[<prev] [next>] [day] [month] [year] [list]
Message-ID: <2024041004-CVE-2021-47209-1cf6@gregkh>
Date: Wed, 10 Apr 2024 21:02:02 +0200
From: Greg Kroah-Hartman <gregkh@...uxfoundation.org>
To: linux-cve-announce@...r.kernel.org
Cc: Greg Kroah-Hartman <gregkh@...uxfoundation.org>
Subject: CVE-2021-47209: sched/fair: Prevent dead task groups from regaining cfs_rq's
Description
===========
In the Linux kernel, the following vulnerability has been resolved:
sched/fair: Prevent dead task groups from regaining cfs_rq's
Kevin is reporting crashes which point to a use-after-free of a cfs_rq
in update_blocked_averages(). Initial debugging revealed that we've
live cfs_rq's (on_list=1) in an about to be kfree()'d task group in
free_fair_sched_group(). However, it was unclear how that can happen.
His kernel config happened to lead to a layout of struct sched_entity
that put the 'my_q' member directly into the middle of the object
which makes it incidentally overlap with SLUB's freelist pointer.
That, in combination with SLAB_FREELIST_HARDENED's freelist pointer
mangling, leads to a reliable access violation in form of a #GP which
made the UAF fail fast.
Michal seems to have run into the same issue[1]. He already correctly
diagnosed that commit a7b359fc6a37 ("sched/fair: Correctly insert
cfs_rq's to list on unthrottle") is causing the preconditions for the
UAF to happen by re-adding cfs_rq's also to task groups that have no
more running tasks, i.e. also to dead ones. His analysis, however,
misses the real root cause and it cannot be seen from the crash
backtrace only, as the real offender is tg_unthrottle_up() getting
called via sched_cfs_period_timer() via the timer interrupt at an
inconvenient time.
When unregister_fair_sched_group() unlinks all cfs_rq's from the dying
task group, it doesn't protect itself from getting interrupted. If the
timer interrupt triggers while we iterate over all CPUs or after
unregister_fair_sched_group() has finished but prior to unlinking the
task group, sched_cfs_period_timer() will execute and walk the list of
task groups, trying to unthrottle cfs_rq's, i.e. re-add them to the
dying task group. These will later -- in free_fair_sched_group() -- be
kfree()'ed while still being linked, leading to the fireworks Kevin
and Michal are seeing.
To fix this race, ensure the dying task group gets unlinked first.
However, simply switching the order of unregistering and unlinking the
task group isn't sufficient, as concurrent RCU walkers might still see
it, as can be seen below:
CPU1: CPU2:
: timer IRQ:
: do_sched_cfs_period_timer():
: :
: distribute_cfs_runtime():
: rcu_read_lock();
: :
: unthrottle_cfs_rq():
sched_offline_group(): :
: walk_tg_tree_from(…,tg_unthrottle_up,…):
list_del_rcu(&tg->list); :
(1) : list_for_each_entry_rcu(child, &parent->children, siblings)
: :
(2) list_del_rcu(&tg->siblings); :
: tg_unthrottle_up():
unregister_fair_sched_group(): struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
: :
list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); :
: :
: if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
(3) : list_add_leaf_cfs_rq(cfs_rq);
: :
: :
: :
: :
: :
(4) : rcu_read_unlock();
CPU 2 walks the task group list in parallel to sched_offline_group(),
specifically, it'll read the soon to be unlinked task group entry at
(1). Unlinking it on CPU 1 at (2) therefore won't prevent CPU 2 from
still passing it on to tg_unthrottle_up(). CPU 1 now tries to unlink
all cfs_rq's via list_del_leaf_cfs_rq() in
unregister_fair_sched_group(). Meanwhile CPU 2 will re-add some of
these at (3), which is the cause of the UAF later on.
To prevent this additional race from happening, we need to wait until
walk_tg_tree_from() has finished traversing the task groups, i.e.
after the RCU read critical section ends in (4). Afterwards we're safe
to call unregister_fair_sched_group(), as each new walk won't see the
dying task group any more.
On top of that, we need to wait yet another RCU grace period after
unregister_fair_sched_group() to ensure print_cfs_stats(), which might
run concurrently, always sees valid objects, i.e. not already free'd
ones.
This patch survives Michal's reproducer[2] for 8h+ now, which used to
trigger within minutes before.
[1] https://lore.kernel.org/lkml/20211011172236.11223-1-mkoutny@suse.com/
[2] https://lore.kernel.org/lkml/20211102160228.GA57072@blackbody.suse.cz/
[peterz: shuffle code around a bit]
The Linux kernel CVE team has assigned CVE-2021-47209 to this issue.
Affected and fixed versions
===========================
Issue introduced in 5.13 with commit a7b359fc6a37 and fixed in 5.15.5 with commit 512e21c150c1
Issue introduced in 5.13 with commit a7b359fc6a37 and fixed in 5.16 with commit b027789e5e50
Please see https://www.kernel.org for a full list of currently supported
kernel versions by the kernel community.
Unaffected versions might change over time as fixes are backported to
older supported kernel versions. The official CVE entry at
https://cve.org/CVERecord/?id=CVE-2021-47209
will be updated if fixes are backported, please check that for the most
up to date information about this issue.
Affected files
==============
The file(s) affected by this issue are:
kernel/sched/autogroup.c
kernel/sched/core.c
kernel/sched/fair.c
kernel/sched/rt.c
kernel/sched/sched.h
Mitigation
==========
The Linux kernel CVE team recommends that you update to the latest
stable kernel version for this, and many other bugfixes. Individual
changes are never tested alone, but rather are part of a larger kernel
release. Cherry-picking individual commits is not recommended or
supported by the Linux kernel community at all. If however, updating to
the latest release is impossible, the individual changes to resolve this
issue can be found at these commits:
https://git.kernel.org/stable/c/512e21c150c1c3ee298852660f3a796e267e62ec
https://git.kernel.org/stable/c/b027789e5e50494c2325cc70c8642e7fd6059479
Powered by blists - more mailing lists