[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20090112121424.GC27129@balbir.in.ibm.com>
Date: Mon, 12 Jan 2009 17:44:24 +0530
From: Balbir Singh <balbir@...ux.vnet.ibm.com>
To: KAMEZAWA Hiroyuki <kamezawa.hiroyu@...fujitsu.com>
Cc: "linux-mm@...ck.org" <linux-mm@...ck.org>,
"linux-kernel@...r.kernel.org" <linux-kernel@...r.kernel.org>,
"nishimura@....nes.nec.co.jp" <nishimura@....nes.nec.co.jp>,
"lizf@...fujitsu.com" <lizf@...fujitsu.com>,
"menage@...gle.com" <menage@...gle.com>
Subject: Re: [RFC][PATCH 2/4] memcg: use CSS ID in memcg
* KAMEZAWA Hiroyuki <kamezawa.hiroyu@...fujitsu.com> [2009-01-08 18:30:03]:
>
> From: KAMEZAWA Hiroyuki <kamezawa.hiroyu@...fujitsu.com>
> Use css ID in memcg.
>
> Assigning CSS ID for each memcg and use css_get_next() for scanning hierarchy.
>
> Assume folloing tree.
>
> group_A (ID=3)
> /01 (ID=4)
> /0A (ID=7)
> /02 (ID=10)
> group_B (ID=5)
> and task in group_A/01/0A hits limit at group_A.
>
> reclaim will be done in following order (round-robin).
> group_A(3) -> group_A/01 (4) -> group_A/01/0A (7) -> group_A/02(10)
> -> group_A -> .....
>
> Round robin by ID. The last visited cgroup is recorded and restart
> from it when it start reclaim again.
> (More smart algorithm can be implemented..)
>
> No cgroup_mutex or hierarchy_mutex is required.
>
> Changelog (v1) -> (v2)
> - Updated texts.
>
> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@...fujitsu.com>
>
> ---
> mm/memcontrol.c | 219 ++++++++++++++++++++------------------------------------
> 1 file changed, 81 insertions(+), 138 deletions(-)
>
> Index: mmotm-2.6.28-Jan7/mm/memcontrol.c
> ===================================================================
> --- mmotm-2.6.28-Jan7.orig/mm/memcontrol.c
> +++ mmotm-2.6.28-Jan7/mm/memcontrol.c
> @@ -154,9 +154,10 @@ struct mem_cgroup {
>
> /*
> * While reclaiming in a hiearchy, we cache the last child we
> - * reclaimed from. Protected by hierarchy_mutex
> + * reclaimed from.
> */
> - struct mem_cgroup *last_scanned_child;
> + int last_scanned_child;
> + unsigned long scan_age;
A comment describing what scan_age represents and how it impacts
reclaim would be nice to have
> /*
> * Should the accounting and control be hierarchical, per subtree?
> */
> @@ -613,103 +614,6 @@ unsigned long mem_cgroup_isolate_pages(u
> #define mem_cgroup_from_res_counter(counter, member) \
> container_of(counter, struct mem_cgroup, member)
>
> -/*
> - * This routine finds the DFS walk successor. This routine should be
> - * called with hierarchy_mutex held
> - */
> -static struct mem_cgroup *
> -mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
> -{
> - struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
> -
> - curr_cgroup = curr->css.cgroup;
> - root_cgroup = root_mem->css.cgroup;
> -
> - if (!list_empty(&curr_cgroup->children)) {
> - /*
> - * Walk down to children
> - */
> - mem_cgroup_put(curr);
> - cgroup = list_entry(curr_cgroup->children.next,
> - struct cgroup, sibling);
> - curr = mem_cgroup_from_cont(cgroup);
> - mem_cgroup_get(curr);
> - goto done;
> - }
> -
> -visit_parent:
> - if (curr_cgroup == root_cgroup) {
> - mem_cgroup_put(curr);
> - curr = root_mem;
> - mem_cgroup_get(curr);
> - goto done;
> - }
> -
> - /*
> - * Goto next sibling
> - */
> - if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
> - mem_cgroup_put(curr);
> - cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
> - sibling);
> - curr = mem_cgroup_from_cont(cgroup);
> - mem_cgroup_get(curr);
> - goto done;
> - }
> -
> - /*
> - * Go up to next parent and next parent's sibling if need be
> - */
> - curr_cgroup = curr_cgroup->parent;
> - goto visit_parent;
> -
> -done:
> - root_mem->last_scanned_child = curr;
> - return curr;
> -}
> -
> -/*
> - * Visit the first child (need not be the first child as per the ordering
> - * of the cgroup list, since we track last_scanned_child) of @mem and use
> - * that to reclaim free pages from.
> - */
> -static struct mem_cgroup *
> -mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
> -{
> - struct cgroup *cgroup;
> - struct mem_cgroup *ret;
> - bool obsolete;
> -
> - obsolete = mem_cgroup_is_obsolete(root_mem->last_scanned_child);
> -
> - /*
> - * Scan all children under the mem_cgroup mem
> - */
> - mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
> - if (list_empty(&root_mem->css.cgroup->children)) {
> - ret = root_mem;
> - goto done;
> - }
> -
> - if (!root_mem->last_scanned_child || obsolete) {
> -
> - if (obsolete && root_mem->last_scanned_child)
> - mem_cgroup_put(root_mem->last_scanned_child);
> -
> - cgroup = list_first_entry(&root_mem->css.cgroup->children,
> - struct cgroup, sibling);
> - ret = mem_cgroup_from_cont(cgroup);
> - mem_cgroup_get(ret);
> - } else
> - ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
> - root_mem);
> -
> -done:
> - root_mem->last_scanned_child = ret;
> - mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
> - return ret;
> -}
> -
> static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
> {
> if (do_swap_account) {
> @@ -739,49 +643,84 @@ static unsigned int get_swappiness(struc
> }
>
> /*
> - * Dance down the hierarchy if needed to reclaim memory. We remember the
> - * last child we reclaimed from, so that we don't end up penalizing
> - * one child extensively based on its position in the children list.
> + * Visit the first child (need not be the first child as per the ordering
> + * of the cgroup list, since we track last_scanned_child) of @mem and use
> + * that to reclaim free pages from.
> + */
> +static struct mem_cgroup *
> +mem_cgroup_select_victim(struct mem_cgroup *root_mem)
> +{
> + struct mem_cgroup *ret = NULL;
> + struct cgroup_subsys_state *css;
> + int nextid, found;
> +
> + if (!root_mem->use_hierarchy) {
> + spin_lock(&root_mem->reclaim_param_lock);
> + root_mem->scan_age++;
> + spin_unlock(&root_mem->reclaim_param_lock);
> + css_get(&root_mem->css);
> + ret = root_mem;
> + }
> +
> + while (!ret) {
> + rcu_read_lock();
> + nextid = root_mem->last_scanned_child + 1;
> + css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
> + &found);
> + if (css && css_tryget(css))
> + ret = container_of(css, struct mem_cgroup, css);
> +
> + rcu_read_unlock();
> + /* Updates scanning parameter */
> + spin_lock(&root_mem->reclaim_param_lock);
> + if (!css) {
> + /* this means start scan from ID:1 */
> + root_mem->last_scanned_child = 0;
> + root_mem->scan_age++;
> + } else
> + root_mem->last_scanned_child = found;
> + spin_unlock(&root_mem->reclaim_param_lock);
> + }
> +
> + return ret;
> +}
> +
> +/*
> + * Scan the hierarchy if needed to reclaim memory. We remember the last child
> + * we reclaimed from, so that we don't end up penalizing one child extensively
> + * based on its position in the children list.
> *
> * root_mem is the original ancestor that we've been reclaim from.
> + *
> + * scan_age is updated every time when select_victim returns "root" and
> + * it's shared under system (per hierarchy root).
> + *
> + * We give up and return to the caller when scan_age is increased by 2. This
> + * means try_to_free_mem_cgroup_pages() is called against all children cgroup,
> + * at least once. The caller itself will do further retry if necessary.
> */
> static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
> gfp_t gfp_mask, bool noswap)
> {
> - struct mem_cgroup *next_mem;
> - int ret = 0;
> -
> - /*
> - * Reclaim unconditionally and don't check for return value.
> - * We need to reclaim in the current group and down the tree.
> - * One might think about checking for children before reclaiming,
> - * but there might be left over accounting, even after children
> - * have left.
> - */
> - ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
> - get_swappiness(root_mem));
> - if (mem_cgroup_check_under_limit(root_mem))
> - return 0;
> - if (!root_mem->use_hierarchy)
> - return ret;
> -
> - next_mem = mem_cgroup_get_first_node(root_mem);
> -
> - while (next_mem != root_mem) {
> - if (mem_cgroup_is_obsolete(next_mem)) {
> - mem_cgroup_put(next_mem);
> - next_mem = mem_cgroup_get_first_node(root_mem);
> - continue;
> - }
> - ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
> - get_swappiness(next_mem));
> + struct mem_cgroup *victim;
> + unsigned long start_age;
> + int ret, total = 0;
> + /*
> + * Reclaim memory from cgroups under root_mem in round robin.
> + */
> + start_age = root_mem->scan_age;
> +
> + while (time_after((start_age + 2UL), root_mem->scan_age)) {
This is confusing, why do we use time_after with scan_age. scan_age
seems to be incremented every time we scan and has no relationship
with time. The second thing is what happens if time_after() always
returns 0, if we've been aggressively scanning? The logic needs some
commenting, why the magic number 2?
> + victim = mem_cgroup_select_victim(root_mem);
> + /* we use swappiness of local cgroup */
> + ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
> + get_swappiness(victim));
> + css_put(&victim->css);
> + total += ret;
> if (mem_cgroup_check_under_limit(root_mem))
> - return 0;
> - mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
> - next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
> - mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
> + return 1 + total;
> }
> - return ret;
> + return total;
> }
>
> bool mem_cgroup_oom_called(struct task_struct *task)
> @@ -1298,7 +1237,6 @@ __mem_cgroup_uncharge_common(struct page
> default:
> break;
> }
> -
> res_counter_uncharge(&mem->res, PAGE_SIZE);
> if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
> res_counter_uncharge(&mem->memsw, PAGE_SIZE);
> @@ -2148,6 +2086,8 @@ static void __mem_cgroup_free(struct mem
> {
> int node;
>
> + free_css_id(&mem_cgroup_subsys, &mem->css);
> +
> for_each_node_state(node, N_POSSIBLE)
> free_mem_cgroup_per_zone_info(mem, node);
>
> @@ -2185,11 +2125,12 @@ static struct cgroup_subsys_state *
> mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
> {
> struct mem_cgroup *mem, *parent;
> + long error = -ENOMEM;
> int node;
>
> mem = mem_cgroup_alloc();
> if (!mem)
> - return ERR_PTR(-ENOMEM);
> + return ERR_PTR(error);
>
> for_each_node_state(node, N_POSSIBLE)
> if (alloc_mem_cgroup_per_zone_info(mem, node))
> @@ -2210,7 +2151,8 @@ mem_cgroup_create(struct cgroup_subsys *
> res_counter_init(&mem->res, NULL);
> res_counter_init(&mem->memsw, NULL);
> }
> - mem->last_scanned_child = NULL;
> + mem->last_scanned_child = 0;
> + mem->scan_age = 0;
> spin_lock_init(&mem->reclaim_param_lock);
>
> if (parent)
> @@ -2219,7 +2161,7 @@ mem_cgroup_create(struct cgroup_subsys *
> return &mem->css;
> free_out:
> __mem_cgroup_free(mem);
> - return ERR_PTR(-ENOMEM);
> + return ERR_PTR(error);
> }
>
> static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
> @@ -2270,6 +2212,7 @@ struct cgroup_subsys mem_cgroup_subsys =
> .populate = mem_cgroup_populate,
> .attach = mem_cgroup_move_task,
> .early_init = 0,
> + .use_id = 1,
> };
>
> #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
>
>
--
Balbir
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists