lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <1210070159-22794-10-git-send-email-Artem.Bityutskiy@nokia.com>
Date:	Tue,  6 May 2008 13:35:40 +0300
From:	Artem Bityutskiy <Artem.Bityutskiy@...ia.com>
To:	LKML <linux-kernel@...r.kernel.org>
Cc:	Adrian Hunter <ext-adrian.hunter@...ia.com>,
	Artem Bityutskiy <Artem.Bityutskiy@...ia.com>
Subject: [PATCH take 2 09/28] UBIFS: add file-system recovery

The recovery sub-system is responsible for recovering from unclean
reboots. It makes sure every-thing is consistent, rolls-back the
last broken and un-finished FS operation, and so on.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@...ia.com>
Signed-off-by: Adrian Hunter <ext-adrian.hunter@...ia.com>
---
 fs/ubifs/recovery.c | 1439 +++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 1439 insertions(+), 0 deletions(-)

diff --git a/fs/ubifs/recovery.c b/fs/ubifs/recovery.c
new file mode 100644
index 0000000..67bcea0
--- /dev/null
+++ b/fs/ubifs/recovery.c
@@ -0,0 +1,1439 @@
+/*
+ * This file is part of UBIFS.
+ *
+ * Copyright (C) 2006-2008 Nokia Corporation
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc., 51
+ * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ * Authors: Adrian Hunter
+ *          Artem Bityutskiy (Битюцкий Артём)
+ */
+
+/*
+ * This file implements functions needed to recover from unclean un-mounts.
+ * When UBIFS is mounted, it checks a flag on the master node to determine if
+ * an un-mount was completed sucessfully. If not, the process of mounting
+ * incorparates additional checking and fixing of on-flash data structures.
+ * UBIFS always cleans away all remnants of an unclean un-mount, so that
+ * errors do not accumulate. However UBIFS defers recovery if it is mounted
+ * read-only, and the flash is not modified in that case.
+ */
+
+#include <linux/crc32.h>
+#include "ubifs.h"
+
+/**
+ * is_empty - determine whether a buffer is empty (contains all 0xff).
+ * @buf: buffer to clean
+ * @len: length of buffer
+ *
+ * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
+ * %0 is returned.
+ */
+static int is_empty(void *buf, int len)
+{
+	uint8_t *p = buf;
+	int i;
+
+	for (i = 0; i < len; i++)
+		if (*p++ != 0xff)
+			return 0;
+	return 1;
+}
+
+/**
+ * get_master_node - get the last valid master node allowing for corruption.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number
+ * @pbuf: buffer containing the LEB read, is returned here
+ * @mst: master node, if found, is returned here
+ * @cor: corruption, if found, is returned here
+ *
+ * This function allocates a buffer, reads the LEB into it, and finds and
+ * returns the last valid master node allowing for one area of corruption.
+ * The corrupt area, if there is one, must be consistent with the assumption
+ * that it is the result of an unclean unmount while the master node was being
+ * written. Under those circumstances, it is valid to use the previously written
+ * master node.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
+			   struct ubifs_mst_node **mst, void **cor)
+{
+	const int sz = c->mst_node_alsz;
+	int err, offs, len;
+	void *sbuf, *buf;
+
+	sbuf = vmalloc(c->leb_size);
+	if (!sbuf)
+		return -ENOMEM;
+
+	err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
+	if (err && err != -EBADMSG)
+		goto out_free;
+
+	/* Find the first position that is definitely not a node */
+	offs = 0;
+	buf = sbuf;
+	len = c->leb_size;
+	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
+		struct ubifs_ch *ch = buf;
+
+		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
+			break;
+		offs += sz;
+		buf  += sz;
+		len  -= sz;
+	}
+	/* See if there was a valid master node before that */
+	if (offs) {
+		int ret;
+
+		offs -= sz;
+		buf  -= sz;
+		len  += sz;
+		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
+		if (ret != SCANNED_A_NODE && offs) {
+			/* Could have been corruption so check one place back */
+			offs -= sz;
+			buf  -= sz;
+			len  += sz;
+			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
+			if (ret != SCANNED_A_NODE)
+				/*
+				 * We accept only one area of corruption because
+				 * we are assuming that it was caused while
+				 * trying to write a master node.
+				 */
+				goto out_err;
+		}
+		if (ret == SCANNED_A_NODE) {
+			struct ubifs_ch *ch = buf;
+
+			if (ch->node_type != UBIFS_MST_NODE)
+				goto out_err;
+			dbg_rcvry("found a master node at %d:%d", lnum, offs);
+			*mst = buf;
+			offs += sz;
+			buf  += sz;
+			len  -= sz;
+		}
+	}
+	/* Check for corruption */
+	if (offs < c->leb_size) {
+		if (!is_empty(buf, min_t(int, len, sz))) {
+			*cor = buf;
+			dbg_rcvry("found corruption at %d:%d", lnum, offs);
+		}
+		offs += sz;
+		buf  += sz;
+		len  -= sz;
+	}
+	/* Check remaining empty space */
+	if (offs < c->leb_size)
+		if (!is_empty(buf, len))
+			goto out_err;
+	*pbuf = sbuf;
+	return 0;
+
+out_err:
+	err = -EINVAL;
+out_free:
+	vfree(sbuf);
+	*mst = NULL;
+	*cor = NULL;
+	return err;
+}
+
+/**
+ * write_rcvrd_mst_node - write recovered master node.
+ * @c: UBIFS file-system description object
+ * @mst: master node
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int write_rcvrd_mst_node(struct ubifs_info *c,
+				struct ubifs_mst_node *mst)
+{
+	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
+	uint32_t save_flags;
+
+	dbg_rcvry("recovery");
+
+	save_flags = mst->flags;
+	mst->flags = cpu_to_le32(le32_to_cpu(mst->flags) | UBIFS_MST_RCVRY);
+
+	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
+	err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
+	if (err)
+		goto out;
+	err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
+	if (err)
+		goto out;
+out:
+	mst->flags = save_flags;
+	return err;
+}
+
+/**
+ * ubifs_recover_master_node - recover the master node.
+ * @c: UBIFS file-system description object
+ *
+ * This function recovers the master node from corruption that may occur due to
+ * an unclean unmount.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int ubifs_recover_master_node(struct ubifs_info *c)
+{
+	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
+	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
+	const int sz = c->mst_node_alsz;
+	int err, offs1, offs2;
+
+	dbg_rcvry("recovery");
+
+	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
+	if (err)
+		goto out_free;
+
+	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
+	if (err)
+		goto out_free;
+
+	if (mst1) {
+		offs1 = (void *)mst1 - buf1;
+		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
+		    (offs1 == 0 && !cor1)) {
+			/*
+			 * mst1 was written by recovery at offset 0 with no
+			 * corruption.
+			 */
+			dbg_rcvry("recovery recovery");
+			mst = mst1;
+		} else if (mst2) {
+			offs2 = (void *)mst2 - buf2;
+			if (offs1 == offs2) {
+				/* Same offset, so must be the same */
+				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
+					   (void *)mst2 + UBIFS_CH_SZ,
+					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
+					goto out_err;
+				mst = mst1;
+			} else if (offs2 + sz == offs1) {
+				/* 1st LEB was written, 2nd was not */
+				if (cor1)
+					goto out_err;
+				mst = mst1;
+			} else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
+				/* 1st LEB was unmapped and written, 2nd not */
+				if (cor1)
+					goto out_err;
+				mst = mst1;
+			} else
+				goto out_err;
+		} else {
+			/*
+			 * 2nd LEB was unmapped and about to be written, so
+			 * there must be only one master node in the first LEB
+			 * and no corruption.
+			 */
+			if (offs1 != 0 || cor1)
+				goto out_err;
+			mst = mst1;
+		}
+	} else {
+		if (!mst2)
+			goto out_err;
+		/*
+		 * 1st LEB was unmapped and about to be written, so there must
+		 * be no room left in 2nd LEB.
+		 */
+		offs2 = (void *)mst2 - buf2;
+		if (offs2 + sz + sz <= c->leb_size)
+			goto out_err;
+		mst = mst2;
+	}
+
+	dbg_rcvry("recovered master node from LEB %d",
+		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
+
+	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
+
+	if ((c->vfs_sb->s_flags & MS_RDONLY)) {
+		/* Read-only mode. Keep a copy for switching to rw mode */
+		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
+		if (!c->rcvrd_mst_node) {
+			err = -ENOMEM;
+			goto out_free;
+		}
+		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
+	} else {
+		/* Write the recovered master node */
+		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
+		err = write_rcvrd_mst_node(c, c->mst_node);
+		if (err)
+			goto out_free;
+	}
+
+	vfree(buf2);
+	vfree(buf1);
+
+	return 0;
+
+out_err:
+	err = -EINVAL;
+out_free:
+	ubifs_err("failed to recover master node");
+	if (mst1) {
+		dbg_err("dumping first master node");
+		dbg_dump_node(c, mst1);
+	}
+	if (mst2) {
+		dbg_err("dumping second master node");
+		dbg_dump_node(c, mst2);
+	}
+	vfree(buf2);
+	vfree(buf1);
+	return err;
+}
+
+/**
+ * ubifs_write_rcvrd_mst_node - write the recovered master node.
+ * @c: UBIFS file-system description object
+ *
+ * This function writes the master node that was recovered during mounting in
+ * read-only mode and must now be written because we are remounting rw.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
+{
+	int err;
+
+	if (!c->rcvrd_mst_node)
+		return 0;
+	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
+	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
+	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
+	if (err)
+		return err;
+	kfree(c->rcvrd_mst_node);
+	c->rcvrd_mst_node = NULL;
+	return 0;
+}
+
+/**
+ * is_last_write - determine if an offset was in the last write to a LEB.
+ * @c: UBIFS file-system description object
+ * @buf: buffer to check
+ * @offs: offset to check
+ *
+ * This function returns %1 if @offs was in the last write to the LEB whose data
+ * is in @buf, otherwise %0 is returned.  The determination is made by checking
+ * for subsequent empty space starting from the next min_io_size boundary (or a
+ * bit less than the common header size if min_io_size is one).
+ */
+static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
+{
+	int empty_offs;
+	int check_len;
+	uint8_t *p;
+
+	if (c->min_io_size == 1) {
+		check_len = c->leb_size - offs;
+		p = buf + check_len;
+		for (; check_len > 0; check_len--)
+			if (*--p != 0xff)
+				break;
+		/*
+		 * 'check_len' is the size of the corruption which cannot be
+		 * more than the size of 1 node if it was caused by an unclean
+		 * unmount.
+		 */
+		if (check_len > UBIFS_MAX_NODE_SZ)
+			return 0;
+		return 1;
+	}
+
+	/*
+	 * Round up to the next c->min_io_size boundary i.e. 'offs' is in the
+	 * last wbuf written. After that should be empty space.
+	 */
+	empty_offs = ALIGN(offs + 1, c->min_io_size);
+	check_len = c->leb_size - empty_offs;
+	p = buf + empty_offs - offs;
+
+	for (; check_len > 0; check_len--)
+		if (*p++ != 0xff)
+			return 0;
+	return 1;
+}
+
+/**
+ * clean_buf - clean the data from an LEB sitting in a buffer.
+ * @c: UBIFS file-system description object
+ * @buf: buffer to clean
+ * @lnum: LEB number to clean
+ * @offs: offset from which to clean
+ * @len: length of buffer
+ *
+ * This function pads up to the next min_io_size boundary (if there is one) and
+ * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
+ * min_io_size boundary (if there is one).
+ */
+static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
+		      int *offs, int *len)
+{
+	int empty_offs, pad_len;
+
+	lnum = lnum;
+	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
+
+	if (c->min_io_size == 1) {
+		memset(*buf, 0xff, c->leb_size - *offs);
+		return;
+	}
+
+	ubifs_assert(!(*offs & 7));
+	empty_offs = ALIGN(*offs, c->min_io_size);
+	pad_len = empty_offs - *offs;
+	ubifs_pad(c, *buf, pad_len);
+	*offs += pad_len;
+	*buf += pad_len;
+	*len -= pad_len;
+	memset(*buf, 0xff, c->leb_size - empty_offs);
+}
+
+/**
+ * no_more_nodes - determine if there are no more nodes in a buffer.
+ * @c: UBIFS file-system description object
+ * @buf: buffer to check
+ * @len: length of buffer
+ * @lnum: LEB number of the LEB from which @buf was read
+ * @offs: offset from which @buf was read
+ *
+ * This function scans @buf for more nodes and returns %0 is a node is found and
+ * %1 if no more nodes are found.
+ */
+static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
+			int lnum, int offs)
+{
+	int skip, next_offs = 0;
+
+	if (len > UBIFS_DATA_NODE_SZ) {
+		struct ubifs_ch *ch = buf;
+		int dlen = le32_to_cpu(ch->len);
+
+		if (ch->node_type == UBIFS_DATA_NODE && dlen >= UBIFS_CH_SZ &&
+		    dlen <= UBIFS_MAX_DATA_NODE_SZ)
+			/* The corrupt node looks like a data node */
+			next_offs = ALIGN(offs + dlen, 8);
+	}
+
+	if (c->min_io_size == 1)
+		skip = 8;
+	else
+		skip = ALIGN(offs + 1, c->min_io_size) - offs;
+
+	offs += skip;
+	buf += skip;
+	len -= skip;
+	while (len > 8) {
+		struct ubifs_ch *ch = buf;
+		uint32_t magic = le32_to_cpu(ch->magic);
+		int ret;
+
+		if (magic == UBIFS_NODE_MAGIC) {
+			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
+			if (ret == SCANNED_A_NODE || ret > 0) {
+				/*
+				 * There is a small chance this is just data in
+				 * a data node, so check that possibility. e.g.
+				 * this is part of a file that itself contains
+				 * a UBIFS image.
+				 */
+				if (next_offs && offs + le32_to_cpu(ch->len) <=
+				    next_offs)
+					continue;
+				dbg_rcvry("unexpected node at %d:%d", lnum,
+					  offs);
+				return 0;
+			}
+		}
+		offs += 8;
+		buf += 8;
+		len -= 8;
+	}
+	return 1;
+}
+
+/**
+ * fix_unclean_leb - fix an unclean LEB.
+ * @c: UBIFS file-system description object
+ * @sleb: scanned LEB information
+ * @start: offset where scan started
+ */
+static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
+			   int start)
+{
+	int lnum = sleb->lnum, endpt = start;
+
+	/* Get the end offset of the last node we are keeping */
+	if (!list_empty(&sleb->nodes)) {
+		struct ubifs_scan_node *snod;
+
+		snod = list_entry(sleb->nodes.prev,
+				  struct ubifs_scan_node, list);
+		endpt = snod->offs + snod->len;
+	}
+
+	if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
+		/* Add to recovery list */
+		struct ubifs_unclean_leb *ucleb;
+
+		dbg_rcvry("need to fix LEB %d start %d endpt %d",
+			  lnum, start, sleb->endpt);
+		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
+		if (!ucleb)
+			return -ENOMEM;
+		ucleb->lnum = lnum;
+		ucleb->endpt = endpt;
+		list_add_tail(&ucleb->list, &c->unclean_leb_list);
+	} else {
+		/* Write the fixed LEB back to flash */
+		int err;
+
+		dbg_rcvry("fixing LEB %d start %d endpt %d",
+			  lnum, start, sleb->endpt);
+		if (endpt == 0) {
+			err = ubifs_leb_unmap(c, lnum);
+			if (err)
+				return err;
+		} else {
+			int len = ALIGN(endpt, c->min_io_size);
+
+			if (start) {
+				err = ubi_read(c->ubi, lnum, sleb->buf, 0,
+					       start);
+				if (err)
+					return err;
+			}
+			/* Pad to min_io_size */
+			if (len > endpt) {
+				int pad_len = len - ALIGN(endpt, 8);
+
+				if (pad_len > 0) {
+					void *buf = sleb->buf + len - pad_len;
+
+					ubifs_pad(c, buf, pad_len);
+				}
+			}
+			err = ubi_leb_change(c->ubi, lnum, sleb->buf, len,
+					     UBI_UNKNOWN);
+			if (err)
+				return err;
+		}
+	}
+	return 0;
+}
+
+/**
+ * drop_incomplete_group - drop nodes from an incomplete group.
+ * @sleb: scanned LEB information
+ * @offs: offset of dropped nodes is returned here
+ *
+ * This function returns %1 if nodes are dropped and %0 otherwise.
+ */
+static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
+{
+	int dropped = 0;
+
+	while (!list_empty(&sleb->nodes)) {
+		struct ubifs_scan_node *snod;
+		struct ubifs_ch *ch;
+
+		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
+				  list);
+		ch = snod->node;
+		if (ch->group_type != UBIFS_IN_NODE_GROUP)
+			return dropped;
+		dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
+		*offs = snod->offs;
+		list_del(&snod->list);
+		kfree(snod);
+		sleb->nodes_cnt -= 1;
+		dropped = 1;
+	}
+	return dropped;
+}
+
+/**
+ * ubifs_recover_leb - scan and recover a LEB.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number
+ * @offs: offset
+ * @sbuf: LEB-sized buffer to use
+ * @grouped: nodes may be grouped for recovery
+ *
+ * This function does a scan of a LEB, but caters for errors that might have
+ * been caused by the unclean unmount from which we are attempting to recover.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
+					 int offs, void *sbuf, int grouped)
+{
+	int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
+	int empty_chkd = 0, start = offs;
+	struct ubifs_scan_leb *sleb;
+	void *buf = sbuf + offs;
+
+	dbg_rcvry("%d:%d", lnum, offs);
+
+	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
+	if (IS_ERR(sleb))
+		return sleb;
+
+	if (sleb->ecc)
+		need_clean = 1;
+
+	while (len >= 8) {
+		int ret;
+
+		dbg_scan("look at LEB %d:%d (%d bytes left)",
+			 lnum, offs, len);
+
+		cond_resched();
+
+		/*
+		 * Scan quietly until there is an error from which we cannot
+		 * recover
+		 */
+		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
+
+		if (ret == SCANNED_A_NODE) {
+			/* A valid node, and not a padding node */
+			struct ubifs_ch *ch = buf;
+			int node_len;
+
+			err = ubifs_add_snod(c, sleb, buf, offs);
+			if (err)
+				goto error;
+			node_len = ALIGN(le32_to_cpu(ch->len), 8);
+			offs += node_len;
+			buf += node_len;
+			len -= node_len;
+			continue;
+		}
+
+		if (ret > 0) {
+			/* Padding bytes or a valid padding node */
+			offs += ret;
+			buf += ret;
+			len -= ret;
+			continue;
+		}
+
+		if (ret == SCANNED_EMPTY_SPACE) {
+			if (!is_empty(buf, len)) {
+				if (!is_last_write(c, buf, offs))
+					break;
+				clean_buf(c, &buf, lnum, &offs, &len);
+				need_clean = 1;
+			}
+			empty_chkd = 1;
+			break;
+		}
+
+		if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
+			if (is_last_write(c, buf, offs)) {
+				clean_buf(c, &buf, lnum, &offs, &len);
+				need_clean = 1;
+				empty_chkd = 1;
+				break;
+			}
+
+		if (ret == SCANNED_A_CORRUPT_NODE)
+			if (no_more_nodes(c, buf, len, lnum, offs)) {
+				clean_buf(c, &buf, lnum, &offs, &len);
+				need_clean = 1;
+				empty_chkd = 1;
+				break;
+			}
+
+		if (quiet) {
+			/* Redo the last scan but noisily */
+			quiet = 0;
+			continue;
+		}
+
+		switch (ret) {
+		case SCANNED_GARBAGE:
+			dbg_err("garbage");
+			goto corrupted;
+		case SCANNED_A_CORRUPT_NODE:
+		case SCANNED_A_BAD_PAD_NODE:
+			dbg_err("bad node");
+			goto corrupted;
+		default:
+			dbg_err("unknown");
+			goto corrupted;
+		}
+	}
+
+	if (!empty_chkd && !is_empty(buf, len)) {
+		if (is_last_write(c, buf, offs)) {
+			clean_buf(c, &buf, lnum, &offs, &len);
+			need_clean = 1;
+		} else {
+			ubifs_err("corrupt empty space at LEB %d:%d",
+				  lnum, offs);
+			goto corrupted;
+		}
+	}
+
+	/* Drop nodes from incomplete group */
+	if (grouped && drop_incomplete_group(sleb, &offs)) {
+		buf = sbuf + offs;
+		len = c->leb_size - offs;
+		clean_buf(c, &buf, lnum, &offs, &len);
+		need_clean = 1;
+	}
+
+	if (offs % c->min_io_size) {
+		clean_buf(c, &buf, lnum, &offs, &len);
+		need_clean = 1;
+	}
+
+	ubifs_end_scan(c, sleb, lnum, offs);
+
+	if (need_clean) {
+		err = fix_unclean_leb(c, sleb, start);
+		if (err)
+			goto error;
+	}
+
+	return sleb;
+
+corrupted:
+	ubifs_scanned_corruption(c, lnum, offs, buf);
+	err = -EUCLEAN;
+error:
+	ubifs_err("LEB %d scanning failed", lnum);
+	ubifs_scan_destroy(sleb);
+	return ERR_PTR(err);
+}
+
+/**
+ * get_cs_sqnum - get commit start sequence number.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number of commit start node
+ * @offs: offset of commit start node
+ * @cs_sqnum: commit start sequence number is returned here
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
+			unsigned long long *cs_sqnum)
+{
+	struct ubifs_cs_node *cs_node = NULL;
+	int err, ret;
+
+	dbg_rcvry("at %d:%d", lnum, offs);
+	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
+	if (!cs_node)
+		return -ENOMEM;
+	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
+		goto out_err;
+	err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
+	if (err && err != -EBADMSG)
+		goto out_free;
+	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
+	if (ret != SCANNED_A_NODE) {
+		dbg_err("Not a valid node");
+		goto out_err;
+	}
+	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
+		dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
+		goto out_err;
+	}
+	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
+		dbg_err("CS node cmt_no %llu != current cmt_no %llu",
+			le64_to_cpu(cs_node->cmt_no), c->cmt_no);
+		goto out_err;
+	}
+	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
+	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
+	kfree(cs_node);
+	return 0;
+
+out_err:
+	err = -EINVAL;
+out_free:
+	ubifs_err("failed to get CS sqnum");
+	kfree(cs_node);
+	return err;
+}
+
+/**
+ * ubifs_recover_log_leb - scan and recover a log LEB.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number
+ * @offs: offset
+ * @sbuf: LEB-sized buffer to use
+ *
+ * This function does a scan of a LEB, but caters for errors that might have
+ * been caused by the unclean unmount from which we are attempting to recover.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
+					     int offs, void *sbuf)
+{
+	struct ubifs_scan_leb *sleb;
+	int next_lnum;
+
+	dbg_rcvry("LEB %d", lnum);
+	next_lnum = lnum + 1;
+	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
+		next_lnum = UBIFS_LOG_LNUM;
+	if (next_lnum != c->ltail_lnum) {
+		/*
+		 * We can only recover at the end of the log, so check that the
+		 * next log LEB is empty or out of date.
+		 */
+		sleb = ubifs_scan(c, next_lnum, 0, sbuf);
+		if (IS_ERR(sleb))
+			return sleb;
+		if (sleb->nodes_cnt) {
+			struct ubifs_scan_node *snod;
+			unsigned long long cs_sqnum = c->cs_sqnum;
+
+			snod = list_entry(sleb->nodes.next,
+					  struct ubifs_scan_node, list);
+			if (cs_sqnum == 0) {
+				int err;
+
+				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
+				if (err) {
+					ubifs_scan_destroy(sleb);
+					return ERR_PTR(err);
+				}
+			}
+			if (snod->sqnum > cs_sqnum) {
+				ubifs_err("unrecoverable log corruption "
+					  "in LEB %d", lnum);
+				ubifs_scan_destroy(sleb);
+				return ERR_PTR(-EUCLEAN);
+			}
+		}
+		ubifs_scan_destroy(sleb);
+	}
+	return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
+}
+
+/**
+ * recover_head - recover a head.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number of head to recover
+ * @offs: offset of head to recover
+ * @sbuf: LEB-sized buffer to use
+ *
+ * This function ensures that there is no data on the flash at a head location.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int recover_head(const struct ubifs_info *c, int lnum, int offs,
+			void *sbuf)
+{
+	int len, err, need_clean = 0;
+
+	if (c->min_io_size > 1)
+		len = c->min_io_size;
+	else
+		len = 512;
+	if (offs + len > c->leb_size)
+		len = c->leb_size - offs;
+
+	if (!len)
+		return 0;
+
+	/* Read at the head location and check it is empty flash */
+	err = ubi_read(c->ubi, lnum, sbuf, offs, len);
+	if (err)
+		need_clean = 1;
+	else {
+		uint8_t *p = sbuf;
+
+		while (len--)
+			if (*p++ != 0xff) {
+				need_clean = 1;
+				break;
+			}
+	}
+
+	if (need_clean) {
+		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
+		if (offs == 0)
+			return ubifs_leb_unmap(c, lnum);
+		err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
+		if (err)
+			return err;
+		return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
+	}
+
+	return 0;
+}
+
+/**
+ * ubifs_recover_inl_heads - recover index and LPT heads.
+ * @c: UBIFS file-system description object
+ * @sbuf: LEB-sized buffer to use
+ *
+ * This function ensures that there is no data on the flash at the index and
+ * LPT head locations.
+ *
+ * This deals with the recovery of a half-completed journal commit. UBIFS is
+ * careful never to overwrite the last version of the index or the LPT. Because
+ * the index and LPT are wandering trees, data from a half-completed commit will
+ * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
+ * assumed to be empty and will be unmapped anyway before use, or in the index
+ * and LPT heads.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
+{
+	int err;
+
+	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);
+
+	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
+	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
+	if (err)
+		return err;
+
+	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
+	err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
+	if (err)
+		return err;
+
+	return 0;
+}
+
+/**
+ *  clean_an_unclean_leb - read and write a LEB to remove corruption.
+ * @c: UBIFS file-system description object
+ * @ucleb: unclean LEB information
+ * @sbuf: LEB-sized buffer to use
+ *
+ * This function reads a LEB up to a point pre-determined by the mount recovery,
+ * checks the nodes, and writes the result back to the flash, thereby cleaning
+ * off any following corruption, or non-fatal ECC errors.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int clean_an_unclean_leb(const struct ubifs_info *c,
+				struct ubifs_unclean_leb *ucleb, void *sbuf)
+{
+	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
+	void *buf = sbuf;
+
+	dbg_rcvry("LEB %d len %d", lnum, len);
+
+	if (len == 0) {
+		/* Nothing to read, just unmap it */
+		err = ubifs_leb_unmap(c, lnum);
+		if (err)
+			return err;
+		return 0;
+	}
+
+	err = ubi_read(c->ubi, lnum, buf, offs, len);
+	if (err && err != -EBADMSG)
+		return err;
+
+	while (len >= 8) {
+		int ret;
+
+		cond_resched();
+
+		/* Scan quietly until there is an error */
+		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
+
+		if (ret == SCANNED_A_NODE) {
+			/* A valid node, and not a padding node */
+			struct ubifs_ch *ch = buf;
+			int node_len;
+
+			node_len = ALIGN(le32_to_cpu(ch->len), 8);
+			offs += node_len;
+			buf += node_len;
+			len -= node_len;
+			continue;
+		}
+
+		if (ret > 0) {
+			/* Padding bytes or a valid padding node */
+			offs += ret;
+			buf += ret;
+			len -= ret;
+			continue;
+		}
+
+		if (ret == SCANNED_EMPTY_SPACE) {
+			ubifs_err("unexpected empty space at %d:%d",
+				  lnum, offs);
+			return -EUCLEAN;
+		}
+
+		if (quiet) {
+			/* Redo the last scan but noisily */
+			quiet = 0;
+			continue;
+		}
+
+		ubifs_scanned_corruption(c, lnum, offs, buf);
+		return -EUCLEAN;
+	}
+
+	/* Pad to min_io_size */
+	len = ALIGN(ucleb->endpt, c->min_io_size);
+	if (len > ucleb->endpt) {
+		int pad_len = len - ALIGN(ucleb->endpt, 8);
+
+		if (pad_len > 0) {
+			buf = c->sbuf + len - pad_len;
+			ubifs_pad(c, buf, pad_len);
+		}
+	}
+
+	/* Write back the LEB atomically */
+	err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
+	if (err)
+		return err;
+
+	dbg_rcvry("cleaned LEB %d", lnum);
+
+	return 0;
+}
+
+/**
+ * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
+ * @c: UBIFS file-system description object
+ * @sbuf: LEB-sized buffer to use
+ *
+ * This function cleans a LEB identified during recovery that needs to be
+ * written but was not because UBIFS was mounted read-only. This happens when
+ * remounting to read-write mode.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
+{
+	dbg_rcvry("recovery");
+	while (!list_empty(&c->unclean_leb_list)) {
+		struct ubifs_unclean_leb *ucleb;
+		int err;
+
+		ucleb = list_entry(c->unclean_leb_list.next,
+				   struct ubifs_unclean_leb, list);
+		err = clean_an_unclean_leb(c, ucleb, sbuf);
+		if (err)
+			return err;
+		list_del(&ucleb->list);
+		kfree(ucleb);
+	}
+	return 0;
+}
+
+/**
+ * ubifs_recover_gc_lnum - recover the GC LEB number.
+ * @c: UBIFS file-system description object
+ *
+ * Out-of-place garbage collection requires always one empty LEB with which to
+ * start garbage collection. The LEB number is recorded in c->gc_lnum and is
+ * written to the master node on unmounting. In the case of an unclean unmount
+ * the value of gc_lnum recorded in the master node is out of date and cannot
+ * be used. Instead, recovery must allocate an empty LEB for this purpose.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int ubifs_recover_gc_lnum(struct ubifs_info *c)
+{
+	int lnum, err;
+
+	c->gc_lnum = -1;
+	/* Call 'ubifs_find_free_leb_for_idx()' so GC is not run */
+	lnum = ubifs_find_free_leb_for_idx(c);
+	if (lnum < 0)
+		return lnum;
+	/* And reset the index flag */
+	err = ubifs_change_one_lp(c, lnum, -1, -1, 0, LPROPS_INDEX, 0);
+	if (err)
+		return err;
+	c->gc_lnum = lnum;
+	dbg_rcvry("allocated LEB %d for GC", lnum);
+	return 0;
+}
+
+/**
+ * struct size_entry - inode size information for recovery.
+ * @rb: link in the RB-tree of sizes
+ * @inum: inode number
+ * @i_size: size on inode
+ * @d_size: maximum size based on data nodes
+ * @exists: indicates whether the inode exists
+ * @inode: inode if pinned in memory awaiting rw mode to fix it
+ */
+struct size_entry {
+	struct rb_node rb;
+	ino_t inum;
+	loff_t i_size;
+	loff_t d_size;
+	int exists;
+	struct inode *inode;
+};
+
+/**
+ * add_ino - add an entry to the size tree.
+ * @c: UBIFS file-system description object
+ * @inum: inode number
+ * @i_size: size on inode
+ * @d_size: maximum size based on data nodes
+ * @exists: indicates whether the inode exists
+ */
+static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
+		   loff_t d_size, int exists)
+{
+	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
+	struct size_entry *e;
+
+	while (*p) {
+		parent = *p;
+		e = rb_entry(parent, struct size_entry, rb);
+		if (inum < e->inum)
+			p = &(*p)->rb_left;
+		else
+			p = &(*p)->rb_right;
+	}
+
+	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
+	if (!e)
+		return -ENOMEM;
+
+	e->inum = inum;
+	e->i_size = i_size;
+	e->d_size = d_size;
+	e->exists = exists;
+
+	rb_link_node(&e->rb, parent, p);
+	rb_insert_color(&e->rb, &c->size_tree);
+
+	return 0;
+}
+
+/**
+ * find_ino - find an entry on the size tree.
+ * @c: UBIFS file-system description object
+ * @inum: inode number
+ */
+static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
+{
+	struct rb_node *p = c->size_tree.rb_node;
+	struct size_entry *e;
+
+	while (p) {
+		e = rb_entry(p, struct size_entry, rb);
+		if (inum < e->inum)
+			p = p->rb_left;
+		else if (inum > e->inum)
+			p = p->rb_right;
+		else
+			return e;
+	}
+	return NULL;
+}
+
+/**
+ * remove_ino - remove an entry from the size tree.
+ * @c: UBIFS file-system description object
+ * @inum: inode number
+ */
+static void remove_ino(struct ubifs_info *c, ino_t inum)
+{
+	struct size_entry *e = find_ino(c, inum);
+
+	if (!e)
+		return;
+	rb_erase(&e->rb, &c->size_tree);
+	kfree(e);
+}
+
+/**
+ * ubifs_destroy_size_tree - free resources related to the size tree.
+ * @c: UBIFS file-system description object
+ */
+void ubifs_destroy_size_tree(struct ubifs_info *c)
+{
+	struct rb_node *this = c->size_tree.rb_node;
+	struct size_entry *e;
+
+	while (this) {
+		if (this->rb_left) {
+			this = this->rb_left;
+			continue;
+		} else if (this->rb_right) {
+			this = this->rb_right;
+			continue;
+		}
+		e = rb_entry(this, struct size_entry, rb);
+		if (e->inode)
+			iput(e->inode);
+		this = rb_parent(this);
+		if (this) {
+			if (this->rb_left == &e->rb)
+				this->rb_left = NULL;
+			else
+				this->rb_right = NULL;
+		}
+		kfree(e);
+	}
+	c->size_tree = RB_ROOT;
+}
+
+/**
+ * ubifs_recover_size_accum - accumulate inode sizes for recovery.
+ * @c: UBIFS file-system description object
+ * @key: node key
+ * @deletion: node is for a deletion
+ * @new_size: inode size
+ *
+ * This function has two purposes:
+ *     1) to ensure there are no data nodes that fall outside the inode size
+ *     2) to ensure there are no data nodes for inodes that do not exist
+ * To accomplish those purposes, a rb-tree is constructed containing an entry
+ * for each inode number in the journal that has not been deleted, and recording
+ * the size from the inode node, the maximum size of any data node (also altered
+ * by truncations) and a flag indicating a inode number for which no inode node
+ * was present in the journal.
+ *
+ * Note that there is still the possibility that there are data nodes that have
+ * been committed that are beyond the inode size, however the only way to find
+ * them would be to scan the entire index. Alternatively, some provision could
+ * be made to record the size of inodes at the start of commit, which would seem
+ * very cumbersome for a scenario that is quite unlikely and the only negative
+ * consequence of which is wasted space.
+ *
+ * This functions returns %0 on success and a negative error code on failure.
+ */
+int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
+			     int deletion, loff_t new_size)
+{
+	ino_t inum = key_ino(c, key);
+	struct size_entry *e;
+	int err;
+
+	switch (key_type(c, key)) {
+	case UBIFS_INO_KEY:
+		if (deletion)
+			remove_ino(c, inum);
+		else {
+			e = find_ino(c, inum);
+			if (e) {
+				e->i_size = new_size;
+				e->exists = 1;
+			} else {
+				err = add_ino(c, inum, new_size, 0, 1);
+				if (err)
+					return err;
+			}
+		}
+		break;
+	case UBIFS_DATA_KEY:
+		e = find_ino(c, inum);
+		if (e) {
+			if (new_size > e->d_size)
+				e->d_size = new_size;
+		} else {
+			err = add_ino(c, inum, 0, new_size, 0);
+			if (err)
+				return err;
+		}
+		break;
+	case UBIFS_TRUN_KEY:
+		e = find_ino(c, inum);
+		if (e)
+			e->d_size = new_size;
+		break;
+	}
+	return 0;
+}
+
+/**
+ * fix_size_in_place - fix inode size in place on flash.
+ * @c: UBIFS file-system description object
+ * @e: inode size information for recovery
+ */
+static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
+{
+	struct ubifs_ino_node *ino = c->sbuf;
+	unsigned char *p;
+	union ubifs_key key;
+	int err, lnum, offs, len;
+	loff_t i_size;
+	uint32_t crc;
+
+	/* Locate the inode node LEB number and offset */
+	ino_key_init(c, &key, e->inum);
+	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
+	if (err)
+		goto out;
+	/*
+	 * If the size recorded on the inode node is greater than the size that
+	 * was calculated from nodes in the journal then don't change the inode.
+	 */
+	i_size = le64_to_cpu(ino->size);
+	if (i_size >= e->d_size)
+		return 0;
+	/* Read the LEB */
+	err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size);
+	if (err)
+		goto out;
+	/* Change the size field and recalculate the CRC */
+	ino = c->sbuf + offs;
+	ino->size = cpu_to_le64(e->d_size);
+	len = le32_to_cpu(ino->ch.len);
+	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
+	ino->ch.crc = cpu_to_le32(crc);
+	/* Work out where data in the LEB ends and free space begins */
+	p = c->sbuf;
+	len = c->leb_size - 1;
+	while (p[len] == 0xff)
+		len -= 1;
+	len = ALIGN(len + 1, c->min_io_size);
+	/* Atomically write the fixed LEB back again */
+	err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN);
+	if (err)
+		goto out;
+	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ", e->inum, lnum, offs,
+		  i_size, e->d_size);
+	return 0;
+
+out:
+	ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
+		   e->inum, e->i_size, e->d_size, err);
+	return err;
+}
+
+/**
+ * ubifs_recover_size - recover inode size.
+ * @c: UBIFS file-system description object
+ *
+ * This function attempts to fix inode size discrepancies identified by the
+ * 'ubifs_recover_size_accum()' function.
+ *
+ * This functions returns %0 on success and a negative error code on failure.
+ */
+int ubifs_recover_size(struct ubifs_info *c)
+{
+	struct rb_node *this = rb_first(&c->size_tree);
+
+	while (this) {
+		struct size_entry *e;
+		int err;
+
+		e = rb_entry(this, struct size_entry, rb);
+		if (!e->exists) {
+			union ubifs_key key;
+
+			ino_key_init(c, &key, e->inum);
+			err = ubifs_tnc_lookup(c, &key, c->sbuf);
+			if (err && err != -ENOENT)
+				return err;
+			if (err == -ENOENT) {
+				/* Remove data nodes that have no inode */
+				dbg_rcvry("removing ino %lu", e->inum);
+				err = ubifs_tnc_remove_ino(c, e->inum);
+				if (err)
+					return err;
+				/*
+				 * If we later unmount cleanly without
+				 * committing, the TNC changes will be lost,
+				 * hence we set a flag to ensure a commit is
+				 * done.
+				 */
+				c->recovery_needs_commit = 1;
+			} else {
+				struct ubifs_ino_node *ino = c->sbuf;
+
+				e->exists = 1;
+				e->i_size = le64_to_cpu(ino->size);
+			}
+		}
+		if (e->exists && e->i_size < e->d_size) {
+			if (e->inode == NULL &&
+			    (c->vfs_sb->s_flags & MS_RDONLY)) {
+				/* Fix the inode size and pin it in memory */
+				struct inode *inode;
+
+				inode = ubifs_iget(c->vfs_sb, e->inum);
+				if (IS_ERR(inode))
+					return PTR_ERR(inode);
+				if (inode->i_size < e->d_size) {
+					dbg_rcvry("ino %lu size %lld -> %lld",
+						  e->inum, e->d_size,
+						  inode->i_size);
+					inode->i_size = e->d_size;
+					e->inode = inode;
+					this = rb_next(this);
+					continue;
+				}
+				iput(inode);
+			} else {
+				/* Fix the size in place */
+				err = fix_size_in_place(c, e);
+				if (err) {
+					if (e->inode)
+						/*
+						 * We have changed the inode
+						 * size in memory but failed to
+						 * fix it on flash. Mark it
+						 * dirty without budgeting, and
+						 * hope we don't run out of
+						 * space.
+						 */
+						mark_inode_dirty_sync(e->inode);
+					/*
+					 * We consider that failing to recover
+					 * the size is not fatal, because it
+					 * only affects files that were being
+					 * written without synchronization and
+					 * the only down side is that some space
+					 * may be wasted.
+					 */
+					err = 0;
+				}
+				if (e->inode)
+					iput(e->inode);
+			}
+		}
+		this = rb_next(this);
+		rb_erase(&e->rb, &c->size_tree);
+		kfree(e);
+	}
+	return 0;
+}
-- 
1.5.4.1

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ