lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <1233318733.4495.174.camel@laptop>
Date:	Fri, 30 Jan 2009 13:32:13 +0100
From:	Peter Zijlstra <peterz@...radead.org>
To:	Jens Axboe <jens.axboe@...cle.com>
Cc:	Linus Torvalds <torvalds@...ux-foundation.org>,
	Steven Rostedt <rostedt@...dmis.org>,
	Andrew Morton <akpm@...ux-foundation.org>,
	LKML <linux-kernel@...r.kernel.org>,
	Rusty Russell <rusty@...tcorp.com.au>, npiggin@...e.de,
	Ingo Molnar <mingo@...e.hu>,
	Thomas Gleixner <tglx@...utronix.de>,
	Arjan van de Ven <arjan@...radead.org>
Subject: [PATCH -v3] use per cpu data for single cpu ipi calls

On Fri, 2009-01-30 at 12:23 +0100, Jens Axboe wrote:

> Peter, can you post a final complete patch for review and acks?

Sure,

---
Author: Steven Rostedt <rostedt@...dmis.org>
Date:   Thu Jan 29 10:08:01 2009 -0500

    generic-ipi: use per cpu data for single cpu ipi calls

    The smp_call_function can be passed a wait parameter telling it to
    wait for all the functions running on other CPUs to complete before
    returning, or to return without waiting. Unfortunately, this is
    currently just a suggestion and not manditory. That is, the
    smp_call_function can decide not to return and wait instead.

    The reason for this is because it uses kmalloc to allocate storage
    to send to the called CPU and that CPU will free it when it is done.
    But if we fail to allocate the storage, the stack is used instead.
    This means we must wait for the called CPU to finish before
    continuing.

    Unfortunatly, some callers do no abide by this hint and act as if
    the non-wait option is mandatory. The MTRR code for instance will
    deadlock if the smp_call_function is set to wait. This is because
    the smp_call_function will wait for the other CPUs to finish their
    called functions, but those functions are waiting on the caller to
    continue.

    This patch changes the generic smp_call_function code to use per cpu
    variables if the allocation of the data fails for a single CPU call. The
    smp_call_function_many will fall back to the smp_call_function_single
    if it fails its alloc. The smp_call_function_single is modified
    to not force the wait state.

    Since we now are using a single data per cpu we must synchronize the
    callers to prevent a second caller modifying the data before the
    first called IPI functions complete. To do so, I added a flag to
    the call_single_data called CSD_FLAG_LOCK. When the single CPU is
    called (which can be called when a many call fails an alloc), we
    set the LOCK bit on this per cpu data. When the caller finishes
    it clears the LOCK bit.

    The caller must wait till the LOCK bit is cleared before setting
    it. When it is cleared, there is no IPI function using it.

Signed-off-by: Steven Rostedt <srostedt@...hat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@...llo.nl>
---
 kernel/smp.c |   37 ++++++++++++++++++++++++++++++++++---
 1 files changed, 34 insertions(+), 3 deletions(-)

diff --git a/kernel/smp.c b/kernel/smp.c
index 5cfa0e5..9eead6c 100644
--- a/kernel/smp.c
+++ b/kernel/smp.c
@@ -18,6 +18,7 @@ __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_function_lock);
 enum {
 	CSD_FLAG_WAIT		= 0x01,
 	CSD_FLAG_ALLOC		= 0x02,
+	CSD_FLAG_LOCK		= 0x04,
 };
 
 struct call_function_data {
@@ -186,6 +187,9 @@ void generic_smp_call_function_single_interrupt(void)
 			if (data_flags & CSD_FLAG_WAIT) {
 				smp_wmb();
 				data->flags &= ~CSD_FLAG_WAIT;
+			} else if (data_flags & CSD_FLAG_LOCK) {
+				smp_wmb();
+				data->flags &= ~CSD_FLAG_LOCK;
 			} else if (data_flags & CSD_FLAG_ALLOC)
 				kfree(data);
 		}
@@ -196,6 +200,8 @@ void generic_smp_call_function_single_interrupt(void)
 	}
 }
 
+static DEFINE_PER_CPU(struct call_single_data, csd_data);
+
 /*
  * smp_call_function_single - Run a function on a specific CPU
  * @func: The function to run. This must be fast and non-blocking.
@@ -224,14 +230,39 @@ int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
 		func(info);
 		local_irq_restore(flags);
 	} else if ((unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) {
-		struct call_single_data *data = NULL;
+		struct call_single_data *data;
 
 		if (!wait) {
+			/*
+			 * We are calling a function on a single CPU
+			 * and we are not going to wait for it to finish.
+			 * We first try to allocate the data, but if we
+			 * fail, we fall back to use a per cpu data to pass
+			 * the information to that CPU. Since all callers
+			 * of this code will use the same data, we must
+			 * synchronize the callers to prevent a new caller
+			 * from corrupting the data before the callee
+			 * can access it.
+			 *
+			 * The CSD_FLAG_LOCK is used to let us know when
+			 * the IPI handler is done with the data.
+			 * The first caller will set it, and the callee
+			 * will clear it. The next caller must wait for
+			 * it to clear before we set it again. This
+			 * will make sure the callee is done with the
+			 * data before a new caller will use it.
+			 * We use spinlocks to manage the callers.
+			 */
 			data = kmalloc(sizeof(*data), GFP_ATOMIC);
 			if (data)
 				data->flags = CSD_FLAG_ALLOC;
-		}
-		if (!data) {
+			else {
+				data = &per_cpu(csd_data, me);
+				while (data->flags & CSD_FLAG_LOCK)
+					cpu_relax();
+				data->flags = CSD_FLAG_LOCK;
+			}
+		} else {
 			data = &d;
 			data->flags = CSD_FLAG_WAIT;
 		}


--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ