lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite for Android: free password hash cracker in your pocket
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <1365811457-31924-2-git-send-email-paul.gortmaker@windriver.com>
Date:	Fri, 12 Apr 2013 20:04:16 -0400
From:	Paul Gortmaker <paul.gortmaker@...driver.com>
To:	Ingo Molnar <mingo@...nel.org>,
	Peter Zijlstra <peterz@...radead.org>
CC:	Thomas Gleixner <tglx@...utronix.de>,
	Frederic Weisbecker <fweisbec@...il.com>,
	LKML <linux-kernel@...r.kernel.org>,
	Paul Gortmaker <paul.gortmaker@...driver.com>,
	Ingo Molnar <mingo@...hat.com>,
	Peter Zijlstra <a.p.zijlstra@...llo.nl>
Subject: [PATCH 1/2] sched: fork load calculation code from sched/core --> sched/load_avg

This large chunk of load calculation code can be easily divorced from
the main core.c scheduler file, with only a couple prototypes and
externs added to a kernel/sched header.

Some recent commits expanded the code and the documentation of it,
making it large enough to warrant separation.  For example, see:

  556061b, "sched/nohz: Fix rq->cpu_load[] calculations"
  5aaa0b7, "sched/nohz: Fix rq->cpu_load calculations some more"
  5167e8d, "sched/nohz: Rewrite and fix load-avg computation -- again"

More importantly, it helps reduce the size of the main sched/core.c
by yet another significant amount (~600 lines).

Cc: Ingo Molnar <mingo@...hat.com>
Cc: Peter Zijlstra <a.p.zijlstra@...llo.nl>
Cc: Frederic Weisbecker <fweisbec@...il.com>
Cc: Thomas Gleixner <tglx@...utronix.de>
Signed-off-by: Paul Gortmaker <paul.gortmaker@...driver.com>
---
 kernel/sched/Makefile   |   2 +-
 kernel/sched/core.c     | 569 -----------------------------------------------
 kernel/sched/load_avg.c | 577 ++++++++++++++++++++++++++++++++++++++++++++++++
 kernel/sched/sched.h    |   8 +
 4 files changed, 586 insertions(+), 570 deletions(-)
 create mode 100644 kernel/sched/load_avg.c

diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index deaf90e..0efc670 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -11,7 +11,7 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
 CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer
 endif
 
-obj-y += core.o clock.o cputime.o idle_task.o fair.o rt.o stop_task.o
+obj-y += core.o load_avg.o clock.o cputime.o idle_task.o fair.o rt.o stop_task.o
 obj-$(CONFIG_SMP) += cpupri.o
 obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o
 obj-$(CONFIG_SCHEDSTATS) += stats.o
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index ee8c1bd..136f013 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -2019,575 +2019,6 @@ unsigned long nr_iowait_cpu(int cpu)
 	return atomic_read(&this->nr_iowait);
 }
 
-unsigned long this_cpu_load(void)
-{
-	struct rq *this = this_rq();
-	return this->cpu_load[0];
-}
-
-
-/*
- * Global load-average calculations
- *
- * We take a distributed and async approach to calculating the global load-avg
- * in order to minimize overhead.
- *
- * The global load average is an exponentially decaying average of nr_running +
- * nr_uninterruptible.
- *
- * Once every LOAD_FREQ:
- *
- *   nr_active = 0;
- *   for_each_possible_cpu(cpu)
- *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
- *
- *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
- *
- * Due to a number of reasons the above turns in the mess below:
- *
- *  - for_each_possible_cpu() is prohibitively expensive on machines with
- *    serious number of cpus, therefore we need to take a distributed approach
- *    to calculating nr_active.
- *
- *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
- *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
- *
- *    So assuming nr_active := 0 when we start out -- true per definition, we
- *    can simply take per-cpu deltas and fold those into a global accumulate
- *    to obtain the same result. See calc_load_fold_active().
- *
- *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
- *    across the machine, we assume 10 ticks is sufficient time for every
- *    cpu to have completed this task.
- *
- *    This places an upper-bound on the IRQ-off latency of the machine. Then
- *    again, being late doesn't loose the delta, just wrecks the sample.
- *
- *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
- *    this would add another cross-cpu cacheline miss and atomic operation
- *    to the wakeup path. Instead we increment on whatever cpu the task ran
- *    when it went into uninterruptible state and decrement on whatever cpu
- *    did the wakeup. This means that only the sum of nr_uninterruptible over
- *    all cpus yields the correct result.
- *
- *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
- */
-
-/* Variables and functions for calc_load */
-static atomic_long_t calc_load_tasks;
-static unsigned long calc_load_update;
-unsigned long avenrun[3];
-EXPORT_SYMBOL(avenrun); /* should be removed */
-
-/**
- * get_avenrun - get the load average array
- * @loads:	pointer to dest load array
- * @offset:	offset to add
- * @shift:	shift count to shift the result left
- *
- * These values are estimates at best, so no need for locking.
- */
-void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
-{
-	loads[0] = (avenrun[0] + offset) << shift;
-	loads[1] = (avenrun[1] + offset) << shift;
-	loads[2] = (avenrun[2] + offset) << shift;
-}
-
-static long calc_load_fold_active(struct rq *this_rq)
-{
-	long nr_active, delta = 0;
-
-	nr_active = this_rq->nr_running;
-	nr_active += (long) this_rq->nr_uninterruptible;
-
-	if (nr_active != this_rq->calc_load_active) {
-		delta = nr_active - this_rq->calc_load_active;
-		this_rq->calc_load_active = nr_active;
-	}
-
-	return delta;
-}
-
-/*
- * a1 = a0 * e + a * (1 - e)
- */
-static unsigned long
-calc_load(unsigned long load, unsigned long exp, unsigned long active)
-{
-	load *= exp;
-	load += active * (FIXED_1 - exp);
-	load += 1UL << (FSHIFT - 1);
-	return load >> FSHIFT;
-}
-
-#ifdef CONFIG_NO_HZ
-/*
- * Handle NO_HZ for the global load-average.
- *
- * Since the above described distributed algorithm to compute the global
- * load-average relies on per-cpu sampling from the tick, it is affected by
- * NO_HZ.
- *
- * The basic idea is to fold the nr_active delta into a global idle-delta upon
- * entering NO_HZ state such that we can include this as an 'extra' cpu delta
- * when we read the global state.
- *
- * Obviously reality has to ruin such a delightfully simple scheme:
- *
- *  - When we go NO_HZ idle during the window, we can negate our sample
- *    contribution, causing under-accounting.
- *
- *    We avoid this by keeping two idle-delta counters and flipping them
- *    when the window starts, thus separating old and new NO_HZ load.
- *
- *    The only trick is the slight shift in index flip for read vs write.
- *
- *        0s            5s            10s           15s
- *          +10           +10           +10           +10
- *        |-|-----------|-|-----------|-|-----------|-|
- *    r:0 0 1           1 0           0 1           1 0
- *    w:0 1 1           0 0           1 1           0 0
- *
- *    This ensures we'll fold the old idle contribution in this window while
- *    accumlating the new one.
- *
- *  - When we wake up from NO_HZ idle during the window, we push up our
- *    contribution, since we effectively move our sample point to a known
- *    busy state.
- *
- *    This is solved by pushing the window forward, and thus skipping the
- *    sample, for this cpu (effectively using the idle-delta for this cpu which
- *    was in effect at the time the window opened). This also solves the issue
- *    of having to deal with a cpu having been in NOHZ idle for multiple
- *    LOAD_FREQ intervals.
- *
- * When making the ILB scale, we should try to pull this in as well.
- */
-static atomic_long_t calc_load_idle[2];
-static int calc_load_idx;
-
-static inline int calc_load_write_idx(void)
-{
-	int idx = calc_load_idx;
-
-	/*
-	 * See calc_global_nohz(), if we observe the new index, we also
-	 * need to observe the new update time.
-	 */
-	smp_rmb();
-
-	/*
-	 * If the folding window started, make sure we start writing in the
-	 * next idle-delta.
-	 */
-	if (!time_before(jiffies, calc_load_update))
-		idx++;
-
-	return idx & 1;
-}
-
-static inline int calc_load_read_idx(void)
-{
-	return calc_load_idx & 1;
-}
-
-void calc_load_enter_idle(void)
-{
-	struct rq *this_rq = this_rq();
-	long delta;
-
-	/*
-	 * We're going into NOHZ mode, if there's any pending delta, fold it
-	 * into the pending idle delta.
-	 */
-	delta = calc_load_fold_active(this_rq);
-	if (delta) {
-		int idx = calc_load_write_idx();
-		atomic_long_add(delta, &calc_load_idle[idx]);
-	}
-}
-
-void calc_load_exit_idle(void)
-{
-	struct rq *this_rq = this_rq();
-
-	/*
-	 * If we're still before the sample window, we're done.
-	 */
-	if (time_before(jiffies, this_rq->calc_load_update))
-		return;
-
-	/*
-	 * We woke inside or after the sample window, this means we're already
-	 * accounted through the nohz accounting, so skip the entire deal and
-	 * sync up for the next window.
-	 */
-	this_rq->calc_load_update = calc_load_update;
-	if (time_before(jiffies, this_rq->calc_load_update + 10))
-		this_rq->calc_load_update += LOAD_FREQ;
-}
-
-static long calc_load_fold_idle(void)
-{
-	int idx = calc_load_read_idx();
-	long delta = 0;
-
-	if (atomic_long_read(&calc_load_idle[idx]))
-		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
-
-	return delta;
-}
-
-/**
- * fixed_power_int - compute: x^n, in O(log n) time
- *
- * @x:         base of the power
- * @frac_bits: fractional bits of @x
- * @n:         power to raise @x to.
- *
- * By exploiting the relation between the definition of the natural power
- * function: x^n := x*x*...*x (x multiplied by itself for n times), and
- * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
- * (where: n_i \elem {0, 1}, the binary vector representing n),
- * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
- * of course trivially computable in O(log_2 n), the length of our binary
- * vector.
- */
-static unsigned long
-fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
-{
-	unsigned long result = 1UL << frac_bits;
-
-	if (n) for (;;) {
-		if (n & 1) {
-			result *= x;
-			result += 1UL << (frac_bits - 1);
-			result >>= frac_bits;
-		}
-		n >>= 1;
-		if (!n)
-			break;
-		x *= x;
-		x += 1UL << (frac_bits - 1);
-		x >>= frac_bits;
-	}
-
-	return result;
-}
-
-/*
- * a1 = a0 * e + a * (1 - e)
- *
- * a2 = a1 * e + a * (1 - e)
- *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
- *    = a0 * e^2 + a * (1 - e) * (1 + e)
- *
- * a3 = a2 * e + a * (1 - e)
- *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
- *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
- *
- *  ...
- *
- * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
- *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
- *    = a0 * e^n + a * (1 - e^n)
- *
- * [1] application of the geometric series:
- *
- *              n         1 - x^(n+1)
- *     S_n := \Sum x^i = -------------
- *             i=0          1 - x
- */
-static unsigned long
-calc_load_n(unsigned long load, unsigned long exp,
-	    unsigned long active, unsigned int n)
-{
-
-	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
-}
-
-/*
- * NO_HZ can leave us missing all per-cpu ticks calling
- * calc_load_account_active(), but since an idle CPU folds its delta into
- * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
- * in the pending idle delta if our idle period crossed a load cycle boundary.
- *
- * Once we've updated the global active value, we need to apply the exponential
- * weights adjusted to the number of cycles missed.
- */
-static void calc_global_nohz(void)
-{
-	long delta, active, n;
-
-	if (!time_before(jiffies, calc_load_update + 10)) {
-		/*
-		 * Catch-up, fold however many we are behind still
-		 */
-		delta = jiffies - calc_load_update - 10;
-		n = 1 + (delta / LOAD_FREQ);
-
-		active = atomic_long_read(&calc_load_tasks);
-		active = active > 0 ? active * FIXED_1 : 0;
-
-		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
-		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
-		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
-
-		calc_load_update += n * LOAD_FREQ;
-	}
-
-	/*
-	 * Flip the idle index...
-	 *
-	 * Make sure we first write the new time then flip the index, so that
-	 * calc_load_write_idx() will see the new time when it reads the new
-	 * index, this avoids a double flip messing things up.
-	 */
-	smp_wmb();
-	calc_load_idx++;
-}
-#else /* !CONFIG_NO_HZ */
-
-static inline long calc_load_fold_idle(void) { return 0; }
-static inline void calc_global_nohz(void) { }
-
-#endif /* CONFIG_NO_HZ */
-
-/*
- * calc_load - update the avenrun load estimates 10 ticks after the
- * CPUs have updated calc_load_tasks.
- */
-void calc_global_load(unsigned long ticks)
-{
-	long active, delta;
-
-	if (time_before(jiffies, calc_load_update + 10))
-		return;
-
-	/*
-	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
-	 */
-	delta = calc_load_fold_idle();
-	if (delta)
-		atomic_long_add(delta, &calc_load_tasks);
-
-	active = atomic_long_read(&calc_load_tasks);
-	active = active > 0 ? active * FIXED_1 : 0;
-
-	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
-	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
-	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
-
-	calc_load_update += LOAD_FREQ;
-
-	/*
-	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
-	 */
-	calc_global_nohz();
-}
-
-/*
- * Called from update_cpu_load() to periodically update this CPU's
- * active count.
- */
-static void calc_load_account_active(struct rq *this_rq)
-{
-	long delta;
-
-	if (time_before(jiffies, this_rq->calc_load_update))
-		return;
-
-	delta  = calc_load_fold_active(this_rq);
-	if (delta)
-		atomic_long_add(delta, &calc_load_tasks);
-
-	this_rq->calc_load_update += LOAD_FREQ;
-}
-
-/*
- * End of global load-average stuff
- */
-
-/*
- * The exact cpuload at various idx values, calculated at every tick would be
- * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
- *
- * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
- * on nth tick when cpu may be busy, then we have:
- * load = ((2^idx - 1) / 2^idx)^(n-1) * load
- * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
- *
- * decay_load_missed() below does efficient calculation of
- * load = ((2^idx - 1) / 2^idx)^(n-1) * load
- * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
- *
- * The calculation is approximated on a 128 point scale.
- * degrade_zero_ticks is the number of ticks after which load at any
- * particular idx is approximated to be zero.
- * degrade_factor is a precomputed table, a row for each load idx.
- * Each column corresponds to degradation factor for a power of two ticks,
- * based on 128 point scale.
- * Example:
- * row 2, col 3 (=12) says that the degradation at load idx 2 after
- * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
- *
- * With this power of 2 load factors, we can degrade the load n times
- * by looking at 1 bits in n and doing as many mult/shift instead of
- * n mult/shifts needed by the exact degradation.
- */
-#define DEGRADE_SHIFT		7
-static const unsigned char
-		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
-static const unsigned char
-		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
-					{0, 0, 0, 0, 0, 0, 0, 0},
-					{64, 32, 8, 0, 0, 0, 0, 0},
-					{96, 72, 40, 12, 1, 0, 0},
-					{112, 98, 75, 43, 15, 1, 0},
-					{120, 112, 98, 76, 45, 16, 2} };
-
-/*
- * Update cpu_load for any missed ticks, due to tickless idle. The backlog
- * would be when CPU is idle and so we just decay the old load without
- * adding any new load.
- */
-static unsigned long
-decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
-{
-	int j = 0;
-
-	if (!missed_updates)
-		return load;
-
-	if (missed_updates >= degrade_zero_ticks[idx])
-		return 0;
-
-	if (idx == 1)
-		return load >> missed_updates;
-
-	while (missed_updates) {
-		if (missed_updates % 2)
-			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
-
-		missed_updates >>= 1;
-		j++;
-	}
-	return load;
-}
-
-/*
- * Update rq->cpu_load[] statistics. This function is usually called every
- * scheduler tick (TICK_NSEC). With tickless idle this will not be called
- * every tick. We fix it up based on jiffies.
- */
-static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
-			      unsigned long pending_updates)
-{
-	int i, scale;
-
-	this_rq->nr_load_updates++;
-
-	/* Update our load: */
-	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
-	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
-		unsigned long old_load, new_load;
-
-		/* scale is effectively 1 << i now, and >> i divides by scale */
-
-		old_load = this_rq->cpu_load[i];
-		old_load = decay_load_missed(old_load, pending_updates - 1, i);
-		new_load = this_load;
-		/*
-		 * Round up the averaging division if load is increasing. This
-		 * prevents us from getting stuck on 9 if the load is 10, for
-		 * example.
-		 */
-		if (new_load > old_load)
-			new_load += scale - 1;
-
-		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
-	}
-
-	sched_avg_update(this_rq);
-}
-
-#ifdef CONFIG_NO_HZ
-/*
- * There is no sane way to deal with nohz on smp when using jiffies because the
- * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
- * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
- *
- * Therefore we cannot use the delta approach from the regular tick since that
- * would seriously skew the load calculation. However we'll make do for those
- * updates happening while idle (nohz_idle_balance) or coming out of idle
- * (tick_nohz_idle_exit).
- *
- * This means we might still be one tick off for nohz periods.
- */
-
-/*
- * Called from nohz_idle_balance() to update the load ratings before doing the
- * idle balance.
- */
-void update_idle_cpu_load(struct rq *this_rq)
-{
-	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
-	unsigned long load = this_rq->load.weight;
-	unsigned long pending_updates;
-
-	/*
-	 * bail if there's load or we're actually up-to-date.
-	 */
-	if (load || curr_jiffies == this_rq->last_load_update_tick)
-		return;
-
-	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
-	this_rq->last_load_update_tick = curr_jiffies;
-
-	__update_cpu_load(this_rq, load, pending_updates);
-}
-
-/*
- * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
- */
-void update_cpu_load_nohz(void)
-{
-	struct rq *this_rq = this_rq();
-	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
-	unsigned long pending_updates;
-
-	if (curr_jiffies == this_rq->last_load_update_tick)
-		return;
-
-	raw_spin_lock(&this_rq->lock);
-	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
-	if (pending_updates) {
-		this_rq->last_load_update_tick = curr_jiffies;
-		/*
-		 * We were idle, this means load 0, the current load might be
-		 * !0 due to remote wakeups and the sort.
-		 */
-		__update_cpu_load(this_rq, 0, pending_updates);
-	}
-	raw_spin_unlock(&this_rq->lock);
-}
-#endif /* CONFIG_NO_HZ */
-
-/*
- * Called from scheduler_tick()
- */
-static void update_cpu_load_active(struct rq *this_rq)
-{
-	/*
-	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
-	 */
-	this_rq->last_load_update_tick = jiffies;
-	__update_cpu_load(this_rq, this_rq->load.weight, 1);
-
-	calc_load_account_active(this_rq);
-}
-
 #ifdef CONFIG_SMP
 
 /*
diff --git a/kernel/sched/load_avg.c b/kernel/sched/load_avg.c
new file mode 100644
index 0000000..045f1235
--- /dev/null
+++ b/kernel/sched/load_avg.c
@@ -0,0 +1,577 @@
+/*
+ *  kernel/sched/load_avg.c
+ *
+ *  Kernel load average calculations, forked from sched/core.c
+ */
+
+#include <linux/export.h>
+
+#include "sched.h"
+
+unsigned long this_cpu_load(void)
+{
+	struct rq *this = this_rq();
+	return this->cpu_load[0];
+}
+
+/*
+ * Global load-average calculations
+ *
+ * We take a distributed and async approach to calculating the global load-avg
+ * in order to minimize overhead.
+ *
+ * The global load average is an exponentially decaying average of nr_running +
+ * nr_uninterruptible.
+ *
+ * Once every LOAD_FREQ:
+ *
+ *   nr_active = 0;
+ *   for_each_possible_cpu(cpu)
+ *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
+ *
+ *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
+ *
+ * Due to a number of reasons the above turns in the mess below:
+ *
+ *  - for_each_possible_cpu() is prohibitively expensive on machines with
+ *    serious number of cpus, therefore we need to take a distributed approach
+ *    to calculating nr_active.
+ *
+ *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
+ *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
+ *
+ *    So assuming nr_active := 0 when we start out -- true per definition, we
+ *    can simply take per-cpu deltas and fold those into a global accumulate
+ *    to obtain the same result. See calc_load_fold_active().
+ *
+ *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
+ *    across the machine, we assume 10 ticks is sufficient time for every
+ *    cpu to have completed this task.
+ *
+ *    This places an upper-bound on the IRQ-off latency of the machine. Then
+ *    again, being late doesn't loose the delta, just wrecks the sample.
+ *
+ *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
+ *    this would add another cross-cpu cacheline miss and atomic operation
+ *    to the wakeup path. Instead we increment on whatever cpu the task ran
+ *    when it went into uninterruptible state and decrement on whatever cpu
+ *    did the wakeup. This means that only the sum of nr_uninterruptible over
+ *    all cpus yields the correct result.
+ *
+ *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
+ */
+
+/* Variables and functions for calc_load */
+atomic_long_t calc_load_tasks;
+unsigned long calc_load_update;
+unsigned long avenrun[3];
+EXPORT_SYMBOL(avenrun); /* should be removed */
+
+/**
+ * get_avenrun - get the load average array
+ * @loads:	pointer to dest load array
+ * @offset:	offset to add
+ * @shift:	shift count to shift the result left
+ *
+ * These values are estimates at best, so no need for locking.
+ */
+void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
+{
+	loads[0] = (avenrun[0] + offset) << shift;
+	loads[1] = (avenrun[1] + offset) << shift;
+	loads[2] = (avenrun[2] + offset) << shift;
+}
+
+long calc_load_fold_active(struct rq *this_rq)
+{
+	long nr_active, delta = 0;
+
+	nr_active = this_rq->nr_running;
+	nr_active += (long) this_rq->nr_uninterruptible;
+
+	if (nr_active != this_rq->calc_load_active) {
+		delta = nr_active - this_rq->calc_load_active;
+		this_rq->calc_load_active = nr_active;
+	}
+
+	return delta;
+}
+
+/*
+ * a1 = a0 * e + a * (1 - e)
+ */
+static unsigned long
+calc_load(unsigned long load, unsigned long exp, unsigned long active)
+{
+	load *= exp;
+	load += active * (FIXED_1 - exp);
+	load += 1UL << (FSHIFT - 1);
+	return load >> FSHIFT;
+}
+
+#ifdef CONFIG_NO_HZ
+/*
+ * Handle NO_HZ for the global load-average.
+ *
+ * Since the above described distributed algorithm to compute the global
+ * load-average relies on per-cpu sampling from the tick, it is affected by
+ * NO_HZ.
+ *
+ * The basic idea is to fold the nr_active delta into a global idle-delta upon
+ * entering NO_HZ state such that we can include this as an 'extra' cpu delta
+ * when we read the global state.
+ *
+ * Obviously reality has to ruin such a delightfully simple scheme:
+ *
+ *  - When we go NO_HZ idle during the window, we can negate our sample
+ *    contribution, causing under-accounting.
+ *
+ *    We avoid this by keeping two idle-delta counters and flipping them
+ *    when the window starts, thus separating old and new NO_HZ load.
+ *
+ *    The only trick is the slight shift in index flip for read vs write.
+ *
+ *        0s            5s            10s           15s
+ *          +10           +10           +10           +10
+ *        |-|-----------|-|-----------|-|-----------|-|
+ *    r:0 0 1           1 0           0 1           1 0
+ *    w:0 1 1           0 0           1 1           0 0
+ *
+ *    This ensures we'll fold the old idle contribution in this window while
+ *    accumlating the new one.
+ *
+ *  - When we wake up from NO_HZ idle during the window, we push up our
+ *    contribution, since we effectively move our sample point to a known
+ *    busy state.
+ *
+ *    This is solved by pushing the window forward, and thus skipping the
+ *    sample, for this cpu (effectively using the idle-delta for this cpu which
+ *    was in effect at the time the window opened). This also solves the issue
+ *    of having to deal with a cpu having been in NOHZ idle for multiple
+ *    LOAD_FREQ intervals.
+ *
+ * When making the ILB scale, we should try to pull this in as well.
+ */
+static atomic_long_t calc_load_idle[2];
+static int calc_load_idx;
+
+static inline int calc_load_write_idx(void)
+{
+	int idx = calc_load_idx;
+
+	/*
+	 * See calc_global_nohz(), if we observe the new index, we also
+	 * need to observe the new update time.
+	 */
+	smp_rmb();
+
+	/*
+	 * If the folding window started, make sure we start writing in the
+	 * next idle-delta.
+	 */
+	if (!time_before(jiffies, calc_load_update))
+		idx++;
+
+	return idx & 1;
+}
+
+static inline int calc_load_read_idx(void)
+{
+	return calc_load_idx & 1;
+}
+
+void calc_load_enter_idle(void)
+{
+	struct rq *this_rq = this_rq();
+	long delta;
+
+	/*
+	 * We're going into NOHZ mode, if there's any pending delta, fold it
+	 * into the pending idle delta.
+	 */
+	delta = calc_load_fold_active(this_rq);
+	if (delta) {
+		int idx = calc_load_write_idx();
+		atomic_long_add(delta, &calc_load_idle[idx]);
+	}
+}
+
+void calc_load_exit_idle(void)
+{
+	struct rq *this_rq = this_rq();
+
+	/*
+	 * If we're still before the sample window, we're done.
+	 */
+	if (time_before(jiffies, this_rq->calc_load_update))
+		return;
+
+	/*
+	 * We woke inside or after the sample window, this means we're already
+	 * accounted through the nohz accounting, so skip the entire deal and
+	 * sync up for the next window.
+	 */
+	this_rq->calc_load_update = calc_load_update;
+	if (time_before(jiffies, this_rq->calc_load_update + 10))
+		this_rq->calc_load_update += LOAD_FREQ;
+}
+
+static long calc_load_fold_idle(void)
+{
+	int idx = calc_load_read_idx();
+	long delta = 0;
+
+	if (atomic_long_read(&calc_load_idle[idx]))
+		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
+
+	return delta;
+}
+
+/**
+ * fixed_power_int - compute: x^n, in O(log n) time
+ *
+ * @x:         base of the power
+ * @frac_bits: fractional bits of @x
+ * @n:         power to raise @x to.
+ *
+ * By exploiting the relation between the definition of the natural power
+ * function: x^n := x*x*...*x (x multiplied by itself for n times), and
+ * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
+ * (where: n_i \elem {0, 1}, the binary vector representing n),
+ * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
+ * of course trivially computable in O(log_2 n), the length of our binary
+ * vector.
+ */
+static unsigned long
+fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
+{
+	unsigned long result = 1UL << frac_bits;
+
+	if (n) for (;;) {
+		if (n & 1) {
+			result *= x;
+			result += 1UL << (frac_bits - 1);
+			result >>= frac_bits;
+		}
+		n >>= 1;
+		if (!n)
+			break;
+		x *= x;
+		x += 1UL << (frac_bits - 1);
+		x >>= frac_bits;
+	}
+
+	return result;
+}
+
+/*
+ * a1 = a0 * e + a * (1 - e)
+ *
+ * a2 = a1 * e + a * (1 - e)
+ *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
+ *    = a0 * e^2 + a * (1 - e) * (1 + e)
+ *
+ * a3 = a2 * e + a * (1 - e)
+ *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
+ *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
+ *
+ *  ...
+ *
+ * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
+ *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
+ *    = a0 * e^n + a * (1 - e^n)
+ *
+ * [1] application of the geometric series:
+ *
+ *              n         1 - x^(n+1)
+ *     S_n := \Sum x^i = -------------
+ *             i=0          1 - x
+ */
+static unsigned long
+calc_load_n(unsigned long load, unsigned long exp,
+	    unsigned long active, unsigned int n)
+{
+
+	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
+}
+
+/*
+ * NO_HZ can leave us missing all per-cpu ticks calling
+ * calc_load_account_active(), but since an idle CPU folds its delta into
+ * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
+ * in the pending idle delta if our idle period crossed a load cycle boundary.
+ *
+ * Once we've updated the global active value, we need to apply the exponential
+ * weights adjusted to the number of cycles missed.
+ */
+static void calc_global_nohz(void)
+{
+	long delta, active, n;
+
+	if (!time_before(jiffies, calc_load_update + 10)) {
+		/*
+		 * Catch-up, fold however many we are behind still
+		 */
+		delta = jiffies - calc_load_update - 10;
+		n = 1 + (delta / LOAD_FREQ);
+
+		active = atomic_long_read(&calc_load_tasks);
+		active = active > 0 ? active * FIXED_1 : 0;
+
+		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
+		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
+		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
+
+		calc_load_update += n * LOAD_FREQ;
+	}
+
+	/*
+	 * Flip the idle index...
+	 *
+	 * Make sure we first write the new time then flip the index, so that
+	 * calc_load_write_idx() will see the new time when it reads the new
+	 * index, this avoids a double flip messing things up.
+	 */
+	smp_wmb();
+	calc_load_idx++;
+}
+#else /* !CONFIG_NO_HZ */
+
+static inline long calc_load_fold_idle(void) { return 0; }
+static inline void calc_global_nohz(void) { }
+
+#endif /* CONFIG_NO_HZ */
+
+/*
+ * calc_load - update the avenrun load estimates 10 ticks after the
+ * CPUs have updated calc_load_tasks.
+ */
+void calc_global_load(unsigned long ticks)
+{
+	long active, delta;
+
+	if (time_before(jiffies, calc_load_update + 10))
+		return;
+
+	/*
+	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
+	 */
+	delta = calc_load_fold_idle();
+	if (delta)
+		atomic_long_add(delta, &calc_load_tasks);
+
+	active = atomic_long_read(&calc_load_tasks);
+	active = active > 0 ? active * FIXED_1 : 0;
+
+	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
+	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
+	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
+
+	calc_load_update += LOAD_FREQ;
+
+	/*
+	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
+	 */
+	calc_global_nohz();
+}
+
+/*
+ * Called from update_cpu_load() to periodically update this CPU's
+ * active count.
+ */
+static void calc_load_account_active(struct rq *this_rq)
+{
+	long delta;
+
+	if (time_before(jiffies, this_rq->calc_load_update))
+		return;
+
+	delta  = calc_load_fold_active(this_rq);
+	if (delta)
+		atomic_long_add(delta, &calc_load_tasks);
+
+	this_rq->calc_load_update += LOAD_FREQ;
+}
+
+/*
+ * End of global load-average stuff
+ */
+
+/*
+ * The exact cpuload at various idx values, calculated at every tick would be
+ * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
+ *
+ * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
+ * on nth tick when cpu may be busy, then we have:
+ * load = ((2^idx - 1) / 2^idx)^(n-1) * load
+ * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
+ *
+ * decay_load_missed() below does efficient calculation of
+ * load = ((2^idx - 1) / 2^idx)^(n-1) * load
+ * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
+ *
+ * The calculation is approximated on a 128 point scale.
+ * degrade_zero_ticks is the number of ticks after which load at any
+ * particular idx is approximated to be zero.
+ * degrade_factor is a precomputed table, a row for each load idx.
+ * Each column corresponds to degradation factor for a power of two ticks,
+ * based on 128 point scale.
+ * Example:
+ * row 2, col 3 (=12) says that the degradation at load idx 2 after
+ * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
+ *
+ * With this power of 2 load factors, we can degrade the load n times
+ * by looking at 1 bits in n and doing as many mult/shift instead of
+ * n mult/shifts needed by the exact degradation.
+ */
+#define DEGRADE_SHIFT		7
+static const unsigned char
+		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
+static const unsigned char
+		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
+					{0, 0, 0, 0, 0, 0, 0, 0},
+					{64, 32, 8, 0, 0, 0, 0, 0},
+					{96, 72, 40, 12, 1, 0, 0},
+					{112, 98, 75, 43, 15, 1, 0},
+					{120, 112, 98, 76, 45, 16, 2} };
+
+/*
+ * Update cpu_load for any missed ticks, due to tickless idle. The backlog
+ * would be when CPU is idle and so we just decay the old load without
+ * adding any new load.
+ */
+static unsigned long
+decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
+{
+	int j = 0;
+
+	if (!missed_updates)
+		return load;
+
+	if (missed_updates >= degrade_zero_ticks[idx])
+		return 0;
+
+	if (idx == 1)
+		return load >> missed_updates;
+
+	while (missed_updates) {
+		if (missed_updates % 2)
+			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
+
+		missed_updates >>= 1;
+		j++;
+	}
+	return load;
+}
+
+/*
+ * Update rq->cpu_load[] statistics. This function is usually called every
+ * scheduler tick (TICK_NSEC). With tickless idle this will not be called
+ * every tick. We fix it up based on jiffies.
+ */
+static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
+			      unsigned long pending_updates)
+{
+	int i, scale;
+
+	this_rq->nr_load_updates++;
+
+	/* Update our load: */
+	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
+	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
+		unsigned long old_load, new_load;
+
+		/* scale is effectively 1 << i now, and >> i divides by scale */
+
+		old_load = this_rq->cpu_load[i];
+		old_load = decay_load_missed(old_load, pending_updates - 1, i);
+		new_load = this_load;
+		/*
+		 * Round up the averaging division if load is increasing. This
+		 * prevents us from getting stuck on 9 if the load is 10, for
+		 * example.
+		 */
+		if (new_load > old_load)
+			new_load += scale - 1;
+
+		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
+	}
+
+	sched_avg_update(this_rq);
+}
+
+#ifdef CONFIG_NO_HZ
+/*
+ * There is no sane way to deal with nohz on smp when using jiffies because the
+ * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
+ * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
+ *
+ * Therefore we cannot use the delta approach from the regular tick since that
+ * would seriously skew the load calculation. However we'll make do for those
+ * updates happening while idle (nohz_idle_balance) or coming out of idle
+ * (tick_nohz_idle_exit).
+ *
+ * This means we might still be one tick off for nohz periods.
+ */
+
+/*
+ * Called from nohz_idle_balance() to update the load ratings before doing the
+ * idle balance.
+ */
+void update_idle_cpu_load(struct rq *this_rq)
+{
+	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
+	unsigned long load = this_rq->load.weight;
+	unsigned long pending_updates;
+
+	/*
+	 * bail if there's load or we're actually up-to-date.
+	 */
+	if (load || curr_jiffies == this_rq->last_load_update_tick)
+		return;
+
+	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
+	this_rq->last_load_update_tick = curr_jiffies;
+
+	__update_cpu_load(this_rq, load, pending_updates);
+}
+
+/*
+ * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
+ */
+void update_cpu_load_nohz(void)
+{
+	struct rq *this_rq = this_rq();
+	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
+	unsigned long pending_updates;
+
+	if (curr_jiffies == this_rq->last_load_update_tick)
+		return;
+
+	raw_spin_lock(&this_rq->lock);
+	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
+	if (pending_updates) {
+		this_rq->last_load_update_tick = curr_jiffies;
+		/*
+		 * We were idle, this means load 0, the current load might be
+		 * !0 due to remote wakeups and the sort.
+		 */
+		__update_cpu_load(this_rq, 0, pending_updates);
+	}
+	raw_spin_unlock(&this_rq->lock);
+}
+#endif /* CONFIG_NO_HZ */
+
+/*
+ * Called from scheduler_tick()
+ */
+void update_cpu_load_active(struct rq *this_rq)
+{
+	/*
+	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
+	 */
+	this_rq->last_load_update_tick = jiffies;
+	__update_cpu_load(this_rq, this_rq->load.weight, 1);
+
+	calc_load_account_active(this_rq);
+}
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 8116cf8..bfb0e37 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -9,8 +9,16 @@
 #include "cpupri.h"
 #include "cpuacct.h"
 
+struct rq;
+
 extern __read_mostly int scheduler_running;
 
+extern unsigned long calc_load_update;
+extern atomic_long_t calc_load_tasks;
+
+extern long calc_load_fold_active(struct rq *this_rq);
+extern void update_cpu_load_active(struct rq *this_rq);
+
 /*
  * Convert user-nice values [ -20 ... 0 ... 19 ]
  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
-- 
1.8.1.2

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ