lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [day] [month] [year] [list]
Message-ID: <2024102340-CVE-2024-50066-7803@gregkh>
Date: Wed, 23 Oct 2024 07:20:41 +0200
From: Greg Kroah-Hartman <gregkh@...uxfoundation.org>
To: linux-cve-announce@...r.kernel.org
Cc: Greg Kroah-Hartman <gregkh@...uxfoundation.org>
Subject: CVE-2024-50066: mm/mremap: fix move_normal_pmd/retract_page_tables race

Description
===========

In the Linux kernel, the following vulnerability has been resolved:

mm/mremap: fix move_normal_pmd/retract_page_tables race

In mremap(), move_page_tables() looks at the type of the PMD entry and the
specified address range to figure out by which method the next chunk of
page table entries should be moved.

At that point, the mmap_lock is held in write mode, but no rmap locks are
held yet.  For PMD entries that point to page tables and are fully covered
by the source address range, move_pgt_entry(NORMAL_PMD, ...) is called,
which first takes rmap locks, then does move_normal_pmd(). 
move_normal_pmd() takes the necessary page table locks at source and
destination, then moves an entire page table from the source to the
destination.

The problem is: The rmap locks, which protect against concurrent page
table removal by retract_page_tables() in the THP code, are only taken
after the PMD entry has been read and it has been decided how to move it. 
So we can race as follows (with two processes that have mappings of the
same tmpfs file that is stored on a tmpfs mount with huge=advise); note
that process A accesses page tables through the MM while process B does it
through the file rmap:

process A                      process B
=========                      =========
mremap
  mremap_to
    move_vma
      move_page_tables
        get_old_pmd
        alloc_new_pmd
                      *** PREEMPT ***
                               madvise(MADV_COLLAPSE)
                                 do_madvise
                                   madvise_walk_vmas
                                     madvise_vma_behavior
                                       madvise_collapse
                                         hpage_collapse_scan_file
                                           collapse_file
                                             retract_page_tables
                                               i_mmap_lock_read(mapping)
                                               pmdp_collapse_flush
                                               i_mmap_unlock_read(mapping)
        move_pgt_entry(NORMAL_PMD, ...)
          take_rmap_locks
          move_normal_pmd
          drop_rmap_locks

When this happens, move_normal_pmd() can end up creating bogus PMD entries
in the line `pmd_populate(mm, new_pmd, pmd_pgtable(pmd))`.  The effect
depends on arch-specific and machine-specific details; on x86, you can end
up with physical page 0 mapped as a page table, which is likely
exploitable for user->kernel privilege escalation.

Fix the race by letting process B recheck that the PMD still points to a
page table after the rmap locks have been taken.  Otherwise, we bail and
let the caller fall back to the PTE-level copying path, which will then
bail immediately at the pmd_none() check.

Bug reachability: Reaching this bug requires that you can create
shmem/file THP mappings - anonymous THP uses different code that doesn't
zap stuff under rmap locks.  File THP is gated on an experimental config
flag (CONFIG_READ_ONLY_THP_FOR_FS), so on normal distro kernels you need
shmem THP to hit this bug.  As far as I know, getting shmem THP normally
requires that you can mount your own tmpfs with the right mount flags,
which would require creating your own user+mount namespace; though I don't
know if some distros maybe enable shmem THP by default or something like
that.

Bug impact: This issue can likely be used for user->kernel privilege
escalation when it is reachable.

The Linux kernel CVE team has assigned CVE-2024-50066 to this issue.


Affected and fixed versions
===========================

	Issue introduced in 6.6 with commit 1d65b771bc08 and fixed in 6.6.58 with commit 17396e32f975
	Issue introduced in 6.6 with commit 1d65b771bc08 and fixed in 6.11.5 with commit 1552ce9ce8af
	Issue introduced in 6.6 with commit 1d65b771bc08 and fixed in 6.12-rc4 with commit 6fa1066fc5d0

Please see https://www.kernel.org for a full list of currently supported
kernel versions by the kernel community.

Unaffected versions might change over time as fixes are backported to
older supported kernel versions.  The official CVE entry at
	https://cve.org/CVERecord/?id=CVE-2024-50066
will be updated if fixes are backported, please check that for the most
up to date information about this issue.


Affected files
==============

The file(s) affected by this issue are:
	mm/mremap.c


Mitigation
==========

The Linux kernel CVE team recommends that you update to the latest
stable kernel version for this, and many other bugfixes.  Individual
changes are never tested alone, but rather are part of a larger kernel
release.  Cherry-picking individual commits is not recommended or
supported by the Linux kernel community at all.  If however, updating to
the latest release is impossible, the individual changes to resolve this
issue can be found at these commits:
	https://git.kernel.org/stable/c/17396e32f975130b3e6251f024c8807d192e4c3e
	https://git.kernel.org/stable/c/1552ce9ce8af47c0fe911682e5e1855e25851ca9
	https://git.kernel.org/stable/c/6fa1066fc5d00cb9f1b0e83b7ff6ef98d26ba2aa

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ