ContextHandle == NULL)
 {
 context = SPContextCreate(ecx);
 if(context == NULL)
 return SEC_E_INSUFFICIENT_MEMORY;
 }
 else
 context = ContextHandle;

 //omitted...
 SPContextSetCredentials(context,CredHandle);
 //omitted ...
 context->ServerProtocolHandler(context,&in,&out,var);
 return 0;
}

 7

Appendix C: ServerProtocolHandler() function.

#define FIRST_CIPHER_SPEC 0xb

NTSTATUS
ServerProtocolHandler(LSA_SEC_HANDLE context,
 SecBuffer* in,
 SecBuffer* out,
 int var)
{
 char* packet = in->pvBuffer;
 WORD ptype;
 WORD cipher_specs_len;

 if(packet[0] != 0x16)
 {
 memcpy((void*)&type,(packet + 3),2);
 if(ptype >= 0x8001)
 //process packet as PCT 1 ...
 if(ptype < 2)
 return 0x80000003;
 //omitted...
 memcpy((void*)&cipher_spec_len,(packet + 5),2);
 if(cipher_specs_len < 1)
 return 0x80000003;

 if(ptype < 0x301)
 {
 if(ptype < 0x300)
 {
 if(packet[FIRST_CIPHER_SPEC] != 0x86)
 {
 //grab the protocol version

//from this special Cipher Spec
memcpy((void*)&ptype,

 (packet+FIRST_CIPHER_SPEC+1),2);
 if(ptype < 0x8001)
 //process packet as SSL 2 ...
 else
 {
 if(!(context->field_offset8 & 1))
 //process packet as SSL 2
 else
 {
 //process packet as PCT 1
 obj->field_offset4 = 0xfe;
 obj->ProtoHandlerFn =
 Pct1ServerProtocolHandler;
 obj->UnknownFn = 0x7817a535;

 Pct1ServerProtocol
 Handler(obj,in,out,var);

 }

 }
 }

 8

 else
 //process packet as SSL 2 ...
 }
 else
 //process packet as SSL 3 ...
 }
 else
 //process packet as TCL 1 ...

 }
 else
 //omitted...

 return 0;
}

Appendix D: Pct1ServerProtocolHandler() function.

NTSTATUS
Pct1ServerProtocolHandler(obj,SecBuffer* in,
 SecBuffer* out,int var)
{
 char* packet;
 //omitted ...
 switch(obj->field_offset4)
 {
 case 0xffff:
 //...
 break;
 case 0x6:
 //...
 break;
 case 0xfffe:
 //...
 break;
 case 0xfffd:
 //...
 break;
 default:
 packet = in->pvBuffer;
 switch(packet[2]) //switch on message type
 {
 //omitted ...
 default:
 //parse the Client Hello message
 //and fill in some of the response fields
 Ssl2UnpackClientHello(in,&out);

 //process Client Hello
 Pct1SrvHandleUniHello(obj,in,

out->pvBuffer,argx);
 }
 }
 return 0;
}

 9

Appendix E: Pct1SrvHandleUniHello() function.

NTSTATUS
Pct1SrvHandleUniHello(obj,
 SecBuffer* in,
 char* outData,
 int var)
{
 char challengeBuffer[32];
 char* buffer;
 unsigned int max;
 unsigned int idx;
 //omitted...
 max = outData[ChallangeLengthOffset];
 //skip to the challenge data
 //that's already in the output buffer
 buffer = (outData + 0x30);
 memcpy(challengeBuffer,buffer,max);

 //FINAL DESTINATION: THE BUFFER OVERFLOW
 for(idx=0,idx < max,idx++)
 challengeBuffer[idx + max] =
 ~challengeBuffer[idx];

 return 0;
}

NOTE: The current version of the document can be found at: www.unital.com/research/ms_ssl_pct.pdf

