[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <1D86B3CF-0AA0-4A55-9FCD-49D08DE2E6D7@whamcloud.com>
Date: Thu, 11 Feb 2021 07:53:14 +0000
From: Alex Zhuravlev <azhuravlev@...mcloud.com>
To: Alexey Lyashkov <alexey.lyashkov@...il.com>
CC: Harshad Shirwadkar <harshadshirwadkar@...il.com>,
linux-ext4 <linux-ext4@...r.kernel.org>,
"tytso@....edu" <tytso@....edu>,
"artem.blagodarenko@...il.com" <artem.blagodarenko@...il.com>,
Shuichi Ihara <sihara@....com>,
"adilger@...ger.ca" <adilger@...ger.ca>
Subject: Re: [PATCH v2 4/5] ext4: improve cr 0 / cr 1 group scanning
There is a mechanism to help mballoc to work better with RAID devices - you can specify stripe size as a mount option,
Then mballoc will be trying to normalise allocation requests to stripe size and then, having stripe size is not 2^N size,
mballoc will skip rc=0 and cr=1 in some cases.
Thanks, Alex
> On 11 Feb 2021, at 10:43, Alexey Lyashkov <alexey.lyashkov@...il.com> wrote:
>
> Hi Harshad,
>
> I glad you look into this complex code. I have one note about groups scanning a specially with raid devices and cr0 loop.
> Once we have enough free space, cr 0 loop can found an unaligned for the stripe fragment.
> in case raid devices, cr1 don’t produce an average size check - just find an aligned chunk.
> So for raid devices CR 0 is useless, and CR1 don’t provide a good results.
>
> Can you look to this problem also ?
>
> Alex
>
>> 9 февр. 2021 г., в 23:28, Harshad Shirwadkar <harshadshirwadkar@...il.com> написал(а):
>>
>> Instead of traversing through groups linearly, scan groups in specific
>> orders at cr 0 and cr 1. At cr 0, we want to find groups that have the
>> largest free order >= the order of the request. So, with this patch,
>> we maintain lists for each possible order and insert each group into a
>> list based on the largest free order in its buddy bitmap. During cr 0
>> allocation, we traverse these lists in the increasing order of largest
>> free orders. This allows us to find a group with the best available cr
>> 0 match in constant time. If nothing can be found, we fallback to cr 1
>> immediately.
>>
>> At CR1, the story is slightly different. We want to traverse in the
>> order of increasing average fragment size. For CR1, we maintain a rb
>> tree of groupinfos which is sorted by average fragment size. Instead
>> of traversing linearly, at CR1, we traverse in the order of increasing
>> average fragment size, starting at the most optimal group. This brings
>> down cr 1 search complexity to log(num groups).
>>
>> For cr >= 2, we just perform the linear search as before. Also, in
>> case of lock contention, we intermittently fallback to linear search
>> even in CR 0 and CR 1 cases. This allows us to proceed during the
>> allocation path even in case of high contention.
>>
>> There is an opportunity to do optimization at CR2 too. That's because
>> at CR2 we only consider groups where bb_free counter (number of free
>> blocks) is greater than the request extent size. That's left as future
>> work.
>>
>> All the changes introduced in this patch are protected under a new
>> mount option "mb_optimize_scan".
>>
>> Signed-off-by: Harshad Shirwadkar <harshadshirwadkar@...il.com>
>> ---
>> fs/ext4/ext4.h | 13 +-
>> fs/ext4/mballoc.c | 316 ++++++++++++++++++++++++++++++++++++++++++++--
>> fs/ext4/mballoc.h | 1 +
>> fs/ext4/super.c | 6 +-
>> 4 files changed, 322 insertions(+), 14 deletions(-)
>>
>> diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h
>> index 317b43420ecf..0601c997c87f 100644
>> --- a/fs/ext4/ext4.h
>> +++ b/fs/ext4/ext4.h
>> @@ -162,6 +162,8 @@ enum SHIFT_DIRECTION {
>> #define EXT4_MB_USE_RESERVED 0x2000
>> /* Do strict check for free blocks while retrying block allocation */
>> #define EXT4_MB_STRICT_CHECK 0x4000
>> +/* Avg fragment size rb tree lookup succeeded at least once for cr = 1 */
>> +#define EXT4_MB_CR1_OPTIMIZED 0x8000
>>
>> struct ext4_allocation_request {
>> /* target inode for block we're allocating */
>> @@ -1247,7 +1249,9 @@ struct ext4_inode_info {
>> #define EXT4_MOUNT2_JOURNAL_FAST_COMMIT 0x00000010 /* Journal fast commit */
>> #define EXT4_MOUNT2_DAX_NEVER 0x00000020 /* Do not allow Direct Access */
>> #define EXT4_MOUNT2_DAX_INODE 0x00000040 /* For printing options only */
>> -
>> +#define EXT4_MOUNT2_MB_OPTIMIZE_SCAN 0x00000080 /* Optimize group
>> + * scanning in mballoc
>> + */
>>
>> #define clear_opt(sb, opt) EXT4_SB(sb)->s_mount_opt &= \
>> ~EXT4_MOUNT_##opt
>> @@ -1527,6 +1531,10 @@ struct ext4_sb_info {
>> unsigned int s_mb_free_pending;
>> struct list_head s_freed_data_list; /* List of blocks to be freed
>> after commit completed */
>> + struct rb_root s_mb_avg_fragment_size_root;
>> + rwlock_t s_mb_rb_lock;
>> + struct list_head *s_mb_largest_free_orders;
>> + rwlock_t *s_mb_largest_free_orders_locks;
>>
>> /* tunables */
>> unsigned long s_stripe;
>> @@ -3308,11 +3316,14 @@ struct ext4_group_info {
>> ext4_grpblk_t bb_free; /* total free blocks */
>> ext4_grpblk_t bb_fragments; /* nr of freespace fragments */
>> ext4_grpblk_t bb_largest_free_order;/* order of largest frag in BG */
>> + ext4_group_t bb_group; /* Group number */
>> struct list_head bb_prealloc_list;
>> #ifdef DOUBLE_CHECK
>> void *bb_bitmap;
>> #endif
>> struct rw_semaphore alloc_sem;
>> + struct rb_node bb_avg_fragment_size_rb;
>> + struct list_head bb_largest_free_order_node;
>> ext4_grpblk_t bb_counters[]; /* Nr of free power-of-two-block
>> * regions, index is order.
>> * bb_counters[3] = 5 means
>> diff --git a/fs/ext4/mballoc.c b/fs/ext4/mballoc.c
>> index b7f25120547d..63562f5f42f1 100644
>> --- a/fs/ext4/mballoc.c
>> +++ b/fs/ext4/mballoc.c
>> @@ -147,7 +147,12 @@
>> * the group specified as the goal value in allocation context via
>> * ac_g_ex. Each group is first checked based on the criteria whether it
>> * can be used for allocation. ext4_mb_good_group explains how the groups are
>> - * checked.
>> + * checked. If "mb_optimize_scan" mount option is set, instead of traversing
>> + * groups linearly starting at the goal, the groups are traversed in an optimal
>> + * order according to each cr level, so as to minimize considering groups which
>> + * would anyway be rejected by ext4_mb_good_group. This has a side effect
>> + * though - subsequent allocations may not be close to each other. And so,
>> + * the underlying device may get filled up in a non-linear fashion.
>> *
>> * Both the prealloc space are getting populated as above. So for the first
>> * request we will hit the buddy cache which will result in this prealloc
>> @@ -299,6 +304,8 @@
>> * - bitlock on a group (group)
>> * - object (inode/locality) (object)
>> * - per-pa lock (pa)
>> + * - cr0 lists lock (cr0)
>> + * - cr1 tree lock (cr1)
>> *
>> * Paths:
>> * - new pa
>> @@ -328,6 +335,9 @@
>> * group
>> * object
>> *
>> + * - allocation path (ext4_mb_regular_allocator)
>> + * group
>> + * cr0/cr1
>> */
>> static struct kmem_cache *ext4_pspace_cachep;
>> static struct kmem_cache *ext4_ac_cachep;
>> @@ -351,6 +361,9 @@ static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
>> ext4_group_t group);
>> static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
>>
>> +static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
>> + ext4_group_t group, int cr);
>> +
>> /*
>> * The algorithm using this percpu seq counter goes below:
>> * 1. We sample the percpu discard_pa_seq counter before trying for block
>> @@ -744,6 +757,243 @@ static void ext4_mb_mark_free_simple(struct super_block *sb,
>> }
>> }
>>
>> +static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new,
>> + int (*cmp)(struct rb_node *, struct rb_node *))
>> +{
>> + struct rb_node **iter = &root->rb_node, *parent = NULL;
>> +
>> + while (*iter) {
>> + parent = *iter;
>> + if (cmp(new, *iter))
>> + iter = &((*iter)->rb_left);
>> + else
>> + iter = &((*iter)->rb_right);
>> + }
>> +
>> + rb_link_node(new, parent, iter);
>> + rb_insert_color(new, root);
>> +}
>> +
>> +static int
>> +ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2)
>> +{
>> + struct ext4_group_info *grp1 = rb_entry(rb1,
>> + struct ext4_group_info,
>> + bb_avg_fragment_size_rb);
>> + struct ext4_group_info *grp2 = rb_entry(rb2,
>> + struct ext4_group_info,
>> + bb_avg_fragment_size_rb);
>> + int num_frags_1, num_frags_2;
>> +
>> + num_frags_1 = grp1->bb_fragments ?
>> + grp1->bb_free / grp1->bb_fragments : 0;
>> + num_frags_2 = grp2->bb_fragments ?
>> + grp2->bb_free / grp2->bb_fragments : 0;
>> +
>> + return (num_frags_1 < num_frags_2);
>> +}
>> +
>> +/*
>> + * Reinsert grpinfo into the avg_fragment_size tree with new average
>> + * fragment size.
>> + */
>> +static void
>> +mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
>> +{
>> + struct ext4_sb_info *sbi = EXT4_SB(sb);
>> +
>> + if (!test_opt2(sb, MB_OPTIMIZE_SCAN))
>> + return;
>> +
>> + write_lock(&sbi->s_mb_rb_lock);
>> + if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) {
>> + rb_erase(&grp->bb_avg_fragment_size_rb,
>> + &sbi->s_mb_avg_fragment_size_root);
>> + RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb);
>> + }
>> +
>> + ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root,
>> + &grp->bb_avg_fragment_size_rb,
>> + ext4_mb_avg_fragment_size_cmp);
>> + write_unlock(&sbi->s_mb_rb_lock);
>> +}
>> +
>> +/*
>> + * Choose next group by traversing largest_free_order lists. Return 0 if next
>> + * group was selected optimally. Return 1 if next group was not selected
>> + * optimally. Updates *new_cr if cr level needs an update.
>> + */
>> +static int ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
>> + int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
>> +{
>> + struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
>> + struct ext4_group_info *iter, *grp;
>> + int i;
>> +
>> + if (ac->ac_status == AC_STATUS_FOUND)
>> + return 1;
>> +
>> + grp = NULL;
>> + for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
>> + if (list_empty(&sbi->s_mb_largest_free_orders[i]))
>> + continue;
>> + read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
>> + if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
>> + read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
>> + continue;
>> + }
>> + grp = NULL;
>> + list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
>> + bb_largest_free_order_node) {
>> + /*
>> + * Perform this check without a lock, once we lock
>> + * the group, we'll perform this check again.
>> + */
>> + if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) {
>> + grp = iter;
>> + break;
>> + }
>> + }
>> + read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
>> + if (grp)
>> + break;
>> + }
>> +
>> + if (!grp) {
>> + /* Increment cr and search again */
>> + *new_cr = 1;
>> + } else {
>> + *group = grp->bb_group;
>> + ac->ac_last_optimal_group = *group;
>> + }
>> + return 0;
>> +}
>> +
>> +/*
>> + * Choose next group by traversing average fragment size tree. Return 0 if next
>> + * group was selected optimally. Return 1 if next group could not selected
>> + * optimally (due to lock contention). Updates *new_cr if cr lvel needs an
>> + * update.
>> + */
>> +static int ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
>> + int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
>> +{
>> + struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
>> + int avg_fragment_size, best_so_far;
>> + struct rb_node *node, *found;
>> + struct ext4_group_info *grp;
>> +
>> + /*
>> + * If there is contention on the lock, instead of waiting for the lock
>> + * to become available, just continue searching lineraly. We'll resume
>> + * our rb tree search later starting at ac->ac_last_optimal_group.
>> + */
>> + if (!read_trylock(&sbi->s_mb_rb_lock))
>> + return 1;
>> +
>> + if (ac->ac_flags & EXT4_MB_CR1_OPTIMIZED) {
>> + /* We have found something at CR 1 in the past */
>> + grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group);
>> + for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL;
>> + found = rb_next(found)) {
>> + grp = rb_entry(found, struct ext4_group_info,
>> + bb_avg_fragment_size_rb);
>> + /*
>> + * Perform this check without locking, we'll lock later
>> + * to confirm.
>> + */
>> + if (likely(ext4_mb_good_group(ac, grp->bb_group, 1)))
>> + break;
>> + }
>> +
>> + goto done;
>> + }
>> +
>> + node = sbi->s_mb_avg_fragment_size_root.rb_node;
>> + best_so_far = 0;
>> + found = NULL;
>> +
>> + while (node) {
>> + grp = rb_entry(node, struct ext4_group_info,
>> + bb_avg_fragment_size_rb);
>> + /*
>> + * Perform this check without locking, we'll lock later to confirm.
>> + */
>> + if (ext4_mb_good_group(ac, grp->bb_group, 1)) {
>> + avg_fragment_size = grp->bb_fragments ?
>> + grp->bb_free / grp->bb_fragments : 0;
>> + if (!best_so_far || avg_fragment_size < best_so_far) {
>> + best_so_far = avg_fragment_size;
>> + found = node;
>> + }
>> + }
>> + if (avg_fragment_size > ac->ac_g_ex.fe_len)
>> + node = node->rb_right;
>> + else
>> + node = node->rb_left;
>> + }
>> +
>> +done:
>> + if (found) {
>> + grp = rb_entry(found, struct ext4_group_info,
>> + bb_avg_fragment_size_rb);
>> + *group = grp->bb_group;
>> + ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
>> + } else {
>> + *new_cr = 2;
>> + }
>> +
>> + read_unlock(&sbi->s_mb_rb_lock);
>> + ac->ac_last_optimal_group = *group;
>> + return 0;
>> +}
>> +
>> +/*
>> + * ext4_mb_choose_next_group: choose next group for allocation.
>> + *
>> + * @ac Allocation Context
>> + * @new_cr This is an output parameter. If the there is no good group available
>> + * at current CR level, this field is updated to indicate the new cr
>> + * level that should be used.
>> + * @group This is an input / output parameter. As an input it indicates the last
>> + * group used for allocation. As output, this field indicates the
>> + * next group that should be used.
>> + * @ngroups Total number of groups
>> + */
>> +static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
>> + int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
>> +{
>> + int ret;
>> +
>> + *new_cr = ac->ac_criteria;
>> +
>> + if (!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN) ||
>> + *new_cr >= 2 ||
>> + !ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
>> + goto inc_and_return;
>> +
>> + if (*new_cr == 0) {
>> + ret = ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
>> + if (ret)
>> + goto inc_and_return;
>> + }
>> + if (*new_cr == 1) {
>> + ret = ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
>> + if (ret)
>> + goto inc_and_return;
>> + }
>> + return;
>> +
>> +inc_and_return:
>> + /*
>> + * Artificially restricted ngroups for non-extent
>> + * files makes group > ngroups possible on first loop.
>> + */
>> + *group = *group + 1;
>> + if (*group >= ngroups)
>> + *group = 0;
>> +}
>> +
>> /*
>> * Cache the order of the largest free extent we have available in this block
>> * group.
>> @@ -751,18 +1001,32 @@ static void ext4_mb_mark_free_simple(struct super_block *sb,
>> static void
>> mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
>> {
>> + struct ext4_sb_info *sbi = EXT4_SB(sb);
>> int i;
>> - int bits;
>>
>> + if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) {
>> + write_lock(&sbi->s_mb_largest_free_orders_locks[
>> + grp->bb_largest_free_order]);
>> + list_del_init(&grp->bb_largest_free_order_node);
>> + write_unlock(&sbi->s_mb_largest_free_orders_locks[
>> + grp->bb_largest_free_order]);
>> + }
>> grp->bb_largest_free_order = -1; /* uninit */
>>
>> - bits = MB_NUM_ORDERS(sb) - 1;
>> - for (i = bits; i >= 0; i--) {
>> + for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) {
>> if (grp->bb_counters[i] > 0) {
>> grp->bb_largest_free_order = i;
>> break;
>> }
>> }
>> + if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) {
>> + write_lock(&sbi->s_mb_largest_free_orders_locks[
>> + grp->bb_largest_free_order]);
>> + list_add_tail(&grp->bb_largest_free_order_node,
>> + &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
>> + write_unlock(&sbi->s_mb_largest_free_orders_locks[
>> + grp->bb_largest_free_order]);
>> + }
>> }
>>
>> static noinline_for_stack
>> @@ -818,6 +1082,7 @@ void ext4_mb_generate_buddy(struct super_block *sb,
>> period = get_cycles() - period;
>> atomic_inc(&sbi->s_mb_buddies_generated);
>> atomic64_add(period, &sbi->s_mb_generation_time);
>> + mb_update_avg_fragment_size(sb, grp);
>> }
>>
>> /* The buddy information is attached the buddy cache inode
>> @@ -1517,6 +1782,7 @@ static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
>>
>> done:
>> mb_set_largest_free_order(sb, e4b->bd_info);
>> + mb_update_avg_fragment_size(sb, e4b->bd_info);
>> mb_check_buddy(e4b);
>> }
>>
>> @@ -1653,6 +1919,7 @@ static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
>> }
>> mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
>>
>> + mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
>> ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
>> mb_check_buddy(e4b);
>>
>> @@ -2346,17 +2613,20 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
>> * from the goal value specified
>> */
>> group = ac->ac_g_ex.fe_group;
>> + ac->ac_last_optimal_group = group;
>> prefetch_grp = group;
>>
>> - for (i = 0; i < ngroups; group++, i++) {
>> - int ret = 0;
>> + for (i = 0; i < ngroups; i++) {
>> + int ret = 0, new_cr;
>> +
>> cond_resched();
>> - /*
>> - * Artificially restricted ngroups for non-extent
>> - * files makes group > ngroups possible on first loop.
>> - */
>> - if (group >= ngroups)
>> - group = 0;
>> +
>> + ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups);
>> +
>> + if (new_cr != cr) {
>> + cr = new_cr;
>> + goto repeat;
>> + }
>>
>> /*
>> * Batch reads of the block allocation bitmaps
>> @@ -2696,7 +2966,10 @@ int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
>> INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
>> init_rwsem(&meta_group_info[i]->alloc_sem);
>> meta_group_info[i]->bb_free_root = RB_ROOT;
>> + INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
>> + RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb);
>> meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
>> + meta_group_info[i]->bb_group = group;
>>
>> mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
>> return 0;
>> @@ -2886,6 +3159,22 @@ int ext4_mb_init(struct super_block *sb)
>> i++;
>> } while (i < MB_NUM_ORDERS(sb));
>>
>> + sbi->s_mb_avg_fragment_size_root = RB_ROOT;
>> + sbi->s_mb_largest_free_orders =
>> + kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
>> + GFP_KERNEL);
>> + if (!sbi->s_mb_largest_free_orders)
>> + goto out;
>> + sbi->s_mb_largest_free_orders_locks =
>> + kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
>> + GFP_KERNEL);
>> + if (!sbi->s_mb_largest_free_orders_locks)
>> + goto out;
>> + for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
>> + INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
>> + rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
>> + }
>> + rwlock_init(&sbi->s_mb_rb_lock);
>>
>> spin_lock_init(&sbi->s_md_lock);
>> sbi->s_mb_free_pending = 0;
>> @@ -2949,6 +3238,8 @@ int ext4_mb_init(struct super_block *sb)
>> free_percpu(sbi->s_locality_groups);
>> sbi->s_locality_groups = NULL;
>> out:
>> + kfree(sbi->s_mb_largest_free_orders);
>> + kfree(sbi->s_mb_largest_free_orders_locks);
>> kfree(sbi->s_mb_offsets);
>> sbi->s_mb_offsets = NULL;
>> kfree(sbi->s_mb_maxs);
>> @@ -3005,6 +3296,7 @@ int ext4_mb_release(struct super_block *sb)
>> kvfree(group_info);
>> rcu_read_unlock();
>> }
>> + kfree(sbi->s_mb_largest_free_orders);
>> kfree(sbi->s_mb_offsets);
>> kfree(sbi->s_mb_maxs);
>> iput(sbi->s_buddy_cache);
>> diff --git a/fs/ext4/mballoc.h b/fs/ext4/mballoc.h
>> index 02861406932f..1e86a8a0460d 100644
>> --- a/fs/ext4/mballoc.h
>> +++ b/fs/ext4/mballoc.h
>> @@ -166,6 +166,7 @@ struct ext4_allocation_context {
>> /* copy of the best found extent taken before preallocation efforts */
>> struct ext4_free_extent ac_f_ex;
>>
>> + ext4_group_t ac_last_optimal_group;
>> __u32 ac_groups_considered;
>> __u16 ac_groups_scanned;
>> __u16 ac_found;
>> diff --git a/fs/ext4/super.c b/fs/ext4/super.c
>> index 0f0db49031dc..a14363654cfd 100644
>> --- a/fs/ext4/super.c
>> +++ b/fs/ext4/super.c
>> @@ -154,6 +154,7 @@ static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
>> clear_buffer_verified(bh);
>>
>> bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
>> +
>> get_bh(bh);
>> submit_bh(REQ_OP_READ, op_flags, bh);
>> }
>> @@ -1687,7 +1688,7 @@ enum {
>> Opt_dioread_nolock, Opt_dioread_lock,
>> Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
>> Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
>> - Opt_prefetch_block_bitmaps,
>> + Opt_prefetch_block_bitmaps, Opt_mb_optimize_scan,
>> #ifdef CONFIG_EXT4_DEBUG
>> Opt_fc_debug_max_replay, Opt_fc_debug_force
>> #endif
>> @@ -1788,6 +1789,7 @@ static const match_table_t tokens = {
>> {Opt_nombcache, "nombcache"},
>> {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
>> {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
>> + {Opt_mb_optimize_scan, "mb_optimize_scan"},
>> {Opt_removed, "check=none"}, /* mount option from ext2/3 */
>> {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
>> {Opt_removed, "reservation"}, /* mount option from ext2/3 */
>> @@ -2008,6 +2010,8 @@ static const struct mount_opts {
>> {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
>> {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
>> MOPT_SET},
>> + {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN,
>> + MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
>> #ifdef CONFIG_EXT4_DEBUG
>> {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
>> MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
>> --
>> 2.30.0.478.g8a0d178c01-goog
>>
>
Powered by blists - more mailing lists