[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20080819140339.GF7106@linux.vnet.ibm.com>
Date: Tue, 19 Aug 2008 07:03:39 -0700
From: "Paul E. McKenney" <paulmck@...ux.vnet.ibm.com>
To: Manfred Spraul <manfred@...orfullife.com>
Cc: linux-kernel@...r.kernel.org, mingo@...e.hu,
akpm@...ux-foundation.org, oleg@...sign.ru, dipankar@...ibm.com,
rostedt@...dmis.org, dvhltc@...ibm.com, niv@...ibm.com
Subject: Re: [PATCH tip/core/rcu] classic RCU locking and memory-barrier
cleanups
On Tue, Aug 19, 2008 at 12:48:33PM +0200, Manfred Spraul wrote:
> Hi Paul,
>
> You are beating me: I've just finished a my implementation, it's attached.
> It boots with qemu, rcu torture enabled, both single and 8-cpu.
I started about 2.5 weeks ago, so I probably had a head start.
> Two problems are open:
> - right now, I don't use rcu_qsctr_inc() at all.
Hmmm... What do you do instead to detect context switches? Or do you
currently rely completely on scheduling-clock interrupts from idle &c?
> - qlowmark is set to 0, any other value breaks synchronize_rcu().
In my implementation, qlowmark controls only the rate at which callbacks
that have already passed a grace period. You seem to be using it to
delay start of a grace period until there is a reasonably large amount
of work to do. My suggestion would be to add a time delay as well,
so that if (say) 2 jiffies have passed since the first callback was
registered via call_rcu(), start the grace-period processing regardless
of how few callbacks there are.
> And I must read your implementation....
Likewise! I suggest that we each complete our implementations, then
look at what should be taken from each. Seem reasonable?
Thanx, Paul
> --
> Manfred
> /*
> * Read-Copy Update mechanism for mutual exclusion
> *
> * This program is free software; you can redistribute it and/or modify
> * it under the terms of the GNU General Public License as published by
> * the Free Software Foundation; either version 2 of the License, or
> * (at your option) any later version.
> *
> * This program is distributed in the hope that it will be useful,
> * but WITHOUT ANY WARRANTY; without even the implied warranty of
> * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> * GNU General Public License for more details.
> *
> * You should have received a copy of the GNU General Public License
> * along with this program; if not, write to the Free Software
> * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
> *
> * Copyright IBM Corporation, 2001
> *
> * Authors: Dipankar Sarma <dipankar@...ibm.com>
> * Manfred Spraul <manfred@...orfullife.com>
> *
> * Based on the original work by Paul McKenney <paulmck@...ibm.com>
> * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
> * Papers:
> * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
> * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
> *
> * For detailed explanation of Read-Copy Update mechanism see -
> * Documentation/RCU
> *
> * Rewrite based on a global state machine
> * (C) Manfred Spraul <manfred@...orfullife.com>, 2008
> *
> */
> #include <linux/types.h>
> #include <linux/kernel.h>
> #include <linux/init.h>
> #include <linux/spinlock.h>
> #include <linux/smp.h>
> #include <linux/rcupdate.h>
> #include <linux/interrupt.h>
> #include <linux/sched.h>
> #include <asm/atomic.h>
> #include <linux/bitops.h>
> #include <linux/module.h>
> #include <linux/completion.h>
> #include <linux/moduleparam.h>
> #include <linux/percpu.h>
> #include <linux/notifier.h>
> #include <linux/cpu.h>
> #include <linux/mutex.h>
> #include <linux/time.h>
> #include <linux/proc_fs.h>
>
> #ifdef CONFIG_DEBUG_LOCK_ALLOC
> static struct lock_class_key rcu_lock_key;
> struct lockdep_map rcu_lock_map =
> STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
> EXPORT_SYMBOL_GPL(rcu_lock_map);
> #endif
>
> /* Definition for rcupdate control block. */
> static struct rcu_global_state rcu_global_state_normal = {
> .lock = __SEQLOCK_UNLOCKED(&rcu_global_state_normal.lock),
> .state = RCU_STATE_DESTROY,
> .start_immediately = 0,
> .cpus = __RCU_CPUMASK_INIT(&rcu_global_state_normal.cpus)
> };
>
> static struct rcu_global_state rcu_global_state_bh = {
> .lock = __SEQLOCK_UNLOCKED(&rcu_global_state_bh.lock),
> .state = RCU_STATE_DESTROY,
> .start_immediately = 0,
> .cpus = __RCU_CPUMASK_INIT(&rcu_global_state_bh.cpus)
> };
>
> DEFINE_PER_CPU(struct rcu_cpu_state, rcu_cpudata_normal) = { 0L };
> DEFINE_PER_CPU(struct rcu_cpu_state, rcu_cpudata_bh) = { 0L };
> DEFINE_PER_CPU(struct rcu_cpu_dead, rcu_cpudata_dead) = { 0L };
>
>
> /* FIXME: setting qlowmark to non-zero causes a hang.
> * probably someone waits for a rcu completion - but
> * the real rcu cycle is never started because qlowmark is not
> * reached. (e.g. synchronize_rcu()).
> * idea: replace with a timer based delay.
> */
> int qlowmark = 0;
>
> void rcu_cpumask_init(struct rcu_cpumask *rcm)
> {
> BUG_ON(!irqs_disabled());
> spin_lock(&rcm->lock);
> /*
> * Accessing nohz_cpu_mask before incrementing rcp->cur needs a
> * Barrier Otherwise it can cause tickless idle CPUs to be
> * included in rcp->cpumask, which will extend graceperiods
> * unnecessarily.
> */
> smp_mb();
> cpus_andnot(rcm->cpus, cpu_online_map, nohz_cpu_mask);
>
> spin_unlock(&rcm->lock);
> }
>
> int rcu_cpumask_clear_and_test(struct rcu_cpumask *rcm, int cpu)
> {
> int ret = 0;
>
> BUG_ON(!irqs_disabled());
> spin_lock(&rcm->lock);
> cpu_clear(cpu, rcm->cpus);
> if (cpus_empty(rcm->cpus))
> ret = 1;
> spin_unlock(&rcm->lock);
>
> return ret;
> }
>
> long rcu_batches_completed(void)
> {
> return rcu_global_state_normal.completed;
> }
>
> long rcu_batches_completed_bh(void)
> {
> return rcu_global_state_normal.completed;
> }
>
> /**
> * rcu_state_startcycle - start the next rcu cycle
> * @rgs: global rcu state
> *
> * The function starts the next rcu cycle, either immediately or
> * by setting rgs->start_immediately.
> */
> static void rcu_state_startcycle(struct rcu_global_state *rgs)
> {
> unsigned seq;
> int do_real_start;
>
> BUG_ON(!irqs_disabled());
> do {
> seq = read_seqbegin(&rgs->lock);
> if (rgs->start_immediately == 0) {
> do_real_start = 1;
> } else {
> do_real_start = 0;
> BUG_ON(rgs->state == RCU_STATE_DESTROY);
> }
> } while (read_seqretry(&rgs->lock, seq));
>
> if (do_real_start) {
> write_seqlock(&rgs->lock);
> switch(rgs->state) {
> case RCU_STATE_DESTROY_AND_COLLECT:
> case RCU_STATE_GRACE:
> rgs->start_immediately = 1;
> break;
> case RCU_STATE_DESTROY:
> rgs->state = RCU_STATE_DESTROY_AND_COLLECT;
> BUG_ON(rgs->start_immediately);
> rcu_cpumask_init(&rgs->cpus);
> break;
> default:
> BUG();
> }
> write_sequnlock(&rgs->lock);
> }
> }
>
> static void rcu_checkqlen(struct rcu_global_state *rgs, struct rcu_cpu_state *rcs, int inc)
> {
> BUG_ON(!irqs_disabled());
> rcs->newqlen += inc;
> if (unlikely(rcs->newqlen > qlowmark)) {
>
> /* FIXME: actually, this code only needs to run once,
> * i.e. when qlen == qlowmark. But: qlowmark can be changed at runtime.
> * and: doesn't work anyway, see comment near qlowmark
> */
> rcu_state_startcycle(rgs);
> }
> }
>
>
> static void __call_rcu(struct rcu_head *head, struct rcu_global_state *rgs,
> struct rcu_cpu_state *rcs)
> {
> if (rcs->new == NULL)
> rcs->newtail = &head->next;
> head->next = rcs->new;
> rcs->new = head;
>
> rcu_checkqlen(rgs, rcs, 1);
> }
>
> /**
> * call_rcu - Queue an RCU callback for invocation after a grace period.
> * @head: structure to be used for queueing the RCU updates.
> * @func: actual update function to be invoked after the grace period
> *
> * The update function will be invoked some time after a full grace
> * period elapses, in other words after all currently executing RCU
> * read-side critical sections have completed. RCU read-side critical
> * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
> * and may be nested.
> */
> void call_rcu(struct rcu_head *head,
> void (*func)(struct rcu_head *rcu))
> {
> unsigned long flags;
>
> head->func = func;
> local_irq_save(flags);
> __call_rcu(head, &rcu_global_state_normal, &__get_cpu_var(rcu_cpudata_normal));
> local_irq_restore(flags);
> }
> EXPORT_SYMBOL_GPL(call_rcu);
>
> /**
> * call_rcu_bh - Queue an RCU for invocation after a quicker grace period.
> * @head: structure to be used for queueing the RCU updates.
> * @func: actual update function to be invoked after the grace period
> *
> * The update function will be invoked some time after a full grace
> * period elapses, in other words after all currently executing RCU
> * read-side critical sections have completed. call_rcu_bh() assumes
> * that the read-side critical sections end on completion of a softirq
> * handler. This means that read-side critical sections in process
> * context must not be interrupted by softirqs. This interface is to be
> * used when most of the read-side critical sections are in softirq context.
> * RCU read-side critical sections are delimited by rcu_read_lock() and
> * rcu_read_unlock(), * if in interrupt context or rcu_read_lock_bh()
> * and rcu_read_unlock_bh(), if in process context. These may be nested.
> */
> void call_rcu_bh(struct rcu_head *head,
> void (*func)(struct rcu_head *rcu))
> {
> unsigned long flags;
>
> head->func = func;
> local_irq_save(flags);
> __call_rcu(head, &rcu_global_state_bh, &__get_cpu_var(rcu_cpudata_bh));
> local_irq_restore(flags);
> }
> EXPORT_SYMBOL_GPL(call_rcu_bh);
>
> #ifdef CONFIG_HOTPLUG_CPU
>
> /**
> * rcu_bulk_add - bulk add new rcu objects.
> * @rgs: global rcu state
> * @rcs: cpu state
> * @h: linked list of rcu objects.
> *
> * Must be called with enabled local interrupts
> */
> static void rcu_bulk_add(struct rcu_global_state *rgs, struct rcu_cpu_state *rcs, struct rcu_head *h, struct rcu_head **htail, int len)
> {
>
> BUG_ON(irqs_disabled());
>
> if (len > 0) {
> local_irq_disable();
> if (rcs->new) {
> (*htail) = rcs->new;
> rcs->new = h;
> } else {
> rcs->new = h;
> rcs->newtail = htail;
> }
> rcu_checkqlen(rgs, rcs, len);
> local_irq_enable();
> }
> }
>
> #define RCU_BATCH_MIN 100
> #define RCU_BATCH_INCFACTOR 2
> #define RCU_BATCH_DECFACTOR 4
>
> static void rcu_move_and_raise(struct rcu_cpu_state *rcs)
> {
> struct rcu_cpu_dead *rcd = &per_cpu(rcu_cpudata_dead, smp_processor_id());
>
> BUG_ON(!irqs_disabled());
>
> /* update batch limit:
> * - if there are still old entries when new entries are added:
> * double the batch count.
> * - if there are no old entries: reduce it by 25%, but never below 100.
> */
> if (rcd->deadqlen)
> rcd->batchcount = rcd->batchcount*RCU_BATCH_INCFACTOR;
> else
> rcd->batchcount = rcd->batchcount-rcd->batchcount/RCU_BATCH_DECFACTOR;
> if (rcd->batchcount < RCU_BATCH_MIN)
> rcd->batchcount = RCU_BATCH_MIN;
>
> if (rcs->oldqlen) {
> (*rcs->oldtail) = rcd->dead;
> rcd->dead = rcs->old;
> rcd->deadqlen += rcs->oldqlen;
> rcs->old = NULL;
> rcs->oldtail = NULL;
> rcs->oldqlen = 0;
> }
> BUG_ON(rcs->old);
> BUG_ON(rcs->oldtail);
> BUG_ON(rcs->oldqlen);
> raise_softirq(RCU_SOFTIRQ);
> }
>
> static void rcu_state_machine(struct rcu_global_state *rgs, struct rcu_cpu_state *rcs, int is_quiet)
> {
> int inc_state;
> unsigned seq;
> unsigned long flags;
>
> inc_state = 0;
> do {
> seq = read_seqbegin(&rgs->lock);
> local_irq_save(flags);
> if (rgs->state != rcs->state) {
> inc_state = 0;
> switch(rgs->state) {
> case RCU_STATE_DESTROY:
> rcs->state = rgs->state;
> rcu_move_and_raise(rcs);
> break;
> case RCU_STATE_DESTROY_AND_COLLECT:
> rcs->state = rgs->state;
> rcu_move_and_raise(rcs);
> rcs->old = rcs->new;
> rcs->oldtail = rcs->newtail;
> rcs->oldqlen = rcs->newqlen;
> rcs->new = NULL;
> rcs->newtail = NULL;
> rcs->newqlen = 0;
> if (rcu_cpumask_clear_and_test(&rgs->cpus, smp_processor_id()))
> inc_state = 1;
> break;
> case RCU_STATE_GRACE:
> if (is_quiet) {
> rcs->state = rgs->state;
> if (rcu_cpumask_clear_and_test(&rgs->cpus, smp_processor_id()))
> inc_state = 1;
> }
> break;
> default:
> BUG();
> }
> }
> local_irq_restore(flags);
> } while (read_seqretry(&rgs->lock, seq));
>
>
> if (unlikely(inc_state)) {
> local_irq_save(flags);
> write_seqlock(&rgs->lock);
> /*
> * double check for races: If e.g. a new cpu starts up it
> * will call the state machine although it's not listed in the
> * cpumasks. Then multiple cpu could could see the cleared bitmask
> * and try to advance the state. In this case, only the first
> * cpu does something, the remaining incs are ignored.
> */
> if (rgs->state == rcs->state) {
> /*
> * advance the state machine:
> * - from COLLECT to GRACE
> * - from GRACE to DESTROY/COLLECT
> */
> switch(rgs->state) {
> case RCU_STATE_DESTROY_AND_COLLECT:
> rgs->state = RCU_STATE_GRACE;
> rcu_cpumask_init(&rgs->cpus);
> break;
> case RCU_STATE_GRACE:
> rgs->completed++;
> if (rgs->start_immediately) {
> rgs->state = RCU_STATE_DESTROY_AND_COLLECT;
> rcu_cpumask_init(&rgs->cpus);
> } else {
> rgs->state = RCU_STATE_DESTROY;
> }
> rgs->start_immediately = 0;
> break;
> default:
> BUG();
> }
> }
> write_sequnlock(&rgs->lock);
> local_irq_restore(flags);
> }
> }
>
> static void __rcu_offline_cpu(struct rcu_global_state *rgs, struct rcu_cpu_state *this_rcs,
> struct rcu_cpu_state *other_rcs, int cpu)
> {
> /* task 1: move all entries from the new cpu into the lists of the current cpu.
> * locking: The other cpu is dead, thus no locks are required.
> * Thus it's more or less a bulk call_rcu().
> * For the sake of simplicity, all objects are treated as "new", even the objects
> * that are already in old.
> */
> rcu_bulk_add(rgs, this_rcs, other_rcs->new, other_rcs->newtail, other_rcs->newqlen);
> rcu_bulk_add(rgs, this_rcs, other_rcs->old, other_rcs->oldtail, other_rcs->oldqlen);
>
>
> /* task 2: handle the cpu bitmask of the other cpu
> * We know that the other cpu is dead, thus it's guaranteed not to be holding
> * any pointers to rcu protected objects.
> */
>
> rcu_state_machine(rgs, other_rcs, 1);
> }
>
> static void rcu_offline_cpu(int cpu)
> {
> struct rcu_cpu_state *this_rcs_normal = &get_cpu_var(rcu_cpudata_normal);
> struct rcu_cpu_state *this_rcs_bh = &get_cpu_var(rcu_cpudata_bh);
>
> BUG_ON(irqs_disabled());
>
> __rcu_offline_cpu(&rcu_global_state_normal, this_rcs_normal,
> &per_cpu(rcu_cpudata_normal, cpu), cpu);
> __rcu_offline_cpu(&rcu_global_state_bh, this_rcs_bh,
> &per_cpu(rcu_cpudata_bh, cpu), cpu);
> put_cpu_var(rcu_cpudata_normal);
> put_cpu_var(rcu_cpudata_bh);
>
> BUG_ON(rcu_needs_cpu(cpu));
> }
>
> #else
>
> static void rcu_offline_cpu(int cpu)
> {
> }
>
> #endif
>
> static int __rcu_pending(struct rcu_global_state *rgs, struct rcu_cpu_state *rcs)
> {
> /* quick and dirty check for pending */
> if (rgs->state != rcs->state)
> return 1;
> return 0;
> }
>
> /*
> * Check to see if there is any immediate RCU-related work to be done
> * by the current CPU, returning 1 if so. This function is part of the
> * RCU implementation; it is -not- an exported member of the RCU API.
> */
> int rcu_pending(int cpu)
> {
> return __rcu_pending(&rcu_global_state_normal, &per_cpu(rcu_cpudata_normal, cpu)) ||
> __rcu_pending(&rcu_global_state_bh, &per_cpu(rcu_cpudata_bh, cpu));
> }
>
> /*
> * Check to see if any future RCU-related work will need to be done
> * by the current CPU, even if none need be done immediately, returning
> * 1 if so. This function is part of the RCU implementation; it is -not-
> * an exported member of the RCU API.
> */
> int rcu_needs_cpu(int cpu)
> {
> struct rcu_cpu_state *rcs_normal = &per_cpu(rcu_cpudata_normal, cpu);
> struct rcu_cpu_state *rcs_bh = &per_cpu(rcu_cpudata_bh, cpu);
>
> return !!rcs_normal->new || !!rcs_normal->old ||
> !!rcs_bh->new || !!rcs_bh->old ||
> rcu_pending(cpu);
> }
>
> /**
> * rcu_check_callback(cpu, user) - external entry point for grace checking
> * @cpu: cpu id.
> * @user: user space was interrupted.
> *
> * Top-level function driving RCU grace-period detection, normally
> * invoked from the scheduler-clock interrupt. This function simply
> * increments counters that are read only from softirq by this same
> * CPU, so there are no memory barriers required.
> *
> * This function can run with disabled local interrupts, thus all
> * callees must use local_irq_save()
> */
> void rcu_check_callbacks(int cpu, int user)
> {
> if (user ||
> (idle_cpu(cpu) && !in_softirq() &&
> hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
>
> /*
> * Get here if this CPU took its interrupt from user
> * mode or from the idle loop, and if this is not a
> * nested interrupt. In this case, the CPU is in
> * a quiescent state, so count it.
> *
> */
> rcu_state_machine(&rcu_global_state_normal, &per_cpu(rcu_cpudata_normal, cpu), 1);
> rcu_state_machine(&rcu_global_state_bh, &per_cpu(rcu_cpudata_bh, cpu), 1);
>
> } else if (!in_softirq()) {
>
> /*
> * Get here if this CPU did not take its interrupt from
> * softirq, in other words, if it is not interrupting
> * a rcu_bh read-side critical section. This is an _bh
> * critical section, so count it.
> */
> rcu_state_machine(&rcu_global_state_normal, &per_cpu(rcu_cpudata_normal, cpu), 0);
> rcu_state_machine(&rcu_global_state_bh, &per_cpu(rcu_cpudata_bh, cpu), 1);
> } else {
> /*
> * We are interrupting something. Nevertheless - check if we should collect
> * rcu objects. This can be done from arbitrary context.
> */
> rcu_state_machine(&rcu_global_state_normal, &per_cpu(rcu_cpudata_normal, cpu), 0);
> rcu_state_machine(&rcu_global_state_bh, &per_cpu(rcu_cpudata_bh, cpu), 0);
> }
> }
>
> void rcu_restart_cpu(int cpu)
> {
> BUG_ON(per_cpu(rcu_cpudata_normal, cpu).new != NULL);
> BUG_ON(per_cpu(rcu_cpudata_normal, cpu).old != NULL);
> per_cpu(rcu_cpudata_normal, cpu).state = RCU_STATE_DESTROY;
>
> BUG_ON(per_cpu(rcu_cpudata_bh, cpu).new != NULL);
> BUG_ON(per_cpu(rcu_cpudata_bh, cpu).old != NULL);
> per_cpu(rcu_cpudata_bh, cpu).state = RCU_STATE_DESTROY;
> }
>
> /*
> * Invoke the completed RCU callbacks.
> */
> static void rcu_do_batch(struct rcu_cpu_dead *rcd)
> {
> struct rcu_head *list;
> int i, count;
>
> if (!rcd->deadqlen)
> return;
>
> /* step 1: pull up to rcs->batchcount objects */
> BUG_ON(irqs_disabled());
> local_irq_disable();
>
> if (rcd->deadqlen > rcd->batchcount) {
> struct rcu_head *walk;
>
> list = rcd->dead;
> count = rcd->batchcount;
>
> walk = rcd->dead;
> for (i=0;i<count;i++)
> walk = walk->next;
> rcd->dead = walk;
>
> } else {
> list = rcd->dead;
> count = rcd->deadqlen;
>
> rcd->dead = NULL;
> }
> rcd->deadqlen -= count;
> BUG_ON(rcd->deadqlen < 0);
>
> local_irq_enable();
>
> /* step 2: call the rcu callbacks */
>
> for (i=0;i<count;i++) {
> struct rcu_head *next;
>
> next = list->next;
> prefetch(next);
> list->func(list);
> list = next;
> }
>
> /* step 3: if still entries left, raise the softirq again */
> if (rcd->deadqlen)
> raise_softirq(RCU_SOFTIRQ);
> }
>
> static void rcu_process_callbacks(struct softirq_action *unused)
> {
> rcu_do_batch(&per_cpu(rcu_cpudata_dead, smp_processor_id()));
> }
>
> static void rcu_init_percpu_data(struct rcu_global_state *rgs, struct rcu_cpu_state *rcs)
> {
> rcs->new = rcs->old = NULL;
> rcs->newqlen = rcs->oldqlen = 0;
> rcs->state = RCU_STATE_DESTROY;
> }
>
> static void __cpuinit rcu_online_cpu(int cpu)
> {
> rcu_init_percpu_data(&rcu_global_state_normal, &per_cpu(rcu_cpudata_normal, cpu));
> rcu_init_percpu_data(&rcu_global_state_bh, &per_cpu(rcu_cpudata_bh, cpu));
>
> per_cpu(rcu_cpudata_dead, cpu).dead = NULL;
> per_cpu(rcu_cpudata_dead, cpu).deadqlen = 0;
> per_cpu(rcu_cpudata_dead, cpu).batchcount = RCU_BATCH_MIN;
>
> open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
> }
>
> static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
> unsigned long action, void *hcpu)
> {
> long cpu = (long)hcpu;
>
> switch (action) {
> case CPU_UP_PREPARE:
> case CPU_UP_PREPARE_FROZEN:
> rcu_online_cpu(cpu);
> break;
> case CPU_DEAD:
> case CPU_DEAD_FROZEN:
> rcu_offline_cpu(cpu);
> break;
> default:
> break;
> }
> return NOTIFY_OK;
> }
>
> static struct notifier_block __cpuinitdata rcu_nb = {
> .notifier_call = rcu_cpu_notify,
> };
>
> /*
> * Initializes rcu mechanism. Assumed to be called early.
> * That is before local timer(SMP) or jiffie timer (uniproc) is setup.
> * Note that rcu_qsctr and friends are implicitly
> * initialized due to the choice of ``0'' for RCU_CTR_INVALID.
> */
> void __init __rcu_init(void)
> {
> rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE,
> (void *)(long)smp_processor_id());
> /* Register notifier for non-boot CPUs */
> register_cpu_notifier(&rcu_nb);
> }
>
> module_param(qlowmark, int, 0);
>
>
> /*
> * Read-Copy Update mechanism for mutual exclusion (classic version)
> *
> * This program is free software; you can redistribute it and/or modify
> * it under the terms of the GNU General Public License as published by
> * the Free Software Foundation; either version 2 of the License, or
> * (at your option) any later version.
> *
> * This program is distributed in the hope that it will be useful,
> * but WITHOUT ANY WARRANTY; without even the implied warranty of
> * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> * GNU General Public License for more details.
> *
> * You should have received a copy of the GNU General Public License
> * along with this program; if not, write to the Free Software
> * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
> *
> * Copyright IBM Corporation, 2001
> *
> * Author: Dipankar Sarma <dipankar@...ibm.com>
> *
> * Based on the original work by Paul McKenney <paulmck@...ibm.com>
> * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
> * Papers:
> * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
> * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
> *
> * For detailed explanation of Read-Copy Update mechanism see -
> * Documentation/RCU
> *
> * Rewrite based on a global state machine
> * (C) Manfred Spraul <manfred@...orfullife.com>, 2008
> */
>
> #ifndef __LINUX_RCUCLASSIC_H
> #define __LINUX_RCUCLASSIC_H
>
> #include <linux/cache.h>
> #include <linux/spinlock.h>
> #include <linux/threads.h>
> #include <linux/percpu.h>
> #include <linux/cpumask.h>
> #include <linux/seqlock.h>
> #include <linux/cpumask.h>
>
> /*
> * cpu bitmask:
> * default implementation, flat without hierarchy, not optimized for UP.
> */
>
> struct rcu_cpumask {
> spinlock_t lock;
> cpumask_t cpus;
> } ____cacheline_internodealigned_in_smp;
>
> #define __RCU_CPUMASK_INIT(ptr) { .lock = __SPIN_LOCK_UNLOCKED(&(ptr)->lock) }
>
> /*
> * global state machine:
> * - each cpu regularly check the global state and compares it with it's own local state.
> * - if both state do not match, then the cpus do the required work and afterwards
> * - update their local state
> * - clear their bit in the cpu bitmask.
> * The state machine is sequence lock protected. It's only read with disabled local interupts.
> * Since all cpus must do something to complete a state change, the current state cannot
> * jump forward by more than one state.
> */
>
> /* RCU_STATE_DESTROY:
> * call callbacks that were registered by call_rcu for the objects in rcu_cpu_state.old
> */
> #define RCU_STATE_DESTROY 1
> /* RCU_STATE_DESTROY_AND_COLLECT:
> * - call callbacks that were registered by call_rcu for the objects in rcu_cpu_state.old
> * - move the objects from rcu_cpu_state.new to rcu_cpu_state.new
> */
> #define RCU_STATE_DESTROY_AND_COLLECT 2
> /* RCU_STATE_GRACE
> * - wait for a quiescent state
> */
> #define RCU_STATE_GRACE 3
>
> struct rcu_global_state {
> seqlock_t lock;
> int state;
> int start_immediately;
> long completed;
> struct rcu_cpumask cpus;
> } ____cacheline_internodealigned_in_smp;
>
> struct rcu_cpu_state {
>
> int state;
>
> /* new objects, directly from call_rcu().
> * objects are added LIFO, better for cache hits.
> * the list are length-based, not NULL-terminated.
> */
> struct rcu_head *new; /* new objects */
> struct rcu_head **newtail;
> long newqlen; /* # of queued callbacks */
>
> /* objects that are in rcu grace processing. The actual
> * state depends on rgs->state.
> */
> struct rcu_head *old;
> struct rcu_head **oldtail;
> long oldqlen;
> };
>
> struct rcu_cpu_dead {
> /* objects that are scheduled for immediate call of
> * ->func().
> * objects are added FIFO, necessary for forward progress.
> * only one structure for _bh and _normal.
> */
> struct rcu_head *dead;
> long deadqlen;
>
> long batchcount;
> };
>
> DECLARE_PER_CPU(struct rcu_cpu_state, rcu_cpudata_normal);
> DECLARE_PER_CPU(struct rcu_cpu_state, rcu_cpudata_bh);
> DECLARE_PER_CPU(struct rcu_cpu_dead, rcu_cpudata_dead);
>
> extern long rcu_batches_completed(void);
> extern long rcu_batches_completed_bh(void);
>
> extern int rcu_pending(int cpu);
> extern int rcu_needs_cpu(int cpu);
>
> #ifdef CONFIG_DEBUG_LOCK_ALLOC
> extern struct lockdep_map rcu_lock_map;
> # define rcu_read_acquire() \
> lock_acquire(&rcu_lock_map, 0, 0, 2, 1, _THIS_IP_)
> # define rcu_read_release() lock_release(&rcu_lock_map, 1, _THIS_IP_)
> #else
> # define rcu_read_acquire() do { } while (0)
> # define rcu_read_release() do { } while (0)
> #endif
>
> #define __rcu_read_lock() \
> do { \
> preempt_disable(); \
> __acquire(RCU); \
> rcu_read_acquire(); \
> } while (0)
> #define __rcu_read_unlock() \
> do { \
> rcu_read_release(); \
> __release(RCU); \
> preempt_enable(); \
> } while (0)
> #define __rcu_read_lock_bh() \
> do { \
> local_bh_disable(); \
> __acquire(RCU_BH); \
> rcu_read_acquire(); \
> } while (0)
> #define __rcu_read_unlock_bh() \
> do { \
> rcu_read_release(); \
> __release(RCU_BH); \
> local_bh_enable(); \
> } while (0)
>
> #define __synchronize_sched() synchronize_rcu()
>
> #define call_rcu_sched(head, func) call_rcu(head, func)
>
> extern void __rcu_init(void);
> #define rcu_init_sched() do { } while (0)
> extern void rcu_check_callbacks(int cpu, int user);
> extern void rcu_restart_cpu(int cpu);
>
>
> #define rcu_enter_nohz() do { } while (0)
> #define rcu_exit_nohz() do { } while (0)
>
> #define rcu_qsctr_inc(cpu) do { } while (0)
> #define rcu_bh_qsctr_inc(cpu) do { } while (0)
>
> #endif /* __LINUX_RCUCLASSIC_H */
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists