[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20100107061955.GC25786@Krystal>
Date: Thu, 7 Jan 2010 01:19:55 -0500
From: Mathieu Desnoyers <mathieu.desnoyers@...ymtl.ca>
To: Steven Rostedt <rostedt@...dmis.org>
Cc: linux-kernel@...r.kernel.org,
"Paul E. McKenney" <paulmck@...ux.vnet.ibm.com>,
Ingo Molnar <mingo@...e.hu>, akpm@...ux-foundation.org,
josh@...htriplett.org, tglx@...utronix.de, peterz@...radead.org,
Valdis.Kletnieks@...edu, dhowells@...hat.com, laijs@...fujitsu.com,
dipankar@...ibm.com
Subject: Re: [RFC PATCH] introduce sys_membarrier(): process-wide memory
barrier
* Steven Rostedt (rostedt@...dmis.org) wrote:
> On Wed, 2010-01-06 at 23:40 -0500, Mathieu Desnoyers wrote:
> > Here is an implementation of a new system call, sys_membarrier(), which
> > executes a memory barrier on all threads of the current process.
> >
> > It aims at greatly simplifying and enhancing the current signal-based
> > liburcu userspace RCU synchronize_rcu() implementation.
> > (found at http://lttng.org/urcu)
> >
>
> Nice.
>
> > Both the signal-based and the sys_membarrier userspace RCU schemes
> > permit us to remove the memory barrier from the userspace RCU
> > rcu_read_lock() and rcu_read_unlock() primitives, thus significantly
> > accelerating them. These memory barriers are replaced by compiler
> > barriers on the read-side, and all matching memory barriers on the
> > write-side are turned into an invokation of a memory barrier on all
> > active threads in the process. By letting the kernel perform this
> > synchronization rather than dumbly sending a signal to every process
> > threads (as we currently do), we diminish the number of unnecessary wake
> > ups and only issue the memory barriers on active threads. Non-running
> > threads do not need to execute such barrier anyway, because these are
> > implied by the scheduler context switches.
> >
> > To explain the benefit of this scheme, let's introduce two example threads:
> >
> > Thread A (non-frequent, e.g. executing liburcu synchronize_rcu())
> > Thread B (frequent, e.g. executing liburcu rcu_read_lock()/rcu_read_unlock())
> >
> > In a scheme where all smp_mb() in thread A synchronize_rcu() are
> > ordering memory accesses with respect to smp_mb() present in
> > rcu_read_lock/unlock(), we can change all smp_mb() from
> > synchronize_rcu() into calls to sys_membarrier() and all smp_mb() from
> > rcu_read_lock/unlock() into compiler barriers "barrier()".
> >
> > Before the change, we had, for each smp_mb() pairs:
> >
> > Thread A Thread B
> > prev mem accesses prev mem accesses
> > smp_mb() smp_mb()
> > follow mem accesses follow mem accesses
> >
> > After the change, these pairs become:
> >
> > Thread A Thread B
> > prev mem accesses prev mem accesses
> > sys_membarrier() barrier()
> > follow mem accesses follow mem accesses
> >
> > As we can see, there are two possible scenarios: either Thread B memory
> > accesses do not happen concurrently with Thread A accesses (1), or they
> > do (2).
> >
> > 1) Non-concurrent Thread A vs Thread B accesses:
> >
> > Thread A Thread B
> > prev mem accesses
> > sys_membarrier()
> > follow mem accesses
> > prev mem accesses
> > barrier()
> > follow mem accesses
> >
> > In this case, thread B accesses will be weakly ordered. This is OK,
> > because at that point, thread A is not particularly interested in
> > ordering them with respect to its own accesses.
> >
> > 2) Concurrent Thread A vs Thread B accesses
> >
> > Thread A Thread B
> > prev mem accesses prev mem accesses
> > sys_membarrier() barrier()
> > follow mem accesses follow mem accesses
> >
> > In this case, thread B accesses, which are ensured to be in program
> > order thanks to the compiler barrier, will be "upgraded" to full
> > smp_mb() thanks to the IPIs executing memory barriers on each active
> > system threads. Each non-running process threads are intrinsically
> > serialized by the scheduler.
> >
> > The current implementation simply executes a memory barrier in an IPI
> > handler on each active cpu. Going through the hassle of taking run queue
> > locks and checking if the thread running on each online CPU belongs to
> > the current thread seems more heavyweight than the cost of the IPI
> > itself (not measured though).
> >
>
>
> I don't think you need to grab any locks. Doing an rcu_read_lock()
> should prevent tasks from disappearing (since destruction of tasks use
> RCU). You may still need to grab the tasklist_lock under read_lock().
>
> So what you could do, is find each task that is a thread of the calling
> task, and then just check task_rq(task)->curr != task. Just send the
> IPI's to those tasks that pass the test.
I guess you mean
"then just check task_rq(task)->curr == task" ... ?
>
> If the task->rq changes, or the task->rq->curr changes, and makes the
> condition fail (or even pass), the events that cause those changes are
> probably good enough than needing to call smp_mb();
I see your point.
This would probably be good for machines with very large number of cpus
and without IPI broadcast support, running processes with only few
threads. I really start to think that we should have some way to compare
the number of threads belonging to a process and choose between the
broadcast IPI and the per-cpu IPI depending if we are over or under an
arbitrary threshold.
Thanks,
Mathieu
>
> -- Steve
>
>
>
> > The system call number is only assigned for x86_64 in this RFC patch.
>
>
--
Mathieu Desnoyers
OpenPGP key fingerprint: 8CD5 52C3 8E3C 4140 715F BA06 3F25 A8FE 3BAE 9A68
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists