[<prev] [next>] [day] [month] [year] [list]
Message-ID: <2025022644-CVE-2025-21710-5e28@gregkh>
Date: Wed, 26 Feb 2025 18:06:05 -0800
From: Greg Kroah-Hartman <gregkh@...uxfoundation.org>
To: linux-cve-announce@...r.kernel.org
Cc: Greg Kroah-Hartman <gregkh@...uxfoundation.org>
Subject: CVE-2025-21710: tcp: correct handling of extreme memory squeeze
Description
===========
In the Linux kernel, the following vulnerability has been resolved:
tcp: correct handling of extreme memory squeeze
Testing with iperf3 using the "pasta" protocol splicer has revealed
a problem in the way tcp handles window advertising in extreme memory
squeeze situations.
Under memory pressure, a socket endpoint may temporarily advertise
a zero-sized window, but this is not stored as part of the socket data.
The reasoning behind this is that it is considered a temporary setting
which shouldn't influence any further calculations.
However, if we happen to stall at an unfortunate value of the current
window size, the algorithm selecting a new value will consistently fail
to advertise a non-zero window once we have freed up enough memory.
This means that this side's notion of the current window size is
different from the one last advertised to the peer, causing the latter
to not send any data to resolve the sitution.
The problem occurs on the iperf3 server side, and the socket in question
is a completely regular socket with the default settings for the
fedora40 kernel. We do not use SO_PEEK or SO_RCVBUF on the socket.
The following excerpt of a logging session, with own comments added,
shows more in detail what is happening:
// tcp_v4_rcv(->)
// tcp_rcv_established(->)
[5201<->39222]: ==== Activating log @ net/ipv4/tcp_input.c/tcp_data_queue()/5257 ====
[5201<->39222]: tcp_data_queue(->)
[5201<->39222]: DROPPING skb [265600160..265665640], reason: SKB_DROP_REASON_PROTO_MEM
[rcv_nxt 265600160, rcv_wnd 262144, snt_ack 265469200, win_now 131184]
[copied_seq 259909392->260034360 (124968), unread 5565800, qlen 85, ofoq 0]
[OFO queue: gap: 65480, len: 0]
[5201<->39222]: tcp_data_queue(<-)
[5201<->39222]: __tcp_transmit_skb(->)
[tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160]
[5201<->39222]: tcp_select_window(->)
[5201<->39222]: (inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM) ? --> TRUE
[tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160]
returning 0
[5201<->39222]: tcp_select_window(<-)
[5201<->39222]: ADVERTISING WIN 0, ACK_SEQ: 265600160
[5201<->39222]: [__tcp_transmit_skb(<-)
[5201<->39222]: tcp_rcv_established(<-)
[5201<->39222]: tcp_v4_rcv(<-)
// Receive queue is at 85 buffers and we are out of memory.
// We drop the incoming buffer, although it is in sequence, and decide
// to send an advertisement with a window of zero.
// We don't update tp->rcv_wnd and tp->rcv_wup accordingly, which means
// we unconditionally shrink the window.
[5201<->39222]: tcp_recvmsg_locked(->)
[5201<->39222]: __tcp_cleanup_rbuf(->) tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160
[5201<->39222]: [new_win = 0, win_now = 131184, 2 * win_now = 262368]
[5201<->39222]: [new_win >= (2 * win_now) ? --> time_to_ack = 0]
[5201<->39222]: NOT calling tcp_send_ack()
[tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160]
[5201<->39222]: __tcp_cleanup_rbuf(<-)
[rcv_nxt 265600160, rcv_wnd 262144, snt_ack 265469200, win_now 131184]
[copied_seq 260040464->260040464 (0), unread 5559696, qlen 85, ofoq 0]
returning 6104 bytes
[5201<->39222]: tcp_recvmsg_locked(<-)
// After each read, the algorithm for calculating the new receive
// window in __tcp_cleanup_rbuf() finds it is too small to advertise
// or to update tp->rcv_wnd.
// Meanwhile, the peer thinks the window is zero, and will not send
// any more data to trigger an update from the interrupt mode side.
[5201<->39222]: tcp_recvmsg_locked(->)
[5201<->39222]: __tcp_cleanup_rbuf(->) tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160
[5201<->39222]: [new_win = 262144, win_now = 131184, 2 * win_now = 262368]
[5201<->39222]: [new_win >= (2 * win_now) ? --> time_to_ack = 0]
[5201<->39222]: NOT calling tcp_send_ack()
[tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160]
[5201<->39222]: __tcp_cleanup_rbuf(<-)
[rcv_nxt 265600160, rcv_wnd 262144, snt_ack 265469200, win_now 131184]
[copied_seq 260099840->260171536 (71696), unread 5428624, qlen 83, ofoq 0]
returning 131072 bytes
[5201<->39222]: tcp_recvmsg_locked(<-)
// The above pattern repeats again and again, since nothing changes
// between the reads.
[...]
[5201<->39222]: tcp_recvmsg_locked(->)
[5201<->39222]: __tcp_cleanup_rbuf(->) tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160
[5201<->39222]: [new_win = 262144, win_now = 131184, 2 * win_now = 262368]
[5201<->39222]: [new_win >= (2 * win_now) ? --> time_to_ack = 0]
[5201<->39222]: NOT calling tcp_send_ack()
[tp->rcv_wup: 265469200, tp->rcv_wnd: 262144, tp->rcv_nxt 265600160]
[5201<->39222]: __tcp_cleanup_rbuf(<-)
[rcv_nxt 265600160, rcv_wnd 262144, snt_ack 265469200, win_now 131184]
[copied_seq 265600160->265600160 (0), unread 0, qlen 0, ofoq 0]
returning 54672 bytes
[5201<->39222]: tcp_recvmsg_locked(<-)
// The receive queue is empty, but no new advertisement has been sent.
// The peer still thinks the receive window is zero, and sends nothing.
// We have ended up in a deadlock situation.
Note that well behaved endpoints will send win0 probes, so the problem
will not occur.
Furthermore, we have observed that in these situations this side may
send out an updated 'th->ack_seq´ which is not stored in tp->rcv_wup
as it should be. Backing ack_seq seems to be harmless, but is of
course still wrong from a protocol viewpoint.
We fix this by updating the socket state correctly when a packet has
been dropped because of memory exhaustion and we have to advertize
a zero window.
Further testing shows that the connection recovers neatly from the
squeeze situation, and traffic can continue indefinitely.
The Linux kernel CVE team has assigned CVE-2025-21710 to this issue.
Affected and fixed versions
===========================
Issue introduced in 6.6 with commit e2142825c120d4317abf7160a0fc34b3de532586 and fixed in 6.6.76 with commit b01e7ceb35dcb7ffad413da657b78c3340a09039
Issue introduced in 6.6 with commit e2142825c120d4317abf7160a0fc34b3de532586 and fixed in 6.12.13 with commit 1dd823a46e25ffde1492c391934f69a9e5eb574f
Issue introduced in 6.6 with commit e2142825c120d4317abf7160a0fc34b3de532586 and fixed in 6.13.2 with commit b4055e2fe96f4ef101d8af0feb056d78d77514ff
Issue introduced in 6.6 with commit e2142825c120d4317abf7160a0fc34b3de532586 and fixed in 6.14-rc1 with commit 8c670bdfa58e48abad1d5b6ca1ee843ca91f7303
Please see https://www.kernel.org for a full list of currently supported
kernel versions by the kernel community.
Unaffected versions might change over time as fixes are backported to
older supported kernel versions. The official CVE entry at
https://cve.org/CVERecord/?id=CVE-2025-21710
will be updated if fixes are backported, please check that for the most
up to date information about this issue.
Affected files
==============
The file(s) affected by this issue are:
net/ipv4/tcp_output.c
Mitigation
==========
The Linux kernel CVE team recommends that you update to the latest
stable kernel version for this, and many other bugfixes. Individual
changes are never tested alone, but rather are part of a larger kernel
release. Cherry-picking individual commits is not recommended or
supported by the Linux kernel community at all. If however, updating to
the latest release is impossible, the individual changes to resolve this
issue can be found at these commits:
https://git.kernel.org/stable/c/b01e7ceb35dcb7ffad413da657b78c3340a09039
https://git.kernel.org/stable/c/1dd823a46e25ffde1492c391934f69a9e5eb574f
https://git.kernel.org/stable/c/b4055e2fe96f4ef101d8af0feb056d78d77514ff
https://git.kernel.org/stable/c/8c670bdfa58e48abad1d5b6ca1ee843ca91f7303
Powered by blists - more mailing lists