[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <1178157684.23670.11.camel@localhost.localdomain>
Date: Thu, 03 May 2007 12:01:24 +1000
From: Rusty Russell <rusty@...tcorp.com.au>
To: "H. Peter Anvin" <hpa@...or.com>
Cc: Jeremy Fitzhardinge <jeremy@...p.org>,
Jeff Garzik <jeff@...zik.org>, patches@...-64.org,
linux-kernel@...r.kernel.org,
virtualization <virtualization@...ts.linux-foundation.org>,
Vivek Goyal <vgoyal@...ibm.com>,
Gerd Hoffmann <kraxel@...hat.com>,
"Eric W. Biederman" <ebiederm@...ssion.com>
Subject: Re: [patches] [PATCH] [21/22] x86_64: Extend bzImage protocol for
relocatable bzImage
On Wed, 2007-05-02 at 14:09 -0700, H. Peter Anvin wrote:
> Jeremy Fitzhardinge wrote:
> >
> > Hm, that's unfortunate. How about an ELF file wrapped in some other
> > container, so that we can easily extract a properly formed ELF file?
> >
>
> Effectively the same thing as changing the magic number. Note that the
> format for bzImage is pretty rigid, and it would be *highly* undesirable
> to muck that up.
To add some code to the debate, here's how lguest loads a bzImage (from
my draft documentation). Almost anything would be an improvement:
/* A bzImage, unlike an ELF file, is not meant to be loaded. You're
* supposed to jump into it and it will unpack itself. We can't do that
* because the Guest can't run the unpacking code, and adding features to
* lguest kills puppies, so we don't want to.
*
* The bzImage is formed by putting the decompressing code in front of the
* compressed kernel code. So we can simple scan through it looking for the
* first "gzip" header, and start decompressing from there. */
static unsigned long load_bzimage(int fd, unsigned long *page_offset)
{
unsigned char c;
int state = 0;
/* GZIP header is 0x1F 0x8B <method> <flags>... <compressed-by>. */
while (read(fd, &c, 1) == 1) {
switch (state) {
case 0:
if (c == 0x1F)
state++;
break;
case 1:
if (c == 0x8B)
state++;
else
state = 0;
break;
case 2 ... 8:
state++;
break;
case 9:
/* Seek back to the start of the gzip header. */
lseek(fd, -10, SEEK_CUR);
/* One final check: "compressed under UNIX". */
if (c != 0x03)
state = -1;
else
return unpack_bzimage(fd, page_offset);
}
}
errx(1, "Could not find kernel in bzImage");
}
/* Unfortunately the entire ELF image isn't compressed: the segments
* which need loading are extracted and compressed raw. This denies us the
* information we need to make a fully-general loader. */
static unsigned long unpack_bzimage(int fd, unsigned long *page_offset)
{
gzFile f;
int ret, len = 0;
/* A bzImage always gets loaded at physical address 1M. This is
* actually configurable as CONFIG_PHYSICAL_START, but as the comment
* there says, "Don't change this unless you know what you are doing".
* Indeed. */
void *img = (void *)0x100000;
/* gzdopen takes our file descriptor (carefully placed at the start of
* the GZIP header we found) and returns a gzFile. */
f = gzdopen(fd, "rb");
/* Unfortunately, if we made a mistake and it wasn't really a gzip
* header, it will still read the file, but directly without
* decompressing it. For us, that's a misfeature. */
if (gzdirect(f))
errx(1, "did not find correct gzip header");
/* We read it into memory in 64k chunks until we hit the end. */
while ((ret = gzread(f, img + len, 65536)) > 0)
len += ret;
if (ret < 0)
err(1, "reading image from bzImage");
verbose("Unpacked size %i addr %p\n", len, img);
/* Without the ELF header, we can't tell virtual-physical gap. This is
* CONFIG_PAGE_OFFSET, and people do actually change it. Fortunately,
* I have a clever way of figuring it out from the code itself. */
*page_offset = intuit_page_offset(img, len);
/* Entry is physical address: convert to virtual */
return (unsigned long)img + *page_offset;
}
/* Prepare to be SHOCKED and AMAZED. And possibly a trifle nauseated.
*
* We know that CONFIG_PAGE_OFFSET sets what virtual address the kernel expects
* to be. We don't know what that option was, but we can figure it out
* approximately by looking at the addresses in the code. I chose the common
* case of reading a memory location into the %eax register:
*
* movl <some-address>, %eax
*
* This gets encoded as five bytes: "0xA1 <4-byte-address>". For example,
* "0xA1 0x18 0x60 0x47 0xC0" reads the address 0xC0476018 into %eax.
*
* In this example can guess that the kernel was compiled with
* CONFIG_PAGE_OFFSET set to 0xC0000000 (it's always a round number). If the
* kernel were larger than 16MB, we might see 0xC1 addresses show up, but our
* kernel isn't that bloated yet.
*
* Unfortunately, x86 has variable-length instructions, so finding this
* particular instruction properly involves writing a disassembler. Instead,
* we rely on statistics. We look for "0xA1" and tally the different bytes
* which occur 4 bytes later (the "0xC0" in our example above). When one of
* those bytes appears three times, we can be reasonably confident that it
* forms the start of CONFIG_PAGE_OFFSET.
*
* This is amazingly reliable. */
static unsigned long intuit_page_offset(unsigned char *img, unsigned long len)
{
unsigned int i, possibilities[256] = { 0 };
for (i = 0; i + 4 < len; i++) {
/* mov 0xXXXXXXXX,%eax */
if (img[i] == 0xA1 && ++possibilities[img[i+4]] > 3)
return (unsigned long)img[i+4] << 24;
}
errx(1, "could not determine page offset");
}
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists