lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20120106143759.GE20291@quack.suse.cz>
Date:	Fri, 6 Jan 2012 15:37:59 +0100
From:	Jan Kara <jack@...e.cz>
To:	Shaohua Li <shaohua.li@...el.com>
Cc:	Dave Chinner <david@...morbit.com>, linux-kernel@...r.kernel.org,
	axboe@...nel.dk, vgoyal@...hat.com, jmoyer@...hat.com
Subject: Re: [RFC 0/3]block: An IOPS based ioscheduler

On Fri 06-01-12 13:12:29, Shaohua Li wrote:
> On Thu, 2012-01-05 at 14:50 +0800, Shaohua Li wrote:
> > On Wed, 2012-01-04 at 18:19 +1100, Dave Chinner wrote:
> > > On Wed, Jan 04, 2012 at 02:53:37PM +0800, Shaohua Li wrote:
> > > > An IOPS based I/O scheduler
> > > > 
> > > > Flash based storage has some different characteristics against rotate disk.
> > > > 1. no I/O seek.
> > > > 2. read and write I/O cost usually is much different.
> > > > 3. Time which a request takes depends on request size.
> > > > 4. High throughput and IOPS, low latency.
> > > > 
> > > > CFQ iosched does well for rotate disk, for example fair dispatching, idle
> > > > for sequential read. It also has optimization for flash based storage (for
> > > > item 1 above), but overall it's not designed for flash based storage. It's
> > > > a slice based algorithm. Since flash based storage request cost is very
> > > > low, and drive has big queue_depth is quite popular now which makes
> > > > dispatching cost even lower, CFQ's slice accounting (jiffy based)
> > > > doesn't work well. CFQ doesn't consider above item 2 & 3.
> > > > 
> > > > FIOPS (Fair IOPS) ioscheduler is trying to fix the gaps. It's IOPS based, so
> > > > only targets for drive without I/O seek. It's quite similar like CFQ, but
> > > > the dispatch decision is made according to IOPS instead of slice.
> > > > 
> > > > The algorithm is simple. Drive has a service tree, and each task lives in
> > > > the tree. The key into the tree is called vios (virtual I/O). Every request
> > > > has vios, which is calculated according to its ioprio, request size and so
> > > > on. Task's vios is the sum of vios of all requests it dispatches. FIOPS
> > > > always selects task with minimum vios in the service tree and let the task
> > > > dispatch request. The dispatched request's vios is then added to the task's
> > > > vios and the task is repositioned in the sevice tree.
> > > > 
> > > > The series are orgnized as:
> > > > Patch 1: separate CFQ's io context management code. FIOPS will use it too.
> > > > Patch 2: The core FIOPS.
> > > > Patch 3: request read/write vios scale. This demontrates how the vios scale.
> > > > 
> > > > To make the code simple for easy view, some scale code isn't included here,
> > > > some not implementated yet.
> > > > 
> > > > TODO:
> > > > 1. ioprio support (have patch already)
> > > > 2. request size vios scale
> > > > 3. cgroup support
> > > > 4. tracing support
> > > > 5. automatically select default iosched according to QUEUE_FLAG_NONROT.
> > > > 
> > > > Comments and suggestions are welcome!
> > > 
> > > Benchmark results?
> > I didn't have data yet. The patches are still in earlier stage, I want
> > to focus on the basic idea first.
> since you asked, I tested in a 4 socket machine with 12 X25M SSD jbod,
> fs is ext4.
> 
> workload		percentage change with fiops against cfq
> fio_sync_read_4k        -2
> fio_mediaplay_64k       0
> fio_mediaplay_128k      0
> fio_mediaplay_rr_64k    0
> fio_sync_read_rr_4k     0
> fio_sync_write_128k     0
> fio_sync_write_64k      -1
> fio_sync_write_4k       -2
> fio_sync_write_64k_create       0
> fio_sync_write_rr_64k_create    0
> fio_sync_write_128k_create      0
> fio_aio_randread_4k     -4
> fio_aio_randread_64k    0
> fio_aio_randwrite_4k    1
> fio_aio_randwrite_64k   0
> fio_aio_randrw_4k       -1
> fio_aio_randrw_64k      0
> fio_tpch        9
> fio_tpcc        0
> fio_mmap_randread_4k    -1
> fio_mmap_randread_64k   1
> fio_mmap_randread_1k    -8
> fio_mmap_randwrite_4k   35
> fio_mmap_randwrite_64k  22
> fio_mmap_randwrite_1k   28
> fio_mmap_randwrite_4k_halfbusy  24
> fio_mmap_randrw_4k      23
> fio_mmap_randrw_64k     4
> fio_mmap_randrw_1k      22
> fio_mmap_randrw_4k_halfbusy     35
> fio_mmap_sync_read_4k   0
> fio_mmap_sync_read_64k  -1
> fio_mmap_sync_read_128k         -1
> fio_mmap_sync_read_rr_64k       5
> fio_mmap_sync_read_rr_4k        3
> 
> The fio_mmap_randread_1k has regression against 3.2-rc7, but no
> regression against 3.2-rc6 kernel, still checking why. The fiops has
> improvement for read/write mixed workload. CFQ is known not good for
> read/write mixed workload.
  Nice, but this is only about throughput, isn't it? Part of the reason why
CFQ takes hit in the throughput is that it prefers sync IO (i.e.  reads and
synchronous writes) against other IO. Does your scheduler do anything like
that? Could you for example compare a latency of reads while running heavy
background writing between CFQ and your scheduler? Loads like this where
original motivation for CFQ I believe.

								Honza
-- 
Jan Kara <jack@...e.cz>
SUSE Labs, CR
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ