lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <e17b7bc27edcb7778747.1213718278@sermon.lab.mkp.net>
Date:	Tue, 17 Jun 2008 11:57:58 -0400
From:	"Martin K. Petersen" <martin.petersen@...cle.com>
To:	jens.axboe@...cle.com, linux-kernel@...r.kernel.org,
	linux-scsi@...r.kernel.org
Subject: [PATCH 3 of 3] block: Data integrity infrastructure documentation

Signed-off-by: Martin K. Petersen <martin.petersen@...cle.com>

---
2 files changed, 361 insertions(+)
Documentation/ABI/testing/sysfs-block  |   34 +++
Documentation/block/data-integrity.txt |  327 ++++++++++++++++++++++++++++++++



diff --git a/Documentation/ABI/testing/sysfs-block b/Documentation/ABI/testing/sysfs-block
--- a/Documentation/ABI/testing/sysfs-block
+++ b/Documentation/ABI/testing/sysfs-block
@@ -26,3 +26,37 @@ Description:
 		I/O statistics of partition <part>. The format is the
 		same as the above-written /sys/block/<disk>/stat
 		format.
+
+
+What:		/sys/block/<disk>/integrity/format
+Date:		June 2008
+Contact:	Martin K. Petersen <martin.petersen@...cle.com>
+Description:
+		Metadata format for integrity capable block device.
+		E.g. T10-DIF-TYPE1-CRC.
+
+
+What:		/sys/block/<disk>/integrity/read_verify
+Date:		June 2008
+Contact:	Martin K. Petersen <martin.petersen@...cle.com>
+Description:
+		Indicates whether the block layer should verify the
+		integrity of read requests serviced by devices that
+		support sending integrity metadata.
+
+
+What:		/sys/block/<disk>/integrity/tag_size
+Date:		June 2008
+Contact:	Martin K. Petersen <martin.petersen@...cle.com>
+Description:
+		Number of bytes of integrity tag space available per
+		512 bytes of data.
+
+
+What:		/sys/block/<disk>/integrity/write_generate
+Date:		June 2008
+Contact:	Martin K. Petersen <martin.petersen@...cle.com>
+Description:
+		Indicates whether the block layer should automatically
+		generate checksums for write requests bound for
+		devices that support receiving integrity metadata.
diff --git a/Documentation/block/data-integrity.txt b/Documentation/block/data-integrity.txt
new file mode 100644
--- /dev/null
+++ b/Documentation/block/data-integrity.txt
@@ -0,0 +1,327 @@
+----------------------------------------------------------------------
+1. INTRODUCTION
+
+Modern filesystems feature checksumming of data and metadata to
+protect against data corruption.  However, the detection of the
+corruption is done at read time which could potentially be months
+after the data was written.  At that point the original data that the
+application tried to write is most likely lost.
+
+The solution is to ensure that the disk is actually storing what the
+application meant it to.  Recent additions to both the SCSI family
+protocols (SBC Data Integrity Field, SCC protection proposal) as well
+as SATA/T13 (External Path Protection) try to remedy this by adding
+support for appending integrity metadata to an I/O.  The integrity
+metadata (or protection information in SCSI terminology) includes a
+checksum for each sector as well as an incrementing counter that
+ensures the individual sectors are written in the right order.  And
+for some protection schemes also that the I/O is written to the right
+place on disk.
+
+Current storage controllers and devices implement various protective
+measures, for instance checksumming and scrubbing.  But these
+technologies are working in their own isolated domains or at best
+between adjacent nodes in the I/O path.  The interesting thing about
+DIF and the other integrity extensions is that the protection format
+is well defined and every node in the I/O path can verify the
+integrity of the I/O and reject it if corruption is detected.  This
+allows not only corruption prevention but also isolation of the point
+of failure.
+
+----------------------------------------------------------------------
+2. THE DATA INTEGRITY EXTENSIONS
+
+As written, the protocol extensions only protect the path between
+controller and storage device.  However, many controllers actually
+allow the operating system to interact with the integrity metadata
+(IMD).  We have been working with several FC/SAS HBA vendors to enable
+the protection information to be transferred to and from their
+controllers.
+
+The SCSI Data Integrity Field works by appending 8 bytes of protection
+information to each sector.  The data + integrity metadata is stored
+in 520 byte sectors on disk.  Data + IMD are interleaved when
+transferred between the controller and target.  The T13 proposal is
+similar.
+
+Because it is highly inconvenient for operating systems to deal with
+520 (and 4104) byte sectors, we approached several HBA vendors and
+encouraged them to allow separation of the data and integrity metadata
+scatter-gather lists.
+
+The controller will interleave the buffers on write and split them on
+read.  This means that the Linux can DMA the data buffers to and from
+host memory without changes to the page cache.
+
+Also, the 16-bit CRC checksum mandated by both the SCSI and SATA specs
+is somewhat heavy to compute in software.  Benchmarks found that
+calculating this checksum had a significant impact on system
+performance for a number of workloads.  Some controllers allow a
+lighter-weight checksum to be used when interfacing with the operating
+system.  Emulex, for instance, supports the TCP/IP checksum instead.
+The IP checksum received from the OS is converted to the 16-bit CRC
+when writing and vice versa.  This allows the integrity metadata to be
+generated by Linux or the application at very low cost (comparable to
+software RAID5).
+
+The IP checksum is weaker than the CRC in terms of detecting bit
+errors.  However, the strength is really in the separation of the data
+buffers and the integrity metadata.  These two distinct buffers much
+match up for an I/O to complete.
+
+The separation of the data and integrity metadata buffers as well as
+the choice in checksums is referred to as the Data Integrity
+Extensions.  As these extensions are outside the scope of the protocol
+bodies (T10, T13), Oracle and its partners are trying to standardize
+them within the Storage Networking Industry Association.
+
+----------------------------------------------------------------------
+3. KERNEL CHANGES
+
+The data integrity framework in Linux enables protection information
+to be pinned to I/Os and sent to/received from controllers that
+support it.
+
+The advantage to the integrity extensions in SCSI and SATA is that
+they enable us to protect the entire path from application to storage
+device.  However, at the same time this is also the biggest
+disadvantage. It means that the protection information must be in a
+format that can be understood by the disk.
+
+Generally Linux/POSIX applications are agnostic to the intricacies of
+the storage devices they are accessing.  The virtual filesystem switch
+and the block layer make things like hardware sector size and
+transport protocols completely transparent to the application.
+
+However, this level of detail is required when preparing the
+protection information to send to a disk.  Consequently, the very
+concept of an end-to-end protection scheme is a layering violation.
+It is completely unreasonable for an application to be aware whether
+it is accessing a SCSI or SATA disk.
+
+The data integrity support implemented in Linux attempts to hide this
+from the application.  As far as the application (and to some extent
+the kernel) is concerned, the integrity metadata is opaque information
+that's attached to the I/O.
+
+The current implementation allows the block layer to automatically
+generate the protection information for any I/O.  Eventually the
+intent is to move the integrity metadata calculation to userspace for
+user data.  Metadata and other I/O that originates within the kernel
+will still use the automatic generation interface.
+
+Some storage devices allow each hardware sector to be tagged with a
+16-bit value.  The owner of this tag space is the owner of the block
+device.  I.e. the filesystem in most cases.  The filesystem can use
+this extra space to tag sectors as they see fit.  Because the tag
+space is limited, the block interface allows tagging bigger chunks by
+way of interleaving.  This way, 8*16 bits of information can be
+attached to a typical 4KB filesystem block.
+
+This also means that applications such as fsck and mkfs will need
+access to manipulate the tags from user space.  A passthrough
+interface for this is being worked on.
+
+
+----------------------------------------------------------------------
+4. BLOCK LAYER IMPLEMENTATION DETAILS
+
+4.1 BIO
+
+The data integrity patches add a new field to struct bio when
+CONFIG_BLK_DEV_INTEGRITY is enabled.  bio->bi_integrity is a pointer
+to a struct bip which contains the bio integrity payload.  Essentially
+a bip is a trimmed down struct bio which holds a bio_vec containing
+the integrity metadata and the required housekeeping information (bvec
+pool, vector count, etc.)
+
+A kernel subsystem can enable data integrity protection on a bio by
+calling bio_integrity_alloc(bio).  This will allocate and attach the
+bip to the bio.
+
+Individual pages containing integrity metadata can subsequently be
+attached using bio_integrity_add_page().
+
+bio_free() will automatically free the bip.
+
+
+4.2 BLOCK DEVICE
+
+Because the format of the protection data is tied to the physical
+disk, each block device has been extended with a block integrity
+profile (struct blk_integrity).  This optional profile is registered
+with the block layer using blk_integrity_register().
+
+The profile contains callback functions for generating and verifying
+the protection data, as well as getting and setting application tags.
+The profile also contains a few constants to aid in completing,
+merging and splitting the integrity metadata.
+
+Layered block devices will need to pick a profile that's appropriate
+for all subdevices.  blk_integrity_compare() can help with that.  DM
+and MD linear, RAID0 and RAID1 are currently supported.  RAID4/5/6
+will require extra work due to the application tag.
+
+
+----------------------------------------------------------------------
+5.0 BLOCK LAYER INTEGRITY API
+
+5.1 NORMAL FILESYSTEM
+
+    The normal filesystem is unaware that the underlying block device
+    is capable of sending/receiving integrity metadata.  The IMD will
+    be automatically generated by the block layer at submit_bio() time
+    in case of a WRITE.  A READ request will cause the I/O integrity
+    to be verified upon completion.
+
+    IMD generation and verification can be toggled using the
+
+      /sys/block/<bdev>/integrity/write_generate
+
+    and
+
+      /sys/block/<bdev>/integrity/read_verify
+
+    flags.
+
+
+5.2 INTEGRITY-AWARE FILESYSTEM
+
+    A filesystem that is integrity-aware can prepare I/Os with IMD
+    attached.  It can also use the application tag space if this is
+    supported by the block device.
+
+
+    int bdev_integrity_enabled(block_device, int rw);
+
+      bdev_integrity_enabled() will return 1 if the block device
+      supports integrity metadata transfer for the data direction
+      specified in 'rw'.
+
+      bdev_integrity_enabled() honors the write_generate and
+      read_verify flags in sysfs and will respond accordingly.
+
+
+    int bio_integrity_prep(bio);
+
+      To generate IMD for WRITE and to set up buffers for READ, the
+      filesystem must call bio_integrity_prep(bio).
+
+      Prior to calling this function, the bio data direction and start
+      sector must be set, and the bio should have all data pages
+      added.  It is up to the caller to ensure that the bio does not
+      change while I/O is in progress.
+
+      bio_integrity_prep() should only be called if
+      bio_integrity_enabled() returned 1.
+
+
+    int bio_integrity_tag_size(bio);
+
+      If the filesystem wants to use the application tag space it will
+      first have to find out how much storage space is available.
+      Because tag space is generally limited (usually 2 bytes per
+      sector regardless of sector size), the integrity framework
+      supports interleaving the information between the sectors in an
+      I/O.
+
+      Filesystems can call bio_integrity_tag_size(bio) to find out how
+      many bytes of storage are available for that particular bio.
+
+      Another option is bdev_get_tag_size(block_device) which will
+      return the number of available bytes per hardware sector.
+
+
+    int bio_integrity_set_tag(bio, void *tag_buf, len);
+
+      After a successful return from bio_integrity_prep(),
+      bio_integrity_set_tag() can be used to attach an opaque tag
+      buffer to a bio.  Obviously this only makes sense if the I/O is
+      a WRITE.
+
+
+    int bio_integrity_get_tag(bio, void *tag_buf, len);
+
+      Similarly, at READ I/O completion time the filesystem can
+      retrieve the tag buffer using bio_integrity_get_tag().
+
+
+6.3 PASSING EXISTING INTEGRITY METADATA
+
+    Filesystems that either generate their own integrity metadata or
+    are capable of transferring IMD from user space can use the
+    following calls:
+
+
+    struct bip * bio_integrity_alloc(bio, gfp_mask, nr_pages);
+
+      Allocates the bio integrity payload and hangs it off of the bio.
+      nr_pages indicate how many pages of protection data need to be
+      stored in the integrity bio_vec list (similar to bio_alloc()).
+
+      The integrity payload will be freed at bio_free() time.
+
+
+    int bio_integrity_add_page(bio, page, len, offset);
+
+      Attaches a page containing integrity metadata to an existing
+      bio.  The bio must have an existing bip,
+      i.e. bio_integrity_alloc() must have been called.  For a WRITE,
+      the integrity metadata in the pages must be in a format
+      understood by the target device with the notable exception that
+      the sector numbers will be remapped as the request traverses the
+      I/O stack.  This implies that the pages added using this call
+      will be modified during I/O!  The first reference tag in the
+      integrity metadata must have a value of bip->bip_sector.
+
+      Pages can be added using bio_integrity_add_page() as long as
+      there is room in the bip bio_vec array (nr_pages).
+
+      Upon completion of a READ operation, the attached pages will
+      contain the integrity metadata received from the storage device.
+      It is up to the receiver to process them and verify data
+      integrity upon completion.
+
+
+6.4 REGISTERING A BLOCK DEVICE AS CAPABLE OF EXCHANGING INTEGRITY
+    METADATA
+
+    To enable integrity exchange on a block device the gendisk must be
+    registered as capable:
+
+    int blk_integrity_register(gendisk, blk_integrity);
+
+      The blk_integrity struct is a template and should contain the
+      following:
+
+        static struct blk_integrity my_profile = {
+            .name                   = "STANDARDSBODY-TYPE-VARIANT-CSUM",
+            .generate_fn            = my_generate_fn,
+       	    .verify_fn              = my_verify_fn,
+       	    .get_tag_fn             = my_get_tag_fn,
+       	    .set_tag_fn             = my_set_tag_fn,
+	    .tuple_size             = sizeof(struct my_tuple_size),
+	    .tag_size               = <tag bytes per hw sector>,
+        };
+
+      'name' is a text string which will be visible in sysfs.  This is
+      part of the userland API so chose it carefully and never change
+      it.  The format is standards body-type-variant.
+      E.g. T10-DIF-TYPE1-IP or T13-EPP-0-CRC.
+
+      'generate_fn' generates appropriate integrity metadata (for WRITE).
+
+      'verify_fn' verifies that the data buffer matches the integrity
+      metadata.
+
+      'tuple_size' must be set to match the size of the integrity
+      metadata per sector.  I.e. 8 for DIF and EPP.
+
+      'tag_size' must be set to identify how many bytes of tag space
+      are available per hardware sector.  For DIF this is either 2 or
+      0 depending on the value of the Control Mode Page ATO bit.
+
+      See 6.2 for a description of get_tag_fn and set_tag_fn.
+
+----------------------------------------------------------------------
+2007-12-24 Martin K. Petersen <martin.petersen@...cle.com>


--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ