[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <4aed689fbdd9a7e4c625d4dd4f85533ec61722ef.1266931410.git.fabio@helm.retis>
Date: Tue, 23 Feb 2010 19:56:33 +0100
From: Fabio Checconi <fchecconi@...il.com>
To: Peter Zijlstra <peterz@...radead.org>
Cc: Ingo Molnar <mingo@...e.hu>, Thomas Gleixner <tglx@...utronix.de>,
Paul Turner <pjt@...gle.com>,
Dario Faggioli <faggioli@...dalf.sssup.it>,
Michael Trimarchi <michael@...dence.eu.com>,
Dhaval Giani <dhaval@...is.sssup.it>,
Tommaso Cucinotta <t.cucinotta@...up.it>,
linux-kernel@...r.kernel.org, Fabio Checconi <fchecconi@...il.com>,
Fabio Checconi <fabio@...dalf.sssup.it>
Subject: [PATCH 1/3] sched: use EDF to schedule groups
Modify sched_rt in order to implement throttling using EDF among groups;
this allows the user to specify groups with different periods.
This patch:
- adds a deadline to rt_rq's (and removes the scheduling entity from
it, as the new two-level compression of the full cgroup hierarchy do
not use it for intermediates nodes anymore);
- moves the rt_period_timer from struct rt_bandwidth to struct rt_rq,
since periods and replenishments are no more synchronized among rt_rq's
belonging to the same task_group;
- adds a new struct rt_bandwidth to each task_group; the old one is
used only for admission control, on a full cgroup hierarchy, while the
new one is used to contain the parameters used to reserve bandwidth
to tasks;
- introduces a per-rq rt_edf_tree structure, to keep all the rt_rq's
belonging to the same cpu ordered by their dynamic priority (i.e.,
their deadline, if they are not boosted, or the static priority of
their highest priority task if they are);
- updates the admission control code, to take into account the bandwidth
assigned to tasks via the new cgroup attributes rt_task_period_us and
rt_task_runtime_us (this bandwidth is not available for lower-level
cgroups);
- removes highest_prio tracking for non-root rt_rq's and flattens the
arbitrary task_group hierarchy to a two-level one, transparently to
the users, who still see the full cgroup hierarchy. The push/pull
logic is altered a bit after this change, as the toplevel
rt_nr_running is no more meaningful, we use rt_nr_total instead
(the reasoning behind this is that tasks should be pushed/pulled
without taking into account the fact that they are throttled or not).
The toplevel runqueue, containing both the rt_edf_tree and the
highest_prio data is no more a rt_rq, but it has its own type,
rt_root_rq.
Signed-off-by: Fabio Checconi <fabio@...dalf.sssup.it>
---
include/linux/sched.h | 8 +-
kernel/sched.c | 404 ++++++++++++++------------
kernel/sched_rt.c | 775 ++++++++++++++++++++++++++++++++++---------------
3 files changed, 764 insertions(+), 423 deletions(-)
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 0eef87b..b82343b 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -2517,12 +2517,12 @@ extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
extern unsigned long sched_group_shares(struct task_group *tg);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
-extern int sched_group_set_rt_runtime(struct task_group *tg,
+extern int sched_group_set_rt_runtime(struct task_group *tg, int task_data,
long rt_runtime_us);
-extern long sched_group_rt_runtime(struct task_group *tg);
-extern int sched_group_set_rt_period(struct task_group *tg,
+extern long sched_group_rt_runtime(struct task_group *tg, int task_data);
+extern int sched_group_set_rt_period(struct task_group *tg, int task_data,
long rt_period_us);
-extern long sched_group_rt_period(struct task_group *tg);
+extern long sched_group_rt_period(struct task_group *tg, int task_data);
extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
#endif
#endif
diff --git a/kernel/sched.c b/kernel/sched.c
index 9a1705e..fe013c6 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -144,34 +144,10 @@ struct rt_bandwidth {
raw_spinlock_t rt_runtime_lock;
ktime_t rt_period;
u64 rt_runtime;
- struct hrtimer rt_period_timer;
};
static struct rt_bandwidth def_rt_bandwidth;
-static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
-
-static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
-{
- struct rt_bandwidth *rt_b =
- container_of(timer, struct rt_bandwidth, rt_period_timer);
- ktime_t now;
- int overrun;
- int idle = 0;
-
- for (;;) {
- now = hrtimer_cb_get_time(timer);
- overrun = hrtimer_forward(timer, now, rt_b->rt_period);
-
- if (!overrun)
- break;
-
- idle = do_sched_rt_period_timer(rt_b, overrun);
- }
-
- return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
-}
-
static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
@@ -179,10 +155,6 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
rt_b->rt_runtime = runtime;
raw_spin_lock_init(&rt_b->rt_runtime_lock);
-
- hrtimer_init(&rt_b->rt_period_timer,
- CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- rt_b->rt_period_timer.function = sched_rt_period_timer;
}
static inline int rt_bandwidth_enabled(void)
@@ -190,43 +162,6 @@ static inline int rt_bandwidth_enabled(void)
return sysctl_sched_rt_runtime >= 0;
}
-static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
-{
- ktime_t now;
-
- if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
- return;
-
- if (hrtimer_active(&rt_b->rt_period_timer))
- return;
-
- raw_spin_lock(&rt_b->rt_runtime_lock);
- for (;;) {
- unsigned long delta;
- ktime_t soft, hard;
-
- if (hrtimer_active(&rt_b->rt_period_timer))
- break;
-
- now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
- hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
-
- soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
- hard = hrtimer_get_expires(&rt_b->rt_period_timer);
- delta = ktime_to_ns(ktime_sub(hard, soft));
- __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
- HRTIMER_MODE_ABS_PINNED, 0);
- }
- raw_spin_unlock(&rt_b->rt_runtime_lock);
-}
-
-#ifdef CONFIG_RT_GROUP_SCHED
-static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
-{
- hrtimer_cancel(&rt_b->rt_period_timer);
-}
-#endif
-
/*
* sched_domains_mutex serializes calls to arch_init_sched_domains,
* detach_destroy_domains and partition_sched_domains.
@@ -254,10 +189,13 @@ struct task_group {
#endif
#ifdef CONFIG_RT_GROUP_SCHED
- struct sched_rt_entity **rt_se;
struct rt_rq **rt_rq;
+ /* CPU bandwidth reserved to this group (tasks + child groups). */
struct rt_bandwidth rt_bandwidth;
+
+ /* CPU bandwidth reserved to the tasks in this group. */
+ struct rt_bandwidth rt_task_bandwidth;
#endif
struct rcu_head rcu;
@@ -329,7 +267,6 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
#ifdef CONFIG_RT_GROUP_SCHED
p->rt.rt_rq = task_group(p)->rt_rq[cpu];
- p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}
@@ -410,6 +347,37 @@ struct cfs_rq {
struct rt_rq {
struct rt_prio_array active;
unsigned long rt_nr_running;
+ struct rb_node rb_node;
+ int rt_throttled;
+
+ int highest_prio;
+
+ u64 rt_deadline;
+ u64 rt_time;
+ u64 rt_runtime;
+ ktime_t rt_period;
+
+ struct hrtimer rt_period_timer;
+
+ /* Nests inside the rq lock: */
+ raw_spinlock_t rt_runtime_lock;
+
+ unsigned long rt_nr_boosted;
+
+#ifdef CONFIG_RT_GROUP_SCHED
+ struct rq *rq;
+ struct list_head leaf_rt_rq_list;
+ struct task_group *tg;
+#endif
+};
+
+struct rt_edf_tree {
+ struct rb_root rb_root;
+ struct rb_node *rb_leftmost;
+};
+
+/* Root runqueue for rt tasks: */
+struct rt_root_rq {
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
struct {
int curr; /* highest queued rt task prio */
@@ -424,19 +392,8 @@ struct rt_rq {
int overloaded;
struct plist_head pushable_tasks;
#endif
- int rt_throttled;
- u64 rt_time;
- u64 rt_runtime;
- /* Nests inside the rq lock: */
- raw_spinlock_t rt_runtime_lock;
-
-#ifdef CONFIG_RT_GROUP_SCHED
- unsigned long rt_nr_boosted;
-
- struct rq *rq;
- struct list_head leaf_rt_rq_list;
- struct task_group *tg;
-#endif
+ struct rt_edf_tree rt_edf_tree;
+ struct rt_rq rt_rq;
};
#ifdef CONFIG_SMP
@@ -500,7 +457,7 @@ struct rq {
u64 nr_switches;
struct cfs_rq cfs;
- struct rt_rq rt;
+ struct rt_root_rq rt;
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this cpu: */
@@ -4560,7 +4517,7 @@ recheck:
* assigned.
*/
if (rt_bandwidth_enabled() && rt_policy(policy) &&
- task_group(p)->rt_bandwidth.rt_runtime == 0)
+ task_group(p)->rt_task_bandwidth.rt_runtime == 0)
return -EPERM;
#endif
@@ -7561,7 +7518,8 @@ static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
cfs_rq->min_vruntime = (u64)(-(1LL << 20));
}
-static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
+static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq,
+ struct rt_bandwidth *rt_b)
{
struct rt_prio_array *array;
int i;
@@ -7574,29 +7532,42 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
/* delimiter for bitsearch: */
__set_bit(MAX_RT_PRIO, array->bitmap);
-#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
- rt_rq->highest_prio.curr = MAX_RT_PRIO;
-#ifdef CONFIG_SMP
- rt_rq->highest_prio.next = MAX_RT_PRIO;
-#endif
-#endif
-#ifdef CONFIG_SMP
- rt_rq->rt_nr_migratory = 0;
- rt_rq->overloaded = 0;
- plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
-#endif
+ rt_rq->highest_prio = MAX_RT_PRIO;
rt_rq->rt_time = 0;
rt_rq->rt_throttled = 0;
- rt_rq->rt_runtime = 0;
+ rt_rq->rt_deadline = 0;
+ rt_rq->rt_runtime = rt_b->rt_runtime;
+ rt_rq->rt_period = rt_b->rt_period;
raw_spin_lock_init(&rt_rq->rt_runtime_lock);
+ hrtimer_init(&rt_rq->rt_period_timer, CLOCK_MONOTONIC,
+ HRTIMER_MODE_REL);
+ rt_rq->rt_period_timer.function = sched_rt_period_timer;
+
#ifdef CONFIG_RT_GROUP_SCHED
rt_rq->rt_nr_boosted = 0;
rt_rq->rq = rq;
#endif
}
+static void init_rt_root_rq(struct rt_root_rq *rt, struct rq *rq)
+{
+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
+ rt->highest_prio.curr = MAX_RT_PRIO;
+#ifdef CONFIG_SMP
+ rt->highest_prio.next = MAX_RT_PRIO;
+#endif
+#endif
+#ifdef CONFIG_SMP
+ rt->rt_nr_migratory = 0;
+ rt->overloaded = 0;
+ plist_head_init_raw(&rt->pushable_tasks, &rq->lock);
+#endif
+ rt->rt_edf_tree.rb_root = RB_ROOT;
+ init_rt_rq(&rt->rt_rq, rq, &def_rt_bandwidth);
+}
+
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
struct sched_entity *se, int cpu, int add,
@@ -7628,30 +7599,17 @@ static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
#ifdef CONFIG_RT_GROUP_SCHED
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
- struct sched_rt_entity *rt_se, int cpu, int add,
- struct sched_rt_entity *parent)
+ int cpu, int add)
{
struct rq *rq = cpu_rq(cpu);
tg->rt_rq[cpu] = rt_rq;
- init_rt_rq(rt_rq, rq);
+ init_rt_rq(rt_rq, rq, &tg->rt_task_bandwidth);
rt_rq->tg = tg;
- rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
if (add)
list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
- tg->rt_se[cpu] = rt_se;
- if (!rt_se)
- return;
-
- if (!parent)
- rt_se->rt_rq = &rq->rt;
- else
- rt_se->rt_rq = parent->my_q;
-
- rt_se->my_q = rt_rq;
- rt_se->parent = parent;
- INIT_LIST_HEAD(&rt_se->run_list);
+ RB_CLEAR_NODE(&rt_rq->rb_node);
}
#endif
@@ -7664,7 +7622,7 @@ void __init sched_init(void)
alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
- alloc_size += 2 * nr_cpu_ids * sizeof(void **);
+ alloc_size += nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
alloc_size += num_possible_cpus() * cpumask_size();
@@ -7681,9 +7639,6 @@ void __init sched_init(void)
#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_RT_GROUP_SCHED
- init_task_group.rt_se = (struct sched_rt_entity **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
-
init_task_group.rt_rq = (struct rt_rq **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
@@ -7706,6 +7661,9 @@ void __init sched_init(void)
#ifdef CONFIG_RT_GROUP_SCHED
init_rt_bandwidth(&init_task_group.rt_bandwidth,
global_rt_period(), global_rt_runtime());
+
+ init_rt_bandwidth(&init_task_group.rt_task_bandwidth,
+ global_rt_period(), global_rt_runtime());
#endif /* CONFIG_RT_GROUP_SCHED */
#ifdef CONFIG_CGROUP_SCHED
@@ -7727,7 +7685,7 @@ void __init sched_init(void)
rq->calc_load_active = 0;
rq->calc_load_update = jiffies + LOAD_FREQ;
init_cfs_rq(&rq->cfs, rq);
- init_rt_rq(&rq->rt, rq);
+ init_rt_root_rq(&rq->rt, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
init_task_group.shares = init_task_group_load;
INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
@@ -7755,11 +7713,10 @@ void __init sched_init(void)
#endif
#endif /* CONFIG_FAIR_GROUP_SCHED */
- rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
#ifdef CONFIG_RT_GROUP_SCHED
INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
#ifdef CONFIG_CGROUP_SCHED
- init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
+ init_tg_rt_entry(&init_task_group, &rq->rt.rt_rq, i, 1);
#endif
#endif
@@ -8068,38 +8025,39 @@ static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
#ifdef CONFIG_RT_GROUP_SCHED
static void free_rt_sched_group(struct task_group *tg)
{
+ struct rt_rq *rt_rq;
int i;
- destroy_rt_bandwidth(&tg->rt_bandwidth);
+ if (!tg->rt_rq)
+ return;
for_each_possible_cpu(i) {
- if (tg->rt_rq)
- kfree(tg->rt_rq[i]);
- if (tg->rt_se)
- kfree(tg->rt_se[i]);
+ rt_rq = tg->rt_rq[i];
+
+ if (rt_rq) {
+ hrtimer_cancel(&rt_rq->rt_period_timer);
+ kfree(rt_rq);
+ }
}
kfree(tg->rt_rq);
- kfree(tg->rt_se);
}
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
struct rt_rq *rt_rq;
- struct sched_rt_entity *rt_se;
struct rq *rq;
int i;
tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
if (!tg->rt_rq)
goto err;
- tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
- if (!tg->rt_se)
- goto err;
init_rt_bandwidth(&tg->rt_bandwidth,
ktime_to_ns(def_rt_bandwidth.rt_period), 0);
+ init_rt_bandwidth(&tg->rt_task_bandwidth,
+ ktime_to_ns(def_rt_bandwidth.rt_period), 0);
for_each_possible_cpu(i) {
rq = cpu_rq(i);
@@ -8109,19 +8067,12 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
if (!rt_rq)
goto err;
- rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
- GFP_KERNEL, cpu_to_node(i));
- if (!rt_se)
- goto err_free_rq;
-
- init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
+ init_tg_rt_entry(tg, rt_rq, i, 0);
}
return 1;
- err_free_rq:
- kfree(rt_rq);
- err:
+err:
return 0;
}
@@ -8389,27 +8340,65 @@ struct rt_schedulable_data {
struct task_group *tg;
u64 rt_period;
u64 rt_runtime;
+ int rt_task_data;
};
-static int tg_schedulable(struct task_group *tg, void *data)
+static inline void rt_tg_parameters(struct task_group *tg, int task_data,
+ u64 *period, u64 *runtime)
+{
+ struct rt_bandwidth *rt_b = task_data ? &tg->rt_task_bandwidth :
+ &tg->rt_bandwidth;
+
+ *period = ktime_to_ns(rt_b->rt_period);
+ *runtime = rt_b->rt_runtime;
+}
+
+static unsigned long tg_utilization(struct task_group *tg,
+ struct rt_schedulable_data *d)
{
- struct rt_schedulable_data *d = data;
struct task_group *child;
- unsigned long total, sum = 0;
+ unsigned long sum;
u64 period, runtime;
- period = ktime_to_ns(tg->rt_bandwidth.rt_period);
- runtime = tg->rt_bandwidth.rt_runtime;
-
- if (tg == d->tg) {
+ if (d && tg == d->tg && d->rt_task_data) {
period = d->rt_period;
runtime = d->rt_runtime;
+ } else
+ rt_tg_parameters(tg, 1, &period, &runtime);
+
+ /* Task utilization. */
+ sum = to_ratio(period, runtime);
+
+ /* Children utilization. */
+ list_for_each_entry_rcu(child, &tg->children, siblings) {
+ if (d && child == d->tg && !d->rt_task_data) {
+ period = d->rt_period;
+ runtime = d->rt_runtime;
+ } else
+ rt_tg_parameters(child, 0, &period, &runtime);
+
+ sum += to_ratio(period, runtime);
}
+ return sum;
+}
+
+static int tg_schedulable(struct task_group *tg, void *data)
+{
+ struct rt_schedulable_data *d = data;
+ unsigned long total, sum;
+ u64 period, runtime;
+
+ if (tg == d->tg && !d->rt_task_data) {
+ period = d->rt_period;
+ runtime = d->rt_runtime;
+ } else
+ rt_tg_parameters(tg, 0, &period, &runtime);
+
/*
* Cannot have more runtime than the period.
*/
- if (runtime > period && runtime != RUNTIME_INF)
+ if (runtime > period)
return -EINVAL;
/*
@@ -8429,17 +8418,7 @@ static int tg_schedulable(struct task_group *tg, void *data)
/*
* The sum of our children's runtime should not exceed our own.
*/
- list_for_each_entry_rcu(child, &tg->children, siblings) {
- period = ktime_to_ns(child->rt_bandwidth.rt_period);
- runtime = child->rt_bandwidth.rt_runtime;
-
- if (child == d->tg) {
- period = d->rt_period;
- runtime = d->rt_runtime;
- }
-
- sum += to_ratio(period, runtime);
- }
+ sum = tg_utilization(tg, d);
if (sum > total)
return -EINVAL;
@@ -8447,89 +8426,109 @@ static int tg_schedulable(struct task_group *tg, void *data)
return 0;
}
-static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
+static int __rt_schedulable(struct task_group *tg, u64 period,
+ u64 runtime, int task_data)
{
struct rt_schedulable_data data = {
.tg = tg,
.rt_period = period,
.rt_runtime = runtime,
+ .rt_task_data = task_data,
};
return walk_tg_tree(tg_schedulable, tg_nop, &data);
}
-static int tg_set_bandwidth(struct task_group *tg,
+static int tg_set_bandwidth(struct task_group *tg, int task_data,
u64 rt_period, u64 rt_runtime)
{
int i, err = 0;
mutex_lock(&rt_constraints_mutex);
read_lock(&tasklist_lock);
- err = __rt_schedulable(tg, rt_period, rt_runtime);
+ err = __rt_schedulable(tg, rt_period, rt_runtime, task_data);
if (err)
goto unlock;
- raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
- tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
- tg->rt_bandwidth.rt_runtime = rt_runtime;
+ if (task_data) {
+ raw_spin_lock_irq(&tg->rt_task_bandwidth.rt_runtime_lock);
+ tg->rt_task_bandwidth.rt_period = ns_to_ktime(rt_period);
+ tg->rt_task_bandwidth.rt_runtime = rt_runtime;
- for_each_possible_cpu(i) {
- struct rt_rq *rt_rq = tg->rt_rq[i];
+ for_each_possible_cpu(i) {
+ struct rt_rq *rt_rq = tg->rt_rq[i];
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_runtime = rt_runtime;
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
+ raw_spin_lock(&rt_rq->rt_runtime_lock);
+ rt_rq->rt_runtime = rt_runtime;
+ rt_rq->rt_period = ns_to_ktime(rt_period);
+ raw_spin_unlock(&rt_rq->rt_runtime_lock);
+ }
+ raw_spin_unlock_irq(&tg->rt_task_bandwidth.rt_runtime_lock);
+ } else {
+ raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
+ tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
+ tg->rt_bandwidth.rt_runtime = rt_runtime;
+ raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
}
- raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
- unlock:
+
+unlock:
read_unlock(&tasklist_lock);
mutex_unlock(&rt_constraints_mutex);
return err;
}
-int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
+int sched_group_set_rt_runtime(struct task_group *tg, int task_data,
+ long rt_runtime_us)
{
u64 rt_runtime, rt_period;
- rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
+ rt_period = task_data ? ktime_to_ns(tg->rt_task_bandwidth.rt_period) :
+ ktime_to_ns(tg->rt_bandwidth.rt_period);
rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
if (rt_runtime_us < 0)
rt_runtime = RUNTIME_INF;
- return tg_set_bandwidth(tg, rt_period, rt_runtime);
+ return tg_set_bandwidth(tg, task_data, rt_period, rt_runtime);
}
-long sched_group_rt_runtime(struct task_group *tg)
+long sched_group_rt_runtime(struct task_group *tg, int task_data)
{
u64 rt_runtime_us;
- if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
+ rt_runtime_us = task_data ? tg->rt_task_bandwidth.rt_runtime :
+ tg->rt_bandwidth.rt_runtime;
+
+ if (rt_runtime_us == RUNTIME_INF)
return -1;
- rt_runtime_us = tg->rt_bandwidth.rt_runtime;
do_div(rt_runtime_us, NSEC_PER_USEC);
return rt_runtime_us;
}
-int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
+int sched_group_set_rt_period(struct task_group *tg, int task_data,
+ long rt_period_us)
{
u64 rt_runtime, rt_period;
rt_period = (u64)rt_period_us * NSEC_PER_USEC;
- rt_runtime = tg->rt_bandwidth.rt_runtime;
+ rt_runtime = task_data ? tg->rt_task_bandwidth.rt_runtime :
+ tg->rt_bandwidth.rt_runtime;
if (rt_period == 0)
return -EINVAL;
- return tg_set_bandwidth(tg, rt_period, rt_runtime);
+ return tg_set_bandwidth(tg, task_data, rt_period, rt_runtime);
}
-long sched_group_rt_period(struct task_group *tg)
+long sched_group_rt_period(struct task_group *tg, int task_data)
{
u64 rt_period_us;
- rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
+ rt_period_us = task_data ?
+ ktime_to_ns(tg->rt_task_bandwidth.rt_period) :
+ ktime_to_ns(tg->rt_bandwidth.rt_period);
+
do_div(rt_period_us, NSEC_PER_USEC);
return rt_period_us;
}
@@ -8553,7 +8552,7 @@ static int sched_rt_global_constraints(void)
mutex_lock(&rt_constraints_mutex);
read_lock(&tasklist_lock);
- ret = __rt_schedulable(NULL, 0, 0);
+ ret = __rt_schedulable(NULL, 0, 0, 0);
read_unlock(&tasklist_lock);
mutex_unlock(&rt_constraints_mutex);
@@ -8563,7 +8562,7 @@ static int sched_rt_global_constraints(void)
int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
/* Don't accept realtime tasks when there is no way for them to run */
- if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
+ if (rt_task(tsk) && tg->rt_task_bandwidth.rt_runtime == 0)
return 0;
return 1;
@@ -8735,23 +8734,46 @@ static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
s64 val)
{
- return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
+ return sched_group_set_rt_runtime(cgroup_tg(cgrp), 0, val);
}
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
{
- return sched_group_rt_runtime(cgroup_tg(cgrp));
+ return sched_group_rt_runtime(cgroup_tg(cgrp), 0);
}
static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
u64 rt_period_us)
{
- return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
+ return sched_group_set_rt_period(cgroup_tg(cgrp), 0, rt_period_us);
}
static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
- return sched_group_rt_period(cgroup_tg(cgrp));
+ return sched_group_rt_period(cgroup_tg(cgrp), 0);
+}
+
+static int cpu_rt_task_runtime_write(struct cgroup *cgrp, struct cftype *cft,
+ s64 val)
+{
+ return sched_group_set_rt_runtime(cgroup_tg(cgrp), 1, val);
+}
+
+static s64 cpu_rt_task_runtime_read(struct cgroup *cgrp, struct cftype *cft)
+{
+ return sched_group_rt_runtime(cgroup_tg(cgrp), 1);
+}
+
+static int cpu_rt_task_period_write_uint(struct cgroup *cgrp,
+ struct cftype *cftype,
+ u64 rt_period_us)
+{
+ return sched_group_set_rt_period(cgroup_tg(cgrp), 1, rt_period_us);
+}
+
+static u64 cpu_rt_task_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
+{
+ return sched_group_rt_period(cgroup_tg(cgrp), 1);
}
#endif /* CONFIG_RT_GROUP_SCHED */
@@ -8774,6 +8796,16 @@ static struct cftype cpu_files[] = {
.read_u64 = cpu_rt_period_read_uint,
.write_u64 = cpu_rt_period_write_uint,
},
+ {
+ .name = "rt_task_runtime_us",
+ .read_s64 = cpu_rt_task_runtime_read,
+ .write_s64 = cpu_rt_task_runtime_write,
+ },
+ {
+ .name = "rt_task_period_us",
+ .read_u64 = cpu_rt_task_period_read_uint,
+ .write_u64 = cpu_rt_task_period_write_uint,
+ },
#endif
};
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
index bf3e38f..7b8af0b 100644
--- a/kernel/sched_rt.c
+++ b/kernel/sched_rt.c
@@ -5,13 +5,8 @@
#ifdef CONFIG_RT_GROUP_SCHED
-#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
-
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
-#ifdef CONFIG_SCHED_DEBUG
- WARN_ON_ONCE(!rt_entity_is_task(rt_se));
-#endif
return container_of(rt_se, struct task_struct, rt);
}
@@ -27,8 +22,6 @@ static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
#else /* CONFIG_RT_GROUP_SCHED */
-#define rt_entity_is_task(rt_se) (1)
-
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
return container_of(rt_se, struct task_struct, rt);
@@ -36,7 +29,8 @@ static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
- return container_of(rt_rq, struct rq, rt);
+ struct rt_root_rq *rt = container_of(rt_rq, struct rt_root_rq, rt_rq);
+ return container_of(rt, struct rq, rt);
}
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
@@ -44,7 +38,7 @@ static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
struct task_struct *p = rt_task_of(rt_se);
struct rq *rq = task_rq(p);
- return &rq->rt;
+ return &rq->rt.rt_rq;
}
#endif /* CONFIG_RT_GROUP_SCHED */
@@ -83,45 +77,41 @@ static inline void rt_clear_overload(struct rq *rq)
cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
}
-static void update_rt_migration(struct rt_rq *rt_rq)
+static void update_rt_migration(struct rt_root_rq *rt)
{
- if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
- if (!rt_rq->overloaded) {
- rt_set_overload(rq_of_rt_rq(rt_rq));
- rt_rq->overloaded = 1;
+ struct rq *rq = container_of(rt, struct rq, rt);
+
+ if (rt->rt_nr_migratory && rt->rt_nr_total > 1) {
+ if (!rt->overloaded) {
+ rt_set_overload(rq);
+ rt->overloaded = 1;
}
- } else if (rt_rq->overloaded) {
- rt_clear_overload(rq_of_rt_rq(rt_rq));
- rt_rq->overloaded = 0;
+ } else if (rt->overloaded) {
+ rt_clear_overload(rq);
+ rt->overloaded = 0;
}
}
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
- if (!rt_entity_is_task(rt_se))
- return;
-
- rt_rq = &rq_of_rt_rq(rt_rq)->rt;
+ struct rt_root_rq *rt = &rq_of_rt_rq(rt_rq)->rt;
- rt_rq->rt_nr_total++;
+ rt->rt_nr_total++;
if (rt_se->nr_cpus_allowed > 1)
- rt_rq->rt_nr_migratory++;
+ rt->rt_nr_migratory++;
- update_rt_migration(rt_rq);
+ update_rt_migration(rt);
}
static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
- if (!rt_entity_is_task(rt_se))
- return;
-
- rt_rq = &rq_of_rt_rq(rt_rq)->rt;
+ struct rt_root_rq *rt = &rq_of_rt_rq(rt_rq)->rt;
- rt_rq->rt_nr_total--;
+ rt->rt_nr_total--;
if (rt_se->nr_cpus_allowed > 1)
- rt_rq->rt_nr_migratory--;
+ rt->rt_nr_migratory--;
- update_rt_migration(rt_rq);
+ update_rt_migration(rt);
}
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
@@ -168,6 +158,18 @@ static inline int on_rt_rq(struct sched_rt_entity *rt_se)
return !list_empty(&rt_se->run_list);
}
+static inline int rt_rq_on_rq(struct rt_rq *rt_rq)
+{
+ return !RB_EMPTY_NODE(&rt_rq->rb_node);
+}
+
+static inline int rt_rq_is_leftmost(struct rt_rq *rt_rq)
+{
+ struct rq *rq = rq_of_rt_rq(rt_rq);
+
+ return rq->rt.rt_edf_tree.rb_leftmost == &rt_rq->rb_node;
+}
+
#ifdef CONFIG_RT_GROUP_SCHED
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
@@ -180,48 +182,41 @@ static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
- return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
+ return ktime_to_ns(rt_rq->tg->rt_task_bandwidth.rt_period);
}
#define for_each_leaf_rt_rq(rt_rq, rq) \
list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
-#define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = rt_se->parent)
-
-static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
-{
- return rt_se->my_q;
-}
-
-static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
-static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
+static void __dequeue_rt_rq(struct rt_rq *rt_rq);
+static void __enqueue_rt_rq(struct rt_rq *rt_rq);
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
{
- int this_cpu = smp_processor_id();
- struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
- struct sched_rt_entity *rt_se;
-
- rt_se = rt_rq->tg->rt_se[this_cpu];
+ struct rq *rq = rq_of_rt_rq(rt_rq);
- if (rt_rq->rt_nr_running) {
- if (rt_se && !on_rt_rq(rt_se))
- enqueue_rt_entity(rt_se, false);
- if (rt_rq->highest_prio.curr < curr->prio)
- resched_task(curr);
+ if (rt_rq->rt_nr_running && !rt_rq_on_rq(rt_rq)) {
+ __enqueue_rt_rq(rt_rq);
+ if (rt_rq_is_leftmost(rt_rq))
+ resched_task(rq->curr);
}
}
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
{
- int this_cpu = smp_processor_id();
- struct sched_rt_entity *rt_se;
+ if (rt_rq_on_rq(rt_rq))
+ __dequeue_rt_rq(rt_rq);
+}
- rt_se = rt_rq->tg->rt_se[this_cpu];
+static inline void sched_rt_deadline_updated(struct rt_rq *rt_rq)
+{
+ int was_leftmost = rt_rq_is_leftmost(rt_rq);
- if (rt_se && on_rt_rq(rt_se))
- dequeue_rt_entity(rt_se);
+ sched_rt_rq_dequeue(rt_rq);
+ sched_rt_rq_enqueue(rt_rq);
+
+ if (was_leftmost && !rt_rq_is_leftmost(rt_rq))
+ resched_task(rq_of_rt_rq(rt_rq)->curr);
}
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
@@ -231,12 +226,8 @@ static inline int rt_rq_throttled(struct rt_rq *rt_rq)
static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
struct task_struct *p;
- if (rt_rq)
- return !!rt_rq->rt_nr_boosted;
-
p = rt_task_of(rt_se);
return p->prio != p->normal_prio;
}
@@ -256,12 +247,48 @@ static inline const struct cpumask *sched_rt_period_mask(void)
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
- return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
+ return container_of(rt_b, struct task_group,
+ rt_task_bandwidth)->rt_rq[cpu];
}
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
- return &rt_rq->tg->rt_bandwidth;
+ return &rt_rq->tg->rt_task_bandwidth;
+}
+
+static inline void rt_period_set_expires(struct rt_rq *rt_rq)
+{
+ ktime_t now, delta, dline;
+ struct rq *rq = rq_of_rt_rq(rt_rq);
+
+ /*
+ * Compensate for discrepancies between rq->clock (used to
+ * calculate deadlines) and the hrtimer-measured time, to obtain
+ * a valid absolute time instant for the timer itself.
+ */
+ now = hrtimer_cb_get_time(&rt_rq->rt_period_timer);
+ delta = ktime_sub_ns(now, rq->clock);
+ dline = ktime_add(ns_to_ktime(rt_rq->rt_deadline), delta);
+
+ hrtimer_set_expires(&rt_rq->rt_period_timer, dline);
+}
+
+static int __do_sched_rt_period_timer(struct rt_rq *rt_rq, int overrun);
+
+static inline void rt_compensate_overruns(struct rt_rq *rt_rq, int overrun)
+{
+ if (unlikely(overrun))
+ __do_sched_rt_period_timer(rt_rq, overrun);
+}
+
+static struct rt_rq *pick_next_rt_rq(struct rq *rq)
+{
+ struct rb_node *left = rq->rt.rt_edf_tree.rb_leftmost;
+
+ if (!left)
+ return NULL;
+
+ return rb_entry(left, struct rt_rq, rb_node);
}
#else /* !CONFIG_RT_GROUP_SCHED */
@@ -279,14 +306,6 @@ static inline u64 sched_rt_period(struct rt_rq *rt_rq)
#define for_each_leaf_rt_rq(rt_rq, rq) \
for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
-#define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = NULL)
-
-static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
-{
- return NULL;
-}
-
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
{
if (rt_rq->rt_nr_running)
@@ -297,6 +316,8 @@ static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
{
}
+static inline void sched_rt_deadline_updated(struct rt_rq *rt_rq) {}
+
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
return rt_rq->rt_throttled;
@@ -310,7 +331,7 @@ static inline const struct cpumask *sched_rt_period_mask(void)
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
- return &cpu_rq(cpu)->rt;
+ return &cpu_rq(cpu)->rt.rt_rq;
}
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
@@ -318,8 +339,26 @@ static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
return &def_rt_bandwidth;
}
+static inline void rt_period_set_expires(struct rt_rq *rt_rq) {}
+static inline void rt_compensate_overruns(struct rt_rq *rt_rq, int overrun) {}
+
+static struct rt_rq *pick_next_rt_rq(struct rq *rq)
+{
+ struct rt_rq *rt_rq = &rq->rt.rt_rq;
+
+ if (!rt_rq->rt_nr_running || rt_rq_throttled(rt_rq))
+ return NULL;
+
+ return rt_rq;
+}
+
#endif /* CONFIG_RT_GROUP_SCHED */
+static inline int rt_time_before(u64 a, u64 b)
+{
+ return (s64)(a - b) < 0;
+}
+
#ifdef CONFIG_SMP
/*
* We ran out of runtime, see if we can borrow some from our neighbours.
@@ -516,56 +555,119 @@ static inline int balance_runtime(struct rt_rq *rt_rq)
}
#endif /* CONFIG_SMP */
-static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
+static inline int rt_rq_needs_recharge(struct rt_rq *rt_rq)
{
- int i, idle = 1;
- const struct cpumask *span;
+ if (rt_rq->rt_time)
+ return 1;
- if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
+ if (!rt_rq_on_rq(rt_rq))
return 1;
- span = sched_rt_period_mask();
- for_each_cpu(i, span) {
- int enqueue = 0;
- struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
- struct rq *rq = rq_of_rt_rq(rt_rq);
-
- raw_spin_lock(&rq->lock);
- if (rt_rq->rt_time) {
- u64 runtime;
-
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- if (rt_rq->rt_throttled)
- balance_runtime(rt_rq);
- runtime = rt_rq->rt_runtime;
- rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
- if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
- rt_rq->rt_throttled = 0;
- enqueue = 1;
- }
- if (rt_rq->rt_time || rt_rq->rt_nr_running)
- idle = 0;
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- } else if (rt_rq->rt_nr_running)
+ return 0;
+}
+
+static int __do_sched_rt_period_timer(struct rt_rq *rt_rq, int overrun)
+{
+ int idle = 1;
+ u64 runtime;
+
+ if (rt_rq->rt_time) {
+ runtime = rt_rq->rt_runtime;
+ rt_rq->rt_time -= min(rt_rq->rt_time, overrun * runtime);
+ rt_rq->rt_deadline += overrun * ktime_to_ns(rt_rq->rt_period);
+
+ if (rt_rq->rt_time || rt_rq->rt_nr_running)
idle = 0;
- if (enqueue)
+ if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
+ /* Un-throttle (even if we were boosted). */
+ rt_rq->rt_throttled = 0;
sched_rt_rq_enqueue(rt_rq);
- raw_spin_unlock(&rq->lock);
- }
+ } else if (!rt_rq_throttled(rt_rq)) {
+ /* The deadline changed, (re-)queue rt_rq. */
+ sched_rt_deadline_updated(rt_rq);
+ }
+ } else if (rt_rq->rt_nr_running)
+ idle = 0;
+
+ return idle && !rt_rq_needs_recharge(rt_rq);
+}
+
+static int do_sched_rt_period_timer(struct rt_rq *rt_rq, int overrun)
+{
+ struct rq *rq = rq_of_rt_rq(rt_rq);
+ int idle;
+
+ if (!rt_bandwidth_enabled() || rt_rq->rt_runtime == RUNTIME_INF)
+ return 1;
+
+ raw_spin_lock(&rq->lock);
+ raw_spin_lock(&rt_rq->rt_runtime_lock);
+
+ if (rt_rq->rt_throttled)
+ balance_runtime(rt_rq);
+
+ idle = __do_sched_rt_period_timer(rt_rq, overrun);
+
+ raw_spin_unlock(&rt_rq->rt_runtime_lock);
+ raw_spin_unlock(&rq->lock);
return idle;
}
-static inline int rt_se_prio(struct sched_rt_entity *rt_se)
+static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *hrtimer)
{
-#ifdef CONFIG_RT_GROUP_SCHED
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
+ struct rt_rq *rt_rq = container_of(hrtimer, struct rt_rq,
+ rt_period_timer);
+ int overrun, idle = 0;
- if (rt_rq)
- return rt_rq->highest_prio.curr;
-#endif
+ for (;;) {
+ overrun = hrtimer_forward_now(hrtimer, rt_rq->rt_period);
+
+ if (!overrun)
+ break;
+
+ idle = do_sched_rt_period_timer(rt_rq, overrun);
+ }
+
+ return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
+}
+
+static void start_rt_period_timer(struct rt_rq *rt_rq)
+{
+ ktime_t soft, hard;
+ unsigned long range;
+ int overrun;
+ rt_period_set_expires(rt_rq);
+
+ for (;;) {
+ /* Timer started, we'll get our recharge. */
+ if (hrtimer_active(&rt_rq->rt_period_timer))
+ return;
+
+ /* Make sure dline is in the future when the timer starts. */
+ overrun = hrtimer_forward_now(&rt_rq->rt_period_timer,
+ rt_rq->rt_period);
+
+ /* Update deadline and handle recharges in case of overrun. */
+ rt_compensate_overruns(rt_rq, overrun);
+
+ /* Avoid unnecessary timer expirations. */
+ if (!rt_rq_needs_recharge(rt_rq))
+ return;
+
+ /* Try to program the timer. */
+ soft = hrtimer_get_softexpires(&rt_rq->rt_period_timer);
+ hard = hrtimer_get_expires(&rt_rq->rt_period_timer);
+ range = ktime_to_ns(ktime_sub(hard, soft));
+ __hrtimer_start_range_ns(&rt_rq->rt_period_timer, soft,
+ range, HRTIMER_MODE_ABS, 0);
+ }
+}
+
+static inline int rt_se_prio(struct sched_rt_entity *rt_se)
+{
return rt_task_of(rt_se)->prio;
}
@@ -586,6 +688,7 @@ static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
if (rt_rq->rt_time > runtime) {
rt_rq->rt_throttled = 1;
+ start_rt_period_timer(rt_rq);
if (rt_rq_throttled(rt_rq)) {
sched_rt_rq_dequeue(rt_rq);
return 1;
@@ -626,16 +729,12 @@ static void update_curr_rt(struct rq *rq)
if (!rt_bandwidth_enabled())
return;
- for_each_sched_rt_entity(rt_se) {
- rt_rq = rt_rq_of_se(rt_se);
-
- if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_time += delta_exec;
- if (sched_rt_runtime_exceeded(rt_rq))
- resched_task(curr);
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- }
+ if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
+ raw_spin_lock(&rt_rq->rt_runtime_lock);
+ rt_rq->rt_time += delta_exec;
+ if (sched_rt_runtime_exceeded(rt_rq))
+ resched_task(curr);
+ raw_spin_unlock(&rt_rq->rt_runtime_lock);
}
}
@@ -653,94 +752,134 @@ static inline int next_prio(struct rq *rq)
return MAX_RT_PRIO;
}
-static void
-inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
+static void inc_rq_next_prio(struct rq *rq, int prio, int prev_prio)
{
- struct rq *rq = rq_of_rt_rq(rt_rq);
+ struct rt_root_rq *rt = &rq->rt;
if (prio < prev_prio) {
-
/*
* If the new task is higher in priority than anything on the
* run-queue, we know that the previous high becomes our
* next-highest.
*/
- rt_rq->highest_prio.next = prev_prio;
+ rt->highest_prio.next = prev_prio;
if (rq->online)
cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
-
- } else if (prio == rt_rq->highest_prio.curr)
+ } else if (prio == rt->highest_prio.curr) {
/*
* If the next task is equal in priority to the highest on
* the run-queue, then we implicitly know that the next highest
* task cannot be any lower than current
*/
- rt_rq->highest_prio.next = prio;
- else if (prio < rt_rq->highest_prio.next)
+ rt->highest_prio.next = prio;
+ } else if (prio < rt->highest_prio.next) {
/*
* Otherwise, we need to recompute next-highest
*/
- rt_rq->highest_prio.next = next_prio(rq);
+ rt->highest_prio.next = next_prio(rq);
+ }
}
-static void
-dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
+static void dec_rq_next_prio(struct rq *rq, int prio, int prev_prio)
+{
+ struct rt_root_rq *rt = &rq->rt;
+
+ if (rt->rt_nr_total && (prio <= rt->highest_prio.next))
+ rt->highest_prio.next = next_prio(rq);
+
+ if (rq->online && rt->highest_prio.curr != prev_prio)
+ cpupri_set(&rq->rd->cpupri, rq->cpu, rt->highest_prio.curr);
+}
+
+static inline void inc_rq_prio(struct rt_rq *rt_rq, int prio)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
+ int prev_prio = rq->rt.highest_prio.curr;
+
+ if (prio < prev_prio)
+ rq->rt.highest_prio.curr = prio;
- if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
- rt_rq->highest_prio.next = next_prio(rq);
+ inc_rq_next_prio(rq, prio, prev_prio);
+}
+
+static inline int find_highest_prio(struct rq *rq)
+{
+ struct rt_rq *rt_rq;
+ int max = MAX_RT_PRIO;
+
+ for_each_leaf_rt_rq(rt_rq, rq) {
+ if (rt_rq->highest_prio < max)
+ max = rt_rq->highest_prio;
+ }
+
+ return max;
+}
+
+static void dec_rq_prio(struct rt_rq *rt_rq, int prio)
+{
+ struct rq *rq = rq_of_rt_rq(rt_rq);
+ int prev_prio = rq->rt.highest_prio.curr;
+
+ if (rq->rt.rt_nr_total) {
+ WARN_ON(prio < prev_prio);
+ /*
+ * This may have been our highest task, and therefore
+ * we may have some recomputation to do; since rq->rt
+ * does not contain tasks/groups, we have to look into
+ * the child runqueues. (A possible optimization would
+ * be using the prio_array of rq->rt to store entities
+ * for the group, but with per-group balancing this
+ * lookup will be no longer necessary.)
+ */
+ if (prio == prev_prio)
+ rq->rt.highest_prio.curr = find_highest_prio(rq);
+ } else
+ rq->rt.highest_prio.curr = MAX_RT_PRIO;
- if (rq->online && rt_rq->highest_prio.curr != prev_prio)
- cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
+ dec_rq_next_prio(rq, prio, prev_prio);
}
#else /* CONFIG_SMP */
-static inline
-void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
-static inline
-void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
+static inline void inc_rq_prio(struct rt_rq *rt_rq, int prio) {}
+static inline void dec_rq_prio(struct rt_rq *rt_rq, int prio) {}
#endif /* CONFIG_SMP */
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
+
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
- int prev_prio = rt_rq->highest_prio.curr;
+ int prev_prio = rt_rq->highest_prio;
if (prio < prev_prio)
- rt_rq->highest_prio.curr = prio;
+ rt_rq->highest_prio = prio;
- inc_rt_prio_smp(rt_rq, prio, prev_prio);
+ inc_rq_prio(rt_rq, prio);
}
static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
- int prev_prio = rt_rq->highest_prio.curr;
+ int prev_prio = rt_rq->highest_prio;
if (rt_rq->rt_nr_running) {
-
WARN_ON(prio < prev_prio);
-
/*
* This may have been our highest task, and therefore
* we may have some recomputation to do
*/
if (prio == prev_prio) {
struct rt_prio_array *array = &rt_rq->active;
-
- rt_rq->highest_prio.curr =
+ rt_rq->highest_prio =
sched_find_first_bit(array->bitmap);
}
-
} else
- rt_rq->highest_prio.curr = MAX_RT_PRIO;
+ rt_rq->highest_prio = MAX_RT_PRIO;
- dec_rt_prio_smp(rt_rq, prio, prev_prio);
+ dec_rq_prio(rt_rq, prio);
}
#else
@@ -757,9 +896,6 @@ inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
if (rt_se_boosted(rt_se))
rt_rq->rt_nr_boosted++;
-
- if (rt_rq->tg)
- start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}
static void
@@ -771,17 +907,226 @@ dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
}
+static inline int rt_rq_prio(struct rt_rq *rt_rq)
+{
+ return rt_rq->highest_prio;
+}
+
+static inline int rt_rq_before(struct rt_rq *a, struct rt_rq *b)
+{
+ /*
+ * Schedule by priority if:
+ * - both a and b are boosted;
+ * - throttling is disabled system-wide.
+ */
+ if ((a->rt_nr_boosted && b->rt_nr_boosted) ||
+ global_rt_runtime() == RUNTIME_INF)
+ return rt_rq_prio(a) < rt_rq_prio(b);
+
+ /* Only a is boosted, choose it. */
+ if (a->rt_nr_boosted)
+ return 1;
+
+ /* Only b is boosted, choose it. */
+ if (b->rt_nr_boosted)
+ return 0;
+
+ /* Order by deadline. */
+ return rt_time_before(a->rt_deadline, b->rt_deadline);
+}
+
+static void __enqueue_rt_rq(struct rt_rq *rt_rq)
+{
+ struct rq *rq = rq_of_rt_rq(rt_rq);
+ struct rt_edf_tree *rt_tree = &rq->rt.rt_edf_tree;
+ struct rb_node **link = &rt_tree->rb_root.rb_node;
+ struct rb_node *parent = NULL;
+ struct rt_rq *entry;
+ int leftmost = 1;
+
+ BUG_ON(rt_rq_on_rq(rt_rq));
+
+ while (*link) {
+ parent = *link;
+ entry = rb_entry(parent, struct rt_rq, rb_node);
+ if (rt_rq_before(rt_rq, entry))
+ link = &parent->rb_left;
+ else {
+ link = &parent->rb_right;
+ leftmost = 0;
+ }
+ }
+
+ if (leftmost)
+ rt_tree->rb_leftmost = &rt_rq->rb_node;
+
+ rb_link_node(&rt_rq->rb_node, parent, link);
+ rb_insert_color(&rt_rq->rb_node, &rt_tree->rb_root);
+}
+
+static void __dequeue_rt_rq(struct rt_rq *rt_rq)
+{
+ struct rq *rq = rq_of_rt_rq(rt_rq);
+ struct rt_edf_tree *rt_tree = &rq->rt.rt_edf_tree;
+
+ BUG_ON(!rt_rq_on_rq(rt_rq));
+
+ if (rt_tree->rb_leftmost == &rt_rq->rb_node)
+ rt_tree->rb_leftmost = rb_next(&rt_rq->rb_node);
+
+ rb_erase(&rt_rq->rb_node, &rt_tree->rb_root);
+ RB_CLEAR_NODE(&rt_rq->rb_node);
+}
+
+static void rt_rq_update_deadline(struct rt_rq *rt_rq)
+{
+ struct rq *rq = rq_of_rt_rq(rt_rq);
+ u64 runtime, period, left, right;
+
+ raw_spin_lock(&rt_rq->rt_runtime_lock);
+
+ runtime = sched_rt_runtime(rt_rq);
+ period = ktime_to_ns(rt_rq->rt_period);
+ /*
+ * Update the deadline to the current time only if:
+ * - it is in the past;
+ * - using it would lead to a timeframe during which the
+ * group would exceed ist allocated bandwidth.
+ *
+ * For the second condition to hold, we check that in the
+ * time left before the deadline, using the residual budget,
+ * the group would exceed its runtime / period share.
+ * In formula:
+ * rt_time / (deadline - rq->clock) >= runtime / period
+ *
+ * left and right are the two sides of the equation, after a bit
+ * of shuffling to use multiplications instead of divisions; the
+ * goto is there to avoid the multiplications when not necessary.
+ */
+ if (rt_time_before(rt_rq->rt_deadline, rq->clock))
+ goto update;
+
+ left = period * rt_rq->rt_time;
+ right = (rt_rq->rt_deadline - rq->clock) * rt_rq->rt_runtime;
+
+ if (rt_time_before(right, left)) {
+update:
+ rt_rq->rt_deadline = rq->clock + period;
+ rt_rq->rt_time -= min(runtime, rt_rq->rt_time);
+
+ /*
+ * Be sure to return a runqueue that can execute, if it
+ * was boosted and consumed too much runtime; postpone
+ * the deadline accordingly.
+ */
+ while (rt_rq->rt_time > runtime) {
+ rt_rq->rt_deadline += period;
+ rt_rq->rt_time -= runtime;
+ }
+ }
+ raw_spin_unlock(&rt_rq->rt_runtime_lock);
+}
+
+static inline int rt_rq_boosted(struct rt_rq *rt_rq)
+{
+ if (!rt_rq->rt_nr_boosted)
+ return MAX_RT_PRIO;
+
+ return rt_rq_prio(rt_rq);
+}
+
+static void enqueue_rt_rq(struct rt_rq *rt_rq, int old_boosted)
+{
+ int on_rq = rt_rq_on_rq(rt_rq);
+
+ BUG_ON(!rt_rq->rt_nr_running);
+ BUG_ON(on_rq && rt_rq_throttled(rt_rq));
+
+ if (on_rq) {
+ if (old_boosted != rt_rq_boosted(rt_rq)) {
+ /* Boosted priority/state change: requeue rt_rq. */
+ __dequeue_rt_rq(rt_rq);
+ } else {
+ /* Already queued properly. */
+ return;
+ }
+ }
+
+ if (rt_rq_throttled(rt_rq))
+ return;
+
+ if (!rt_rq->rt_nr_boosted) {
+ /*
+ * When we update a deadline we may end up rebalancing, and
+ * thus requeueing the rt_rq, so we need to revalidate on_rq.
+ */
+ rt_rq_update_deadline(rt_rq);
+ on_rq = rt_rq_on_rq(rt_rq);
+ }
+
+ if (!on_rq)
+ __enqueue_rt_rq(rt_rq);
+}
+
+static void dequeue_rt_rq(struct rt_rq *rt_rq, int old_boosted)
+{
+ int on_rq = rt_rq_on_rq(rt_rq);
+
+ /*
+ * Here we do not expect throttled rt_rq's to be in the
+ * EDF tree; note that when they exceed their assigned budget
+ * they are dequeued via sched_rt_rq_dequeue().
+ */
+ BUG_ON(on_rq && rt_rq_throttled(rt_rq));
+
+ if (on_rq && (!rt_rq->rt_nr_running ||
+ old_boosted != rt_rq_boosted(rt_rq))) {
+ /*
+ * Dequeue the rt_rq either if it has no more tasks or
+ * its boosted priority/status changed and it needs to
+ * be requeued.
+ */
+ __dequeue_rt_rq(rt_rq);
+ on_rq = 0;
+ }
+
+ /* If we do not need to requeue the rt_rq, just return. */
+ if (!rt_rq->rt_nr_running || rt_rq_throttled(rt_rq))
+ return;
+
+ /* Reposition rt_rq. */
+ if (!on_rq)
+ __enqueue_rt_rq(rt_rq);
+}
+
#else /* CONFIG_RT_GROUP_SCHED */
static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
- start_rt_bandwidth(&def_rt_bandwidth);
+ raw_spin_lock(&rt_rq->rt_runtime_lock);
+ start_rt_period_timer(rt_rq);
+ raw_spin_unlock(&rt_rq->rt_runtime_lock);
}
static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
+static inline int rt_rq_boosted(struct rt_rq *rt_rq)
+{
+ return MAX_RT_PRIO;
+}
+
+static inline int rt_rq_before(struct rt_rq *a, struct rt_rq *b)
+{
+ BUG();
+
+ return 0;
+}
+
+static inline void enqueue_rt_rq(struct rt_rq *rt_rq, int old_boosted) {}
+static inline void dequeue_rt_rq(struct rt_rq *rt_rq, int old_boosted) {}
+
#endif /* CONFIG_RT_GROUP_SCHED */
static inline
@@ -792,38 +1137,31 @@ void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
WARN_ON(!rt_prio(prio));
rt_rq->rt_nr_running++;
- inc_rt_prio(rt_rq, prio);
inc_rt_migration(rt_se, rt_rq);
+ inc_rt_prio(rt_rq, prio);
inc_rt_group(rt_se, rt_rq);
}
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
- WARN_ON(!rt_prio(rt_se_prio(rt_se)));
+ int prio = rt_se_prio(rt_se);
+
+ WARN_ON(!rt_prio(prio));
WARN_ON(!rt_rq->rt_nr_running);
rt_rq->rt_nr_running--;
- dec_rt_prio(rt_rq, rt_se_prio(rt_se));
dec_rt_migration(rt_se, rt_rq);
+ dec_rt_prio(rt_rq, prio);
dec_rt_group(rt_se, rt_rq);
}
-static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
+static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
{
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
struct rt_prio_array *array = &rt_rq->active;
- struct rt_rq *group_rq = group_rt_rq(rt_se);
struct list_head *queue = array->queue + rt_se_prio(rt_se);
-
- /*
- * Don't enqueue the group if its throttled, or when empty.
- * The latter is a consequence of the former when a child group
- * get throttled and the current group doesn't have any other
- * active members.
- */
- if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
- return;
+ int boosted = rt_rq_boosted(rt_rq);
if (head)
list_add(&rt_se->run_list, queue);
@@ -832,56 +1170,22 @@ static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
__set_bit(rt_se_prio(rt_se), array->bitmap);
inc_rt_tasks(rt_se, rt_rq);
+
+ enqueue_rt_rq(rt_rq, boosted);
}
-static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
+static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
struct rt_prio_array *array = &rt_rq->active;
+ int boosted = rt_rq_boosted(rt_rq);
list_del_init(&rt_se->run_list);
if (list_empty(array->queue + rt_se_prio(rt_se)))
__clear_bit(rt_se_prio(rt_se), array->bitmap);
dec_rt_tasks(rt_se, rt_rq);
-}
-
-/*
- * Because the prio of an upper entry depends on the lower
- * entries, we must remove entries top - down.
- */
-static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
-{
- struct sched_rt_entity *back = NULL;
-
- for_each_sched_rt_entity(rt_se) {
- rt_se->back = back;
- back = rt_se;
- }
-
- for (rt_se = back; rt_se; rt_se = rt_se->back) {
- if (on_rt_rq(rt_se))
- __dequeue_rt_entity(rt_se);
- }
-}
-
-static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
-{
- dequeue_rt_stack(rt_se);
- for_each_sched_rt_entity(rt_se)
- __enqueue_rt_entity(rt_se, head);
-}
-
-static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
-{
- dequeue_rt_stack(rt_se);
-
- for_each_sched_rt_entity(rt_se) {
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
-
- if (rt_rq && rt_rq->rt_nr_running)
- __enqueue_rt_entity(rt_se, false);
- }
+ dequeue_rt_rq(rt_rq, boosted);
}
/*
@@ -932,12 +1236,9 @@ requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
{
struct sched_rt_entity *rt_se = &p->rt;
- struct rt_rq *rt_rq;
+ struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- for_each_sched_rt_entity(rt_se) {
- rt_rq = rt_rq_of_se(rt_se);
- requeue_rt_entity(rt_rq, rt_se, head);
- }
+ requeue_rt_entity(rt_rq, rt_se, head);
}
static void yield_task_rt(struct rq *rq)
@@ -1009,12 +1310,26 @@ static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
#endif /* CONFIG_SMP */
+static inline int check_preempt_rt_rq(struct task_struct *curr,
+ struct task_struct *p)
+{
+ struct rt_rq *rt_rq, *cur_rq;
+
+ cur_rq = rt_rq_of_se(&curr->rt);
+ rt_rq = rt_rq_of_se(&p->rt);
+
+ if (rt_rq == cur_rq)
+ return p->prio < curr->prio;
+
+ return rt_rq_before(rt_rq, cur_rq);
+}
+
/*
* Preempt the current task with a newly woken task if needed:
*/
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
{
- if (p->prio < rq->curr->prio) {
+ if (check_preempt_rt_rq(rq->curr, p)) {
resched_task(rq->curr);
return;
}
@@ -1037,14 +1352,19 @@ static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flag
#endif
}
-static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
- struct rt_rq *rt_rq)
+static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq)
{
- struct rt_prio_array *array = &rt_rq->active;
- struct sched_rt_entity *next = NULL;
+ struct rt_rq *rt_rq;
+ struct rt_prio_array *array;
+ struct sched_rt_entity *next;
struct list_head *queue;
int idx;
+ rt_rq = pick_next_rt_rq(rq);
+ if (!rt_rq)
+ return NULL;
+
+ array = &rt_rq->active;
idx = sched_find_first_bit(array->bitmap);
BUG_ON(idx >= MAX_RT_PRIO);
@@ -1058,22 +1378,11 @@ static struct task_struct *_pick_next_task_rt(struct rq *rq)
{
struct sched_rt_entity *rt_se;
struct task_struct *p;
- struct rt_rq *rt_rq;
-
- rt_rq = &rq->rt;
- if (unlikely(!rt_rq->rt_nr_running))
+ rt_se = pick_next_rt_entity(rq);
+ if (!rt_se)
return NULL;
- if (rt_rq_throttled(rt_rq))
- return NULL;
-
- do {
- rt_se = pick_next_rt_entity(rq, rt_rq);
- BUG_ON(!rt_se);
- rt_rq = group_rt_rq(rt_se);
- } while (rt_rq);
-
p = rt_task_of(rt_se);
p->se.exec_start = rq->clock;
@@ -1311,7 +1620,7 @@ static int push_rt_task(struct rq *rq)
if (!next_task)
return 0;
- retry:
+retry:
if (unlikely(next_task == rq->curr)) {
WARN_ON(1);
return 0;
@@ -1423,7 +1732,7 @@ static int pull_rt_task(struct rq *this_rq)
/*
* Are there still pullable RT tasks?
*/
- if (src_rq->rt.rt_nr_running <= 1)
+ if (src_rq->rt.rt_nr_total <= 1)
goto skip;
p = pick_next_highest_task_rt(src_rq, this_cpu);
@@ -1459,7 +1768,7 @@ static int pull_rt_task(struct rq *this_rq)
* but possible)
*/
}
- skip:
+skip:
double_unlock_balance(this_rq, src_rq);
}
@@ -1573,7 +1882,7 @@ static void switched_from_rt(struct rq *rq, struct task_struct *p,
* we may need to handle the pulling of RT tasks
* now.
*/
- if (!rq->rt.rt_nr_running)
+ if (!rq->rt.rt_nr_total)
pull_rt_task(rq);
}
--
1.6.5.7
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists