lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Message-Id: <1344517279-30646-1-git-send-email-glommer@parallels.com>
Date:	Thu,  9 Aug 2012 17:01:08 +0400
From:	Glauber Costa <glommer@...allels.com>
To:	<linux-kernel@...r.kernel.org>
Cc:	<linux-mm@...ck.org>, <cgroups@...r.kernel.org>,
	<devel@...nvz.org>, Michal Hocko <mhocko@...e.cz>,
	Johannes Weiner <hannes@...xchg.org>,
	Andrew Morton <akpm@...ux-foundation.org>,
	<kamezawa.hiroyu@...fujitsu.com>, Christoph Lameter <cl@...ux.com>,
	David Rientjes <rientjes@...gle.com>,
	Pekka Enberg <penberg@...nel.org>
Subject: [PATCH v2 00/11] Request for Inclusion: kmem controller for memcg.

Hi,

This is the first part of the kernel memory controller for memcg. It has been
discussed many times, and I consider this stable enough to be on tree. A follow
up to this series are the patches to also track slab memory. They are not
included here because I believe we could benefit from merging them separately
for better testing coverage. If there are any issues preventing this to be
merged, let me know. I'll be happy to address them.

The slab patches are also mature in my self evaluation and could be merged not
too long after this. For the reference, the last discussion about them happened
at http://lwn.net/Articles/508087/

A (throwaway) git tree with them is placed at:

	git://github.com/glommer/linux.git kmemcg-slab

A general explanation of what this is all about follows:

The kernel memory limitation mechanism for memcg concerns itself with
disallowing potentially non-reclaimable allocations to happen in exaggerate
quantities by a particular set of processes (cgroup). Those allocations could
create pressure that affects the behavior of a different and unrelated set of
processes.

Its basic working mechanism is to annotate some allocations with the
_GFP_KMEMCG flag. When this flag is set, the current process allocating will
have its memcg identified and charged against. When reaching a specific limit,
further allocations will be denied.

One example of such problematic pressure that can be prevented by this work is
a fork bomb conducted in a shell. We prevent it by noting that processes use a
limited amount of stack pages. Seen this way, a fork bomb is just a special
case of resource abuse. If the offender is unable to grab more pages for the
stack, no new processes can be created.

There are also other things the general mechanism protects against. For
example, using too much of pinned dentry and inode cache, by touching files an
leaving them in memory forever.

In fact, a simple:

while true; do mkdir x; cd x; done

can halt your system easily because the file system limits are hard to reach
(big disks), but the kernel memory is not. Those are examples, but the list
certainly don't stop here.

An important use case for all that, is concerned with people offering hosting
services through containers. In a physical box we can put a limit to some
resources, like total number of processes or threads. But in an environment
where each independent user gets its own piece of the machine, we don't want a
potentially malicious user to destroy good users' services.

This might be true for systemd as well, that now groups services inside
cgroups. They generally want to put forward a set of guarantees that limits the
running service in a variety of ways, so that if they become badly behaved,
they won't interfere with the rest of the system.

There is, of course, a cost for that. To attempt to mitigate that, static
branches are used to make sure that even if the feature is compiled in with
potentially a lot of memory cgroups deployed this code will only be enabled
after the first user of this service configures any limit. Limits lower than
the user limit effectively means there is a separate kernel memory limit that
may be reached independently than the user limit. Values equal or greater than
the user limit implies only that kernel memory is tracked. This provides a
unified vision of "maximum memory", be it kernel or user memory. Because this
is all default-off, existing deployments will see no change in behavior.

Glauber Costa (9):
  memcg: change defines to an enum
  kmem accounting basic infrastructure
  Add a __GFP_KMEMCG flag
  memcg: kmem controller infrastructure
  mm: Allocate kernel pages to the right memcg
  memcg: disable kmem code when not in use.
  memcg: propagate kmem limiting information to children
  memcg: allow a memcg with kmem charges to be destructed.
  protect architectures where THREAD_SIZE >= PAGE_SIZE against fork
    bombs

Suleiman Souhlal (2):
  memcg: Make it possible to use the stock for more than one page.
  memcg: Reclaim when more than one page needed.

 include/linux/gfp.h         |  10 +-
 include/linux/memcontrol.h  |  82 ++++++++
 include/linux/thread_info.h |   2 +
 kernel/fork.c               |   4 +-
 mm/memcontrol.c             | 443 +++++++++++++++++++++++++++++++++++++++++---
 mm/page_alloc.c             |  38 ++++
 6 files changed, 546 insertions(+), 33 deletions(-)

-- 
1.7.11.2

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ