[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20091117165228.GF22462@redhat.com>
Date: Tue, 17 Nov 2009 11:52:28 -0500
From: Vivek Goyal <vgoyal@...hat.com>
To: Corrado Zoccolo <czoccolo@...il.com>
Cc: Linux-Kernel <linux-kernel@...r.kernel.org>,
Jens Axboe <jens.axboe@...cle.com>,
Jeff Moyer <jmoyer@...hat.com>
Subject: Re: [RFC,RFT,PATCH] cfq: autotuning support
On Tue, Nov 17, 2009 at 03:51:14PM +0100, Corrado Zoccolo wrote:
> Hi, this is my first attempt at autotuning cfq parameters, and should apply on top of for-2.6.33 branch.
> Jeff and Vivek, if you can test this on your NCQ SSDs, it will help me to have your feedback (please include
> the output of: 'grep -r . /sys/block/sdX/queue/iosched' after you run your tests).
Sure, I will do some tests on this patch, may be later today.
I had a quick look at the patch. Had couple of questions.
- Service time seems to be the measure of on an average how much time it
took to service a read/write request (be it sequential or random read).
In auto tuning, you seem to be updating slice_idle dynamically based on
service time. So the intent seems to be that is service times are higher
then it is a slow media and we should have higher slice_idle otherwise
a low slice_idle?
Thanks
Vivek
>
> The patch introduces code to sample the request service time distribution, and analyze it,
> in order to compute the following cfq parameters:
> * slice_idle, is computed as the expected service time of random request
> * cfq_slice[1] (i.e. the slice for sync queues)
> * cfq_slice[0] (i.e. the slice for async queues)
>
> The sync and async slices are scaled from default values proportionally to the new computed slice_idle.
>
> Autotuning will be enabled by default only on kernels compiled with HZ >= 500.
> With smaller HZ, I don't think jiffies is reliable to estimate those parameters.
>
> Signed-off-by: Corrado Zoccolo <czoccolo@...il.com>
> ---
> block/cfq-iosched.c | 166 ++++++++++++++++++++++++++++++++++++++++++++++++++-
> 1 files changed, 163 insertions(+), 3 deletions(-)
>
> diff --git a/block/cfq-iosched.c b/block/cfq-iosched.c
> index 6925ab9..d786a0b 100644
> --- a/block/cfq-iosched.c
> +++ b/block/cfq-iosched.c
> @@ -32,6 +32,12 @@ static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
> static const int cfq_hist_divisor = 4;
>
> /*
> + * Number of samples to collect before updating autotune
> + * higher # makes the measurements more stable
> + */
> +#define CFQ_AUTOTUNE_SAMPLES (10)
> +
> +/*
> * offset from end of service tree
> */
> #define CFQ_IDLE_DELAY (HZ / 5)
> @@ -201,6 +207,21 @@ struct cfq_data {
> unsigned int hw_tag_samples;
>
> /*
> + * disk performance measurements
> + */
> + unsigned long observation_start;
> + /*
> + * measures are split (READ vs WRITE)
> + */
> + unsigned long processed_rq[2];
> + /*
> + * We store an histogram of samples for the service time
> + * in log scale [0..5]; [6] is a count, that is reset every
> + * time autotuning is done (i.e. every CFQ_AUTOTUNE_SAMPLES)
> + */
> + unsigned int serv_time_samples[2][7];
> +
> + /*
> * idle window management
> */
> struct timer_list idle_slice_timer;
> @@ -228,6 +249,7 @@ struct cfq_data {
> unsigned int cfq_slice_async_rq;
> unsigned int cfq_slice_idle;
> unsigned int cfq_latency;
> + unsigned int cfq_autotune;
>
> struct list_head cic_list;
>
> @@ -891,6 +913,12 @@ static void cfq_activate_request(struct request_queue *q, struct request *rq)
> {
> struct cfq_data *cfqd = q->elevator->elevator_data;
>
> + if (!rq_in_driver(cfqd)) {
> + cfqd->observation_start = jiffies;
> + cfqd->processed_rq[0] = 0;
> + cfqd->processed_rq[1] = 0;
> + }
> +
> cfqd->rq_in_driver[rq_is_sync(rq)]++;
> cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
> rq_in_driver(cfqd));
> @@ -2562,14 +2590,120 @@ static void cfq_update_hw_tag(struct cfq_data *cfqd)
> cfqd->hw_tag = 0;
> }
>
> +
> +/*
> + * Update the histogram to compute service time
> + * Returns true if we collected enough samples to re-run autotune
> + */
> +static bool cfq_update_stime(unsigned samples[6], unsigned long stime)
> +{
> + unsigned idx = (stime > 15) + (stime > 7) + (stime > 3)
> + + (stime > 1) + (stime > 0);
> + samples[idx]++;
> + if (samples[idx] > (1U<<31))
> + for (idx = 0; idx < 6; ++idx) {
> + samples[idx]++;
> + samples[idx] >>= 1;
> + }
> +
> + if (samples[6]++ < CFQ_AUTOTUNE_SAMPLES)
> + return false;
> + samples[6] = 0;
> + return true;
> +}
> +
> +/*
> + * Currently, we measure only service time for pure READ or WRITE requests
> + * and we update autotune when we have collected enough READ requests
> + */
> +static bool cfq_update_perf_measures(struct cfq_data *cfqd, unsigned long now)
> +{
> + unsigned long tot_proc = cfqd->processed_rq[0] + cfqd->processed_rq[1];
> + unsigned long obstime = now - cfqd->observation_start;
> + unsigned long stime = obstime / tot_proc;
> +
> + cfqd->observation_start = now;
> +
> + if (!cfqd->processed_rq[READ])
> + cfq_update_stime(cfqd->serv_time_samples[WRITE], stime);
> + if (!cfqd->processed_rq[WRITE])
> + return cfq_update_stime(cfqd->serv_time_samples[READ], stime);
> + return false;
> +}
> +
> +/*
> + * Compute service time from the sampled distribution in the histogram
> + * The real service time distribution is a super-position of two distinct
> + * distributions:
> + * the one for sequential requests (usually this has a small mean)
> + * the one for random requests (usually with a larger mean)
> + * and we want to identify the random request one
> + */
> +static unsigned cfq_service_time(unsigned samples[6])
> +{
> + unsigned last_max = 0, i;
> + /* Random request service time corresponds to the
> + * largest maximum in the histogram */
> + for (i = 1; i < 6; ++i)
> + if (samples[i] > samples[i-1])
> + last_max = i;
> + /*
> + * Unfortunately, if sequential requests overwhelm
> + * random ones, and the two peaks are too near,
> + * the second peak could be masked by the tail of the first.
> + * To catch this, we check if the tail has enough weight,
> + * and in this case we take the next bin as maximum
> + */
> + if (last_max < 5) {
> + unsigned total = 0;
> + for (i = last_max + 1; i < 6; ++i)
> + total += samples[i];
> + if (total > samples[last_max])
> + ++last_max;
> + }
> + if (!last_max)
> + return 0;
> + return 1U << last_max;
> +}
> +
> +static void cfq_update_autotune(struct cfq_data *cfqd)
> +{
> + unsigned long base, baseW;
> + if (!cfqd->cfq_autotune)
> + return;
> + base = cfq_service_time(cfqd->serv_time_samples[READ]);
> + baseW = cfq_service_time(cfqd->serv_time_samples[WRITE]);
> +
> + /* Compute slice_idle */
> + if (!base)
> + base = baseW;
> + if (base > cfq_slice_idle)
> + base = min_t(unsigned long,
> + (base + cfq_slice_idle) / 2, 2 * cfq_slice_idle);
> +
> + cfqd->cfq_slice_idle = base;
> +
> + /* Compute derived cfq_slice[*]
> + * Note: those cannot be 0
> + */
> + if (!base)
> + base = 1;
> +
> + if (baseW)
> + baseW = min(base, baseW * cfq_slice_sync / cfq_slice_async);
> + else
> + baseW = base;
> +
> + cfqd->cfq_slice[1] = base * cfq_slice_sync / cfq_slice_idle;
> + cfqd->cfq_slice[0] = baseW * cfq_slice_async / cfq_slice_idle;
> +}
> +
> static void cfq_completed_request(struct request_queue *q, struct request *rq)
> {
> struct cfq_queue *cfqq = RQ_CFQQ(rq);
> struct cfq_data *cfqd = cfqq->cfqd;
> const int sync = rq_is_sync(rq);
> - unsigned long now;
> -
> - now = jiffies;
> + unsigned long now = jiffies;
> cfq_log_cfqq(cfqd, cfqq, "complete");
>
> cfq_update_hw_tag(cfqd);
> @@ -2578,6 +2712,10 @@ static void cfq_completed_request(struct request_queue *q, struct request *rq)
> WARN_ON(!cfqq->dispatched);
> cfqd->rq_in_driver[sync]--;
> cfqq->dispatched--;
> + cfqd->processed_rq[rq_data_dir(rq)]++;
> +
> + if (!rq_in_driver(cfqd) && cfq_update_perf_measures(cfqd, now))
> + cfq_update_autotune(cfqd);
>
> if (cfq_cfqq_sync(cfqq))
> cfqd->sync_flight--;
> @@ -2966,6 +3104,7 @@ static void *cfq_init_queue(struct request_queue *q)
> cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
> cfqd->cfq_slice_idle = cfq_slice_idle;
> cfqd->cfq_latency = 1;
> + cfqd->cfq_autotune = (HZ >= 500);
> cfqd->hw_tag = -1;
> cfqd->last_end_sync_rq = jiffies;
> return cfqd;
> @@ -3002,6 +3141,23 @@ fail:
> /*
> * sysfs parts below -->
> */
> +static ssize_t autotune_stats_show(struct elevator_queue *e, char *page)
> +{
> + struct cfq_data *cfqd = e->elevator_data;
> + int pos = 0, i, j;
> +#if HZ < 500
> + pos += sprintf(page, "Autotune may work incorrectly with HZ < 500\n");
> +#endif
> + for (j = 0; j < 2; ++j) {
> + for (i = 0; i < 6; ++i)
> + pos += sprintf(page+pos, "[%2u]",
> + cfqd->serv_time_samples[j][i]);
> + page[pos++] = '\n';
> + }
> + page[pos] = '\0';
> + return pos;
> +}
> +
> static ssize_t
> cfq_var_show(unsigned int var, char *page)
> {
> @@ -3036,6 +3192,7 @@ SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
> SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
> SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
> SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
> +SHOW_FUNCTION(cfq_autotune_show, cfqd->cfq_autotune, 0);
> #undef SHOW_FUNCTION
>
> #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
> @@ -3068,6 +3225,7 @@ STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
> STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
> UINT_MAX, 0);
> STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
> +STORE_FUNCTION(cfq_autotune_store, &cfqd->cfq_autotune, 0, 1, 0);
> #undef STORE_FUNCTION
>
> #define CFQ_ATTR(name) \
> @@ -3084,6 +3242,8 @@ static struct elv_fs_entry cfq_attrs[] = {
> CFQ_ATTR(slice_async_rq),
> CFQ_ATTR(slice_idle),
> CFQ_ATTR(low_latency),
> + CFQ_ATTR(autotune),
> + __ATTR_RO(autotune_stats),
> __ATTR_NULL
> };
>
> --
> 1.6.2.5
>
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists