[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <1337809375-24295-16-git-send-email-juri.lelli@gmail.com>
Date: Wed, 23 May 2012 23:42:55 +0200
From: Juri Lelli <juri.lelli@...il.com>
To: peterz@...radead.org, tglx@...utronix.de
Cc: mingo@...hat.com, rostedt@...dmis.org, oleg@...hat.com,
fweisbec@...il.com, darren@...art.com, johan.eker@...csson.com,
p.faure@...tech.ch, linux-kernel@...r.kernel.org,
claudio@...dence.eu.com, michael@...rulasolutions.com,
fchecconi@...il.com, tommaso.cucinotta@...up.it,
juri.lelli@...il.com, nicola.manica@...i.unitn.it,
luca.abeni@...tn.it, dhaval.giani@...il.com, hgu1972@...il.com,
paulmck@...ux.vnet.ibm.com, raistlin@...ux.it,
insop.song@...csson.com, liming.wang@...driver.com,
jkacur@...hat.com, harald.gustafsson@...csson.com
Subject: [PATCH 15/15] sched: add sched_dl documentation.
From: Dario Faggioli <raistlin@...ux.it>
Add in Documentation/scheduler/ some hints about the design
choices, the usage and the future possible developments of the
sched_dl scheduling class and of the SCHED_DEADLINE policy.
Signed-off-by: Dario Faggioli <raistlin@...ux.it>
Signed-off-by: Juri Lelli <juri.lelli@...il.com>
---
Documentation/scheduler/sched-deadline.txt | 164 ++++++++++++++++++++++++++++
kernel/sched/dl.c | 3 +-
2 files changed, 166 insertions(+), 1 deletion(-)
create mode 100644 Documentation/scheduler/sched-deadline.txt
diff --git a/Documentation/scheduler/sched-deadline.txt b/Documentation/scheduler/sched-deadline.txt
new file mode 100644
index 0000000..d4dcfc7
--- /dev/null
+++ b/Documentation/scheduler/sched-deadline.txt
@@ -0,0 +1,164 @@
+ Deadline Task and Group Scheduling
+ ----------------------------------
+
+CONTENTS
+========
+
+0. WARNING
+1. Overview
+2. Task scheduling
+2. The Interface
+3. Bandwidth management
+ 3.1 System-wide settings
+ 2.2 Task interface
+ 2.4 Default behavior
+3. Future plans
+
+
+0. WARNING
+==========
+
+ Fiddling with these settings can result in an unpredictable or even unstable
+ system behavior. As for -rt (group) scheduling, it is assumed that root users
+ know what they're doing.
+
+
+1. Overview
+===========
+
+ The SCHED_DEADLINE policy contained inside the sched_dl scheduling class is
+ basically an implementation of the Earliest Deadline First (EDF) scheduling
+ algorithm, augmented with a mechanism (called Constant Bandwidth Server, CBS)
+ that makes it possible to isolate the behavior of tasks between each other.
+
+
+2. Task scheduling
+==================
+
+ The typical -deadline task is composed of a computation phase (instance)
+ which is activated on a periodic or sporadic fashion. The expected (maximum)
+ duration of such computation is called the task's runtime; the time interval
+ by which each instance needs to be completed is called the task's relative
+ deadline. The task's absolute deadline is dynamically calculated as the
+ time instant a task (or, more properly) activates plus the relative
+ deadline.
+
+ The EDF[1] algorithm selects the task with the smallest absolute deadline as
+ the one to be executed first, while the CBS[2,3] ensures that each task runs
+ for at most its runtime every period, avoiding any interference between
+ different tasks (bandwidth isolation).
+ Thanks to this feature, also tasks that do not strictly comply with the
+ computational model described above can effectively use the new policy.
+ IOW, there are no limitations on what kind of task can exploit this new
+ scheduling discipline, even if it must be said that it is particularly
+ suited for periodic or sporadic tasks that need guarantees on their
+ timing behavior, e.g., multimedia, streaming, control applications, etc.
+
+ References:
+ 1 - C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
+ ming in a hard-real-time environment. Journal of the Association for
+ Computing Machinery, 20(1), 1973.
+ 2 - L. Abeni , G. Buttazzo. Integrating Multimedia Applications in Hard
+ Real-Time Systems. Proceedings of the 19th IEEE Real-time Systems
+ Symposium, 1998. http://retis.sssup.it/~giorgio/paps/1998/rtss98-cbs.pdf
+ 3 - L. Abeni. Server Mechanisms for Multimedia Applications. ReTiS Lab
+ Technical Report. http://xoomer.virgilio.it/lucabe72/pubs/tr-98-01.ps
+
+3. Bandwidth management
+=======================
+
+ In order for the -deadline scheduling to be effective and useful, it is
+ important to have some method to keep the allocation of the available CPU
+ bandwidth to the tasks under control.
+ This is usually called "admission control" and if it is not performed at all,
+ no guarantee can be given on the actual scheduling of the -deadline tasks.
+
+ Since when RT-throttling has been introduced each task group has a bandwidth
+ associated, calculated as a certain amount of runtime over a period.
+ Moreover, to make it possible to manipulate such bandwidth, readable/writable
+ controls have been added to both procfs (for system wide settings) and cgroupfs
+ (for per-group settings).
+ Therefore, the same interface is being used for controlling the bandwidth
+ distrubution to -deadline tasks and task groups, i.e., new controls but with
+ similar names, equivalent meaning and with the same usage paradigm are added.
+
+ However, more discussion is needed in order to figure out how we want to manage
+ SCHED_DEADLINE bandwidth at the task group level. Therefore, SCHED_DEADLINE
+ uses (for now) a less sophisticated, but actually very sensible, mechanism to
+ ensure that a certain utilization cap is not overcome per each root_domain.
+
+ Another main difference between deadline bandwidth management and RT-throttling
+ is that -deadline tasks have bandwidth on their own (while -rt ones don't!),
+ and thus we don't need an higher level throttling mechanism to enforce the
+ desired bandwidth.
+
+3.1 System wide settings
+------------------------
+
+The system wide settings are configured under the /proc virtual file system:
+
+ The per-group controls that are added to the cgroupfs virtual file system are:
+ * /proc/sys/kernel/sched_dl_runtime_us,
+ * /proc/sys/kernel/sched_dl_period_us,
+
+ They accept (if written) and provides (if read) the new runtime and period,
+ respectively, for each CPU in each root_domain.
+
+ This means that, for a root_domain comprising M CPUs, -deadline tasks
+ can be created until the sum of their bandwidths stay below:
+
+ M * (sched_dl_runtime_us / sched_dl_period_us)
+
+ It is also possible to disable this bandwidth management logic, and
+ be thus free of oversubscribing the system up to any arbitrary level.
+ This is done by writing -1 in /proc/sys/kernel/sched_dl_runtime_us.
+
+
+2.2 Task interface
+------------------
+
+ Specifying a periodic/sporadic task that executes for a given amount of
+ runtime at each instance, and that is scheduled according to the urgency of
+ its own timing constraints needs, in general, a way of declaring:
+ - a (maximum/typical) instance execution time,
+ - a minimum interval between consecutive instances,
+ - a time constraint by which each instance must be completed.
+
+ Therefore:
+ * a new struct sched_param2, containing all the necessary fields is
+ provided;
+ * the new scheduling related syscalls that manipulate it, i.e.,
+ sched_setscheduler2(), sched_setparam2() and sched_getparam2()
+ are implemented.
+
+
+2.4 Default behavior
+---------------------
+
+The default values for SCHED_DEADLINE bandwidth is to have dl_runtime and
+dl_period equal to 500000 and 1000000, respectively. This means -deadline
+tasks can use at most 5%, multiplied by the number of CPUs that compose the
+root_domain, for each root_domain.
+
+When a -deadline task fork a child, its dl_runtime is set to 0, which means
+someone must call sched_setscheduler2() on it, or it won't even start.
+
+
+3. Future plans
+===============
+
+Still missing:
+
+ - refinements to deadline inheritance, especially regarding the possibility
+ of retaining bandwidth isolation among non-interacting tasks. This is
+ being studied from both theoretical and practical point of views, and
+ hopefully we should be able to produce some demonstrative code soon;
+ - (c)group based bandwidth management, and maybe scheduling;
+ - access control for non-root users (and related security concerns to
+ address), which is the best way to allow unprivileged use of the mechanisms
+ and how to prevent non-root users "cheat" the system?
+
+As already discussed, we are planning also to merge this work with the EDF
+throttling patches [https://lkml.org/lkml/2010/2/23/239] but we still are in
+the preliminary phases of the merge and we really seek feedback that would help us
+decide on the direction it should take.
diff --git a/kernel/sched/dl.c b/kernel/sched/dl.c
index 941a83a..3e28ed3 100644
--- a/kernel/sched/dl.c
+++ b/kernel/sched/dl.c
@@ -346,7 +346,8 @@ static void replenish_dl_entity(struct sched_dl_entity *dl_se,
* disrupting the schedulability of the system. Otherwise, we should
* refill the runtime and set the deadline a period in the future,
* because keeping the current (absolute) deadline of the task would
- * result in breaking guarantees promised to other tasks.
+ * result in breaking guarantees promised to other tasks (refer to
+ * Documentation/scheduler/sched-deadline.txt for more informations).
*
* This function returns true if:
*
--
1.7.9.5
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists