
FyLasso Antivulnerability

William B. Kimball (wk@fylasso.com)

April 2007

Abstract

FyLasso Antivulnerability is a software utility, developed for Windows XP and Windows
Server 2003, which protects from 0-days, worms and malicious hackers. FyLasso uses a peri-
odically updated Attack Vectors Database to search your computer for potential software vul-
nerabilities. Every potential vulnerability found is protected from exploitation using FyLasso’s
Proactive Real-time Defense System (PRDS). The purpose of this paper is to provide a technical
explanation of FyLasso and PRDS.

1

1 What is the problem being solved?

The software running on todays computer systems contain bugs. These software bugs are errors
during programming or design of an application [2]. Some types of bugs, called software vulner-
abilities, are exploited by worms and malicious hackers. Software vulnerabilities allow arbitrary
code execution to occur resulting in the primary reason why computers are insecure. The following
sections explain how FyLasso Antivulnerability (FyLasso) detects potential software vulnerabilities
and prevents arbitrary code execution from occuring thus protecting computers from attack.

2 The Attack Vectors Database

FyLasso organizes software bugs into attack vectors. Each attack vector contains a unique set
of adjacent assembly instructions, consisting of a variety of buffer overruns, buffer underruns and
integer overflows. One of the most commonly attacked bug used to penetrate into computer systems
is the buffer overflow [7, 10]. Listing 1 contains three examples of common buffer overflow attack
vectors.

Listing 1: Example Buffer Overflow Attack Vectors�
004030DC mov ch , byte [eax]
004030DE mov byte [ebx] , ch
004030E0 inc eax
004030E1 inc ebx
004030E2 t e s t ch , ch
004030E4 jnz 004030DC
−−
004012F0 rep movsd
004012F2 mov ecx , eax
004012F4 and ecx , 3
004012F7 rep movsb
−−
00400087 mov dl , byte [eax]
00400089 mov byte [ecx+eax] , d l
0040008C inc eax
0040008D t e s t dl , d l
0040008F jne 00400087
� �

2

2.1 How many attack vectors are there?

The Attack Vectors Database increases monontonically. As techniques emerge to target new soft-
ware bugs, FyLasso adds new attack vectors to protect them. The Limited Edition of FyLasso
Antivulnerability scans for potential vulnerabilities using 300 attack vectors while the Professional
Edition detects and protects using over 1,000. The Professional Edition also has the capability
to update the Attack Vectors Database every day. By default FyLasso - Professional Edition is
configured to automatically update at 3:00 a.m. every Monday morning.

3 Detecting Potential Software Vulnerabilities

FyLasso’s attack vectors are used to scan for potential software vulnerabtilities. Every file containing
code (module) should be scanned to provide the maximum protection for your computer. The most
critical modules are those currently being used by running applications. FyLasso allows you to
automatically send every running-processes modules to its Scheduler. The Scheduler manages the
list of modules ready to be scanned and when to start scanning them. By default the Scheduler is
configured to automatically start scanning at 3:05 a.m. every morning, but also has the capability
to scan the running-processes modules in realtime.

FyLasso creates a seperate file to store the potential vulnerabilities it finds for each module. These
files are saved in FyLasso’s Data folder. The SHA-1 hash of each module is used as the file name to
ensure that the module protected at runtime was the actual module scanned prior to its protection.
If a new application is installed or updated the SHA-1 hash for one or more modules changes and
FyLasso sends those modules back to the Scheduler to be rescanned.

During scanning FyLasso verifies that each module is using the Windows Portable Executable (PE)
file format. If a module is not then it is discarded, otherwise the base address and size of each mod-
ule’s code sections are determined. Each code section is scanned using every attack vector. When
a potential vulnerability is found the offset relative to the base address of the current code section
is saved in the module’s file. The address of the potential vulnerability will be recomputed using
the new base address, by the PRDS, at runtime. Saving the offsets allows for section relocation and
Address-Space Layout Randomization (ASLR) within the address space of the protected process.

4 The Proactive Real-time Defense System

FyLasso’s PRDS redirects every potential vulnerability, using interprocedural control-flow obscur-
ing, to a dynamically allocated memory location. From the signature of the attack vector and the
state of the address space at the time of execution the PRDS determines writable memory ranges
with respect to the potential vulnerability being executed.

FyLasso stops both attacker-defined code and code located in existing modules (return-into-libc
attacks) from being executed by checking if memory outside the writable memory ranges are mod-
ified. This check occurs immediately after the potential vulnerability executes. If a modification is
detected then the user is notified and the process is safely terminated.

3

4.1 Example Buffer Overflow Attack Vector

In the case of a buffer overflow attack vector the memory surrounding the destination buffer is
sanity checked. Before the potential vulnerability is executed, four bytes adjacent to the end of
the destination buffer are saved and a randomly-generated four byte guard overwrites its location.
Immediately after the potential vulenerability executes the guard is checked if it was modified. If
the value of the guard is the same then the original four bytes that were overwritten are restored,
and normal execution continues. If the guard was modified then the user is notified and the process
safely terminates.

Consider a stack-based buffer overflow. If the buffers address is located within the current stack
frame then the closest saved base pointer will be used for the location of the guard. This will
protect the saved base pointer, saved return address, function pointers as function parameters,
longjmp buffers as function parameters and exception handlers from being overwritten. Every
stack frame at a higher memory location than the current stack frame will also be protected. The
saved base pointer in the frame below the buffer will be used in the case of a buffer underrun.

If the destination buffer is located in a heap section then the guard is located at the address following
the block that is allocated for the buffer. Windows XP SP2 added a sanity check on the forward and
backward links when the block is removed from the freelist along with a one byte integrity check.
One way to bypass this mechanism is by manipulating the use of the lookaside list [3, 6]. Since
the sanity check only occurs when the block is freed other function pointers or allocated vtables
can still be overwritten and used to control execution. FyLasso removes the attack windows in
the above scenarios by checking the integrity of the four byte heap-guard immediately after the
potential vulnerability is executed. Listing 2 is an example of a heap buffer overflow.

Listing 2: Example Heap Buffer Overflow�
#inc lude <iostream>
us ing namespace std ;

i n t main (i n t argc , char ∗∗ argv) {

// Al l o ca t e the source and d e s t i n a t i o n b u f f e r s .
char ∗ szSourceBuf f = (char ∗) mal loc (2 0 0) ;
char ∗ szDestBuf f = (char ∗) mal loc (2 0) ;

//Get input from the user .
c in >> szSourceBuf f ;

//Copy the b u f f e r without check ing the s i z e
// o f the d e s t i n a t i o n b u f f e r .
s t r cpy (szDestBuff , s zSourceBuf f) ;

r e turn 0 ;
}
� �

4

If the size of szSourceBuff in Listing 2, including the null byte, is greater than twenty bytes then
a message box with the process id, heap handle, and the buffer’s address is displayed to the user.
Figure 1 shows the notification to the user when an overflow occurs in the example from List-
ing 2. Supplying additional information to the user would potentially break FyLasso’s protection
mechanism. Therefore, a debugger should be used at the time of notification to obtain additional
information.

Figure 1: Heap Overflow Notification

5 Conclusion

FyLasso Antivulnerability is an easy to use, easy to install, next-generation application security
utility. Designed to integrate into existing Layered Defense solutions, FyLasso prevents worms
and malicious hackers from penetrating your computer systems. If you’re looking for an afford-
able way to increase security on your network then start by trying the free Limited Edition from
www.fylasso.com. We thank you for your interest in FyLasso. For further questions or inquiries
please contact support@fylasso.com.

5

References

[1] P. Silberman, R. Johnson, ”A Comparison of Buffer Overflow Prevention Implementations and
Weaknesses” IDEFENSE, August 2004.

[2] Wikipedia: The Free Encyclopedia ”Software Bugs” August 2004.

[3] A. Alexander, ”Defeating Microsoft Windows XP SP2 Heap Protection and DEP Bypass”
Positive Technologies, January 2005.

[4] C. Cowan et al, ”Stackguard: Automatic adaptive detection and prevention of buffer-overflow
attacks, in Proceedings of the 7th USENIX Security Symposium”, San Antonio, TX, January
1998.

[5] G. Hunt, D. Brubacher, ”Detours: Binary Interception of Win32 Functions”, Microsoft Re-
search, Redmond Washington, July 1999.

[6] D. Litchfield, ”Defeating the Stack Based Buffer Overflow Prevention Mechanism of Microsoft
Windows 2003 Server”, Next Generation Security Software, September 2003.

[7] P. FAYOLLE, V. GLAUME, ”A Buffer Overflow Study Attacks and Defenses”, Networks and
Distributed Systems, 2002.

[8] G. Hoglund, G. McGraw, ”Exploiting Software: How to Break Code”, Addison-Wesley, Febru-
ary 2004.

[9] K. Lhee, S. Chapin, ”Buffer Overflow and Format String Overflow Vulnerabilities”, Center for
Systems Assurance, Syracuse University, Syracuse, NY, 2002.

[10] Wikipedia: The Free Encyclopedia ”Buffer Overflow” April 2007.

[11] D. Litchfield, ”Buffer Underruns, DEP, ASLR and improving the Exploitation Prevention
Mechanisms (XPMs) on the Windows platform”, Next Generation Security Software, Septem-
ber 2005.

[12] D. Larochelle, D. Evans, ”Statically Detecting Likely Buffer Overflow Vulnerabilities”, Univer-
sity of Virginia, Department of Computer Science, August 2001.

6

