[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Message-Id: <200610011414.30443.vlobanov@speakeasy.net>
Date: Sun, 1 Oct 2006 14:14:30 -0700
From: Vadim Lobanov <vlobanov@...akeasy.net>
To: akpm@...l.org
Cc: linux-kernel@...r.kernel.org
Subject: [PATCH 4/4] fdtable: Implement new pagesize-based fdtable allocation scheme.
This patch provides an improved fdtable allocation scheme, useful for
expanding fdtable file descriptor entries. The main focus is on the fdarray,
as its memory usage grows 128 times faster than that of an fdset.
The allocation algorithm sizes the fdarray in such a way that its memory usage
increases in easy page-sized chunks. Additionally, it tries to account for the
optimal usage of the allocators involved: kmalloc() for sizes less than a
page, and vmalloc() with page granularity for sizes greater than a page.
Namely, the following sizes for the fdarray are considered, and the smallest
that accommodates the requested fd count is chosen:
pagesize / 4
pagesize / 2
pagesize <- memory allocator switch point
pagesize * 2
pagesize * 3
pagesize * 4
...etc...
Unlike the current implementation, this allocation scheme does not require a
loop to compute the optimal fdarray size, and can be done in straightline
code.
Furthermore, since the fdarray overflows the pagesize boundary long before any
of the fdsets do, it makes sense to optimize run-time by allocating both
fdsets
in a single swoop. Even together, they will still be, by far, smaller than the
fdarray.
As long as we're replacing the guts of fs/file.c, it makes sense to tidy up
the code. This work includes:
simplification via refactoring,
elimination of unnecessary code, and
extensive commenting throughout the entire file.
This is the last patch in the series. All the code should now be sparkly
clean.
Signed-off-by: Vadim Lobanov <vlobanov@...akeasy.net>
diff -Npru old/fs/file.c new/fs/file.c
--- old/fs/file.c 2006-09-28 20:13:13.000000000 -0700
+++ new/fs/file.c 2006-09-28 20:22:48.000000000 -0700
@@ -1,21 +1,18 @@
/*
* linux/fs/file.c
*
+ * Manage the dynamic fd arrays in the process files_struct.
* Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
*
- * Manage the dynamic fd arrays in the process files_struct.
+ * Pagesize-based fdarray/fdset allocation algorithm; major cleanups.
+ * Copyright (C) 2006, Vadim Lobanov
*/
#include <linux/fs.h>
-#include <linux/mm.h>
-#include <linux/time.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/file.h>
-#include <linux/bitops.h>
#include <linux/interrupt.h>
-#include <linux/spinlock.h>
-#include <linux/rcupdate.h>
#include <linux/workqueue.h>
struct fdtable_defer {
@@ -26,120 +23,153 @@ struct fdtable_defer {
};
/*
- * We use this list to defer free fdtables that have vmalloced
- * sets/arrays. By keeping a per-cpu list, we avoid having to embed
- * the work_struct in fdtable itself which avoids a 64 byte (i386) increase
in
- * this per-task structure.
+ * We use this list to defer free fdtables that have vmalloced sets/arrays.
By
+ * keeping a per-cpu list, we avoid having to embed the work_struct in the
+ * fdtable itself.
*/
static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
-
-/*
- * Allocate an fd array, using kmalloc or vmalloc.
- * Note: the array isn't cleared at allocation time.
+/**
+ * alloc_fdmem - Allocate space for fdtable dynamic data.
+ * @size: Amount of memory, in bytes, required to hold the data.
*/
-struct file ** alloc_fd_array(int num)
+static inline void * alloc_fdmem(unsigned int size)
{
- struct file **new_fds;
- int size = num * sizeof(struct file *);
-
if (size <= PAGE_SIZE)
- new_fds = (struct file **) kmalloc(size, GFP_KERNEL);
- else
- new_fds = (struct file **) vmalloc(size);
- return new_fds;
+ return kmalloc(size, GFP_KERNEL);
+ else
+ return vmalloc(size);
}
-void free_fd_array(struct file **array, int num)
+/**
+ * free_fdarr - Free the fdarray within the fdtable.
+ * @fdt: The containing fdtable.
+ */
+static inline void free_fdarr(struct fdtable *fdt)
{
- int size = num * sizeof(struct file *);
-
- if (!array) {
- printk (KERN_ERR "free_fd_array: array = 0 (num = %d)\n", num);
- return;
- }
-
- if (num <= NR_OPEN_DEFAULT) /* Don't free the embedded fd array! */
- return;
- else if (size <= PAGE_SIZE)
- kfree(array);
+ if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *)))
+ kfree(fdt->fd);
else
- vfree(array);
+ vfree(fdt->fd);
}
-static void __free_fdtable(struct fdtable *fdt)
+/**
+ * free_fdset - Free the fdsets within the fdtable.
+ * @fdt: The containing fdtable.
+ */
+static inline void free_fdset(struct fdtable *fdt)
{
- free_fdset(fdt->open_fds, fdt->max_fds);
- free_fdset(fdt->close_on_exec, fdt->max_fds);
- free_fd_array(fdt->fd, fdt->max_fds);
- kfree(fdt);
+ if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2))
+ kfree(fdt->open_fds);
+ else
+ vfree(fdt->open_fds);
}
+/**
+ * fdtable_timer - Reschedule deferred fdtable deletion work.
+ * @data: Typecast pointer to the relevant fdtable_defer structure.
+ */
static void fdtable_timer(unsigned long data)
{
- struct fdtable_defer *fddef = (struct fdtable_defer *)data;
+ struct fdtable_defer *fddef;
+ fddef = (struct fdtable_defer *)data;
spin_lock(&fddef->lock);
/*
- * If someone already emptied the queue return.
+ * If there are any fdtables scheduled for deletion, then try to
+ * schedule this work. If we could not schedule, then run this function
+ * again in a little while.
*/
- if (!fddef->next)
- goto out;
- if (!schedule_work(&fddef->wq))
- mod_timer(&fddef->timer, 5);
-out:
+ if (fddef->next)
+ if (!schedule_work(&fddef->wq))
+ mod_timer(&fddef->timer, 5);
spin_unlock(&fddef->lock);
}
-static void free_fdtable_work(struct fdtable_defer *f)
+/**
+ * free_fdtable_work - Free deferred fdtables.
+ * @fddef: Per-cpu area containing a list of deferred fdtables.
+ *
+ * Fdtable structures which contain member data obtained using vmalloc are
not
+ * freed immediately, but are instead deferred for the workqueue context. The
+ * workqueue uses this function to handle the deferred fdtables.
+ */
+static void free_fdtable_work(struct fdtable_defer *fddef)
{
struct fdtable *fdt;
- spin_lock_bh(&f->lock);
- fdt = f->next;
- f->next = NULL;
- spin_unlock_bh(&f->lock);
- while(fdt) {
- struct fdtable *next = fdt->next;
- __free_fdtable(fdt);
+ /*
+ * Grab a linked list of the deferred fdtables. We'll free those, so
+ * set the list as empty before continuing with the real work.
+ */
+ spin_lock_bh(&fddef->lock);
+ fdt = fddef->next;
+ fddef->next = NULL;
+ spin_unlock_bh(&fddef->lock);
+
+ while (fdt) {
+ struct fdtable *next;
+
+ next = fdt->next;
+ /*
+ * Since this fdtable was deferred, we know for a fact that the
+ * fdarray was obtained with vmalloc. The fdset is smaller,
+ * however, so we must check its size to know how to release
+ * it.
+ */
+ vfree(fdt->fd);
+ free_fdset(fdt);
+ kfree(fdt);
fdt = next;
}
}
+/**
+ * free_fdtable_rcu - Free an fdtable or its wrapper files_struct.
+ * @rcu: The RCU head structure embedded within the to-be-freed fdtable.
+ *
+ * In order to correctly free an fdtable that was in use by the system, this
+ * function should be invoked as an RCU callback on the target fdtable. It
must
+ * be used on non-embedded fdtables or embedded fdtables once the wrapper
+ * files_struct is to be discarded; it must not be used on embedded fdtables
+ * where the wrapper files_struct must persist.
+ */
void free_fdtable_rcu(struct rcu_head *rcu)
{
- struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
- int fdset_size, fdarray_size;
- struct fdtable_defer *fddef;
-
- BUG_ON(!fdt);
- fdset_size = fdt->max_fds / 8;
- fdarray_size = fdt->max_fds * sizeof(struct file *);
+ struct fdtable *fdt;
+ fdt = container_of(rcu, struct fdtable, rcu);
if (fdt->max_fds <= NR_OPEN_DEFAULT) {
/*
- * This fdtable is embedded in the files structure and that
- * structure itself is getting destroyed.
+ * This fdtable is embedded within a wrapper files_struct, and
+ * both are now expired. Free the container.
*/
kmem_cache_free(files_cachep,
container_of(fdt, struct files_struct, fdtab));
return;
}
- if (fdset_size <= PAGE_SIZE && fdarray_size <= PAGE_SIZE) {
- kfree(fdt->open_fds);
- kfree(fdt->close_on_exec);
+ if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) {
+ /*
+ * The fdarray was obtained with kmalloc, and since the fdset
+ * will always be smaller we know it was also obtained with
+ * kmalloc. Thus, we can dispose of the fdtable right now.
+ */
kfree(fdt->fd);
+ kfree(fdt->open_fds);
kfree(fdt);
} else {
+ struct fdtable_defer *fddef;
+
+ /*
+ * The fdset has at least one component obtained with vmalloc.
+ * Hence, we will handle deallocation from the workqueue
+ * context. If we are unable to schedule the work, then we set
+ * a timer to fire and reattempt to schedule later.
+ */
fddef = &get_cpu_var(fdtable_defer_list);
spin_lock(&fddef->lock);
fdt->next = fddef->next;
fddef->next = fdt;
- /*
- * vmallocs are handled from the workqueue context.
- * If the per-cpu workqueue is running, then we
- * defer work scheduling through a timer.
- */
if (!schedule_work(&fddef->wq))
mod_timer(&fddef->timer, 5);
spin_unlock(&fddef->lock);
@@ -147,197 +177,179 @@ void free_fdtable_rcu(struct rcu_head *r
}
}
-/*
- * Expand the fdset in the files_struct. Called with the files spinlock
- * held for write.
+/**
+ * copy_fdtable - Copy fdtable data.
+ * @nfdt: New fdtable to copy data to.
+ * @ofdt: Old fdtable to copy data from.
+ *
+ * Copy fdarray and fdset data from the old fdtable to the new fdtable. If
the
+ * new fdtable supports more file entries, then the extra high-order data
will
+ * be zeroed. The file_lock related to ofdt must be held for write.
*/
-static void copy_fdtable(struct fdtable *nfdt, struct fdtable *fdt)
+static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
{
- int i;
- int count;
-
- BUG_ON(nfdt->max_fds < fdt->max_fds);
- /* Copy the existing tables and install the new pointers */
-
- i = fdt->max_fds / (sizeof(unsigned long) * 8);
- count = (nfdt->max_fds - fdt->max_fds) / 8;
+ unsigned int cpy, set;
+ BUG_ON(nfdt->max_fds < ofdt->max_fds);
/*
- * Don't copy the entire array if the current fdset is
- * not yet initialised.
+ * Don't copy or clear the data if we are creating a new fdtable for
+ * fork().
*/
- if (i) {
- memcpy (nfdt->open_fds, fdt->open_fds,
- fdt->max_fds/8);
- memcpy (nfdt->close_on_exec, fdt->close_on_exec,
- fdt->max_fds/8);
- memset (&nfdt->open_fds->fds_bits[i], 0, count);
- memset (&nfdt->close_on_exec->fds_bits[i], 0, count);
- }
-
- /* Don't copy/clear the array if we are creating a new
- fd array for fork() */
- if (fdt->max_fds) {
- memcpy(nfdt->fd, fdt->fd,
- fdt->max_fds * sizeof(struct file *));
- /* clear the remainder of the array */
- memset(&nfdt->fd[fdt->max_fds], 0,
- (nfdt->max_fds - fdt->max_fds) *
- sizeof(struct file *));
- }
-}
-
-/*
- * Allocate an fdset array, using kmalloc or vmalloc.
- * Note: the array isn't cleared at allocation time.
- */
-fd_set * alloc_fdset(int num)
-{
- fd_set *new_fdset;
- int size = num / 8;
-
- if (size <= PAGE_SIZE)
- new_fdset = (fd_set *) kmalloc(size, GFP_KERNEL);
- else
- new_fdset = (fd_set *) vmalloc(size);
- return new_fdset;
-}
-
-void free_fdset(fd_set *array, int num)
-{
- if (num <= NR_OPEN_DEFAULT) /* Don't free an embedded fdset */
+ if (ofdt->max_fds == 0)
return;
- else if (num <= 8 * PAGE_SIZE)
- kfree(array);
- else
- vfree(array);
-}
-static struct fdtable *alloc_fdtable(int nr)
+ /* Initialize the new fdarray. */
+ cpy = ofdt->max_fds * sizeof(struct file *);
+ set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
+ memcpy(nfdt->fd, ofdt->fd, cpy);
+ memset((char *)(nfdt->fd) + cpy, 0, set);
+
+ /* Initialize the new fdsets. */
+ cpy = ofdt->max_fds / BITS_PER_BYTE;
+ set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
+ memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
+ memset((char *)(nfdt->open_fds) + cpy, 0, set);
+ memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
+ memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
+}
+
+/**
+ * alloc_fdtable - Allocate an appropriately-sized fdtable.
+ * @nr: Requested fd index to be supported.
+ *
+ * Allocate and initialize a new fdtable. The fdtable must be able to support
+ * the requested file descriptor nr within its internal data structures.
+ *
+ * On success, the newly-created fdtable is returned. On allocation failure,
+ * NULL is returned.
+ */
+static struct fdtable * alloc_fdtable(unsigned int nr)
{
- struct fdtable *fdt = NULL;
- int nfds = 0;
- fd_set *new_openset = NULL, *new_execset = NULL;
- struct file **new_fds;
-
- fdt = kzalloc(sizeof(*fdt), GFP_KERNEL);
- if (!fdt)
- goto out;
+ struct fdtable *fdt;
+ char *data;
- nfds = NR_OPEN_DEFAULT;
/*
- * Expand to the max in easy steps, and keep expanding it until
- * we have enough for the requested fd array size.
+ * Figure out how many fds we actually want to support in this fdtable.
+ * Allocation steps are keyed to the size of the fdarray, since it
+ * grows far faster than any of the other dynamic data. We try to fit
+ * the fdarray into page-sized chunks: starting at a quarter of a page;
+ * growing exponentially at first and linearly once the page boundary
+ * is surpassed.
*/
- do {
-#if NR_OPEN_DEFAULT < 256
- if (nfds < 256)
- nfds = 256;
- else
-#endif
- if (nfds < (PAGE_SIZE / sizeof(struct file *)))
- nfds = PAGE_SIZE / sizeof(struct file *);
- else {
- nfds = nfds * 2;
- if (nfds > NR_OPEN)
- nfds = NR_OPEN;
- }
- } while (nfds <= nr);
-
- new_openset = alloc_fdset(nfds);
- new_execset = alloc_fdset(nfds);
- if (!new_openset || !new_execset)
- goto out;
- fdt->open_fds = new_openset;
- fdt->close_on_exec = new_execset;
+ nr /= (PAGE_SIZE / 4 / sizeof(struct file *));
+ if (nr > 1)
+ nr |= 3;
+ nr++;
+ nr *= (PAGE_SIZE / 4 / sizeof(struct file *));
- new_fds = alloc_fd_array(nfds);
- if (!new_fds)
+ /* Create the fdtable itself. */
+ fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
+ if (!fdt)
goto out;
- fdt->fd = new_fds;
- fdt->max_fds = nfds;
+ fdt->max_fds = nr;
+ /* Allocate space for the fdarray. */
+ data = alloc_fdmem(nr * sizeof(struct file *));
+ if (!data)
+ goto out_fdt;
+ fdt->fd = (struct file **)data;
+ /* Allocate space for both fdsets together - open_fds is the base. */
+ data = alloc_fdmem(2 * nr / BITS_PER_BYTE);
+ if (!data)
+ goto out_arr;
+ fdt->open_fds = (fd_set *)data;
+ data += nr / BITS_PER_BYTE;
+ fdt->close_on_exec = (fd_set *)data;
+ /* Initialize the rest of the fdtable. */
+ INIT_RCU_HEAD(&fdt->rcu);
+ fdt->next = NULL;
+
return fdt;
-out:
- free_fdset(new_openset, nfds);
- free_fdset(new_execset, nfds);
+
+out_arr:
+ free_fdarr(fdt);
+out_fdt:
kfree(fdt);
+out:
return NULL;
}
-/*
- * Expand the file descriptor table.
- * This function will allocate a new fdtable and both fd array and fdset, of
- * the given size.
- * Return <0 error code on error; 1 on successful completion.
- * The files->file_lock should be held on entry, and will be held on exit.
+/**
+ * expand_files - Accommodate an fd index inside a files structure.
+ * @files: The files structure that must be sized.
+ * @nr: Requested fd index to be supported.
+ *
+ * Make sure that the given files structure can accommodate the provided fd
+ * index within its associated fdtable. If the requested index exceeds the
+ * current capacity and there is room for expansion, a larger fdtable will be
+ * created and installed. The files->file_lock should be held on entry, and
+ * will be held on exit.
+ *
+ * If the current fdtable is sufficient, 0 is returned. If the fdtable was
+ * expanded and execution may have blocked, 1 is returned. On an error
+ * condition, a negative error code is returned.
*/
-static int expand_fdtable(struct files_struct *files, int nr)
+int expand_files(struct files_struct *files, int nr)
__releases(files->file_lock)
__acquires(files->file_lock)
{
- struct fdtable *new_fdt, *cur_fdt;
+ struct fdtable *cur_fdt, *new_fdt;
+
+ cur_fdt = files_fdtable(files);
+ /* Do we need to expand? */
+ if (nr < cur_fdt->max_fds)
+ return 0;
+ /* Are we allowed to expand? */
+ if (nr >= NR_OPEN)
+ return -EMFILE;
+ /* Allocate a larger fdtable outside the lock. */
spin_unlock(&files->file_lock);
new_fdt = alloc_fdtable(nr);
spin_lock(&files->file_lock);
if (!new_fdt)
return -ENOMEM;
+ cur_fdt = files_fdtable(files);
/*
- * Check again since another task may have expanded the fd table while
- * we dropped the lock
+ * Check the sizes again since another task may have expanded the
+ * fdtable while we dropped the lock.
*/
- cur_fdt = files_fdtable(files);
- if (nr >= cur_fdt->max_fds) {
- /* Continue as planned */
+ if (nr < cur_fdt->max_fds) {
+ /* Somebody else expanded, so undo our allocation attempt. */
+ free_fdarr(new_fdt);
+ free_fdset(new_fdt);
+ kfree(new_fdt);
+ } else {
+ /* All good. Install the new fdtable and retire the old one. */
copy_fdtable(new_fdt, cur_fdt);
rcu_assign_pointer(files->fdt, new_fdt);
if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
- } else {
- /* Somebody else expanded, so undo our attempt */
- __free_fdtable(new_fdt);
}
return 1;
}
-/*
- * Expand files.
- * This function will expand the file structures, if the requested size
exceeds
- * the current capacity and there is room for expansion.
- * Return <0 error code on error; 0 when nothing done; 1 when files were
- * expanded and execution may have blocked.
- * The files->file_lock should be held on entry, and will be held on exit.
+/**
+ * fdtable_defer_list_init - Initialize the per-cpu fdtable defer list.
+ * @cpu: The cpu for which the defer list should be initialized.
*/
-int expand_files(struct files_struct *files, int nr)
-{
- struct fdtable *fdt;
-
- fdt = files_fdtable(files);
- /* Do we need to expand? */
- if (nr < fdt->max_fds)
- return 0;
- /* Can we expand? */
- if (nr >= NR_OPEN)
- return -EMFILE;
-
- /* All good, so we try */
- return expand_fdtable(files, nr);
-}
-
static void __devinit fdtable_defer_list_init(int cpu)
{
- struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
+ struct fdtable_defer *fddef;
+
+ fddef = &per_cpu(fdtable_defer_list, cpu);
spin_lock_init(&fddef->lock);
INIT_WORK(&fddef->wq, (void (*)(void *))free_fdtable_work, fddef);
- init_timer(&fddef->timer);
- fddef->timer.data = (unsigned long)fddef;
- fddef->timer.function = fdtable_timer;
+ setup_timer(&fddef->timer, fdtable_timer, (unsigned long)fddef);
fddef->next = NULL;
}
+/**
+ * files_defer_init - Initialize the fdtable defer lists.
+ */
void __init files_defer_init(void)
{
int i;
+
for_each_possible_cpu(i)
fdtable_defer_list_init(i);
}
diff -Npru old/include/linux/file.h new/include/linux/file.h
--- old/include/linux/file.h 2006-09-28 20:13:13.000000000 -0700
+++ new/include/linux/file.h 2006-09-28 20:22:05.000000000 -0700
@@ -29,8 +29,8 @@ struct embedded_fd_set {
struct fdtable {
unsigned int max_fds;
struct file ** fd; /* current fd array */
- fd_set *close_on_exec;
fd_set *open_fds;
+ fd_set *close_on_exec;
struct rcu_head rcu;
struct fdtable *next;
};
@@ -74,12 +74,6 @@ extern int get_unused_fd(void);
extern void FASTCALL(put_unused_fd(unsigned int fd));
struct kmem_cache;
-extern struct file ** alloc_fd_array(int);
-extern void free_fd_array(struct file **, int);
-
-extern fd_set *alloc_fdset(int);
-extern void free_fdset(fd_set *, int);
-
extern int expand_files(struct files_struct *, int nr);
extern void free_fdtable_rcu(struct rcu_head *rcu);
extern void __init files_defer_init(void);
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists