[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20130514160040.GB4024@medulla>
Date: Tue, 14 May 2013 11:00:40 -0500
From: Seth Jennings <sjenning@...ux.vnet.ibm.com>
To: Bob Liu <bob.liu@...cle.com>
Cc: Andrew Morton <akpm@...ux-foundation.org>,
Greg Kroah-Hartman <gregkh@...uxfoundation.org>,
Nitin Gupta <ngupta@...are.org>,
Minchan Kim <minchan@...nel.org>,
Konrad Rzeszutek Wilk <konrad.wilk@...cle.com>,
Dan Magenheimer <dan.magenheimer@...cle.com>,
Robert Jennings <rcj@...ux.vnet.ibm.com>,
Jenifer Hopper <jhopper@...ibm.com>,
Mel Gorman <mgorman@...e.de>,
Johannes Weiner <jweiner@...hat.com>,
Rik van Riel <riel@...hat.com>,
Larry Woodman <lwoodman@...hat.com>,
Benjamin Herrenschmidt <benh@...nel.crashing.org>,
Dave Hansen <dave@...1.net>, Joe Perches <joe@...ches.com>,
Joonsoo Kim <iamjoonsoo.kim@....com>,
Cody P Schafer <cody@...ux.vnet.ibm.com>,
Hugh Dickens <hughd@...gle.com>,
Paul Mackerras <paulus@...ba.org>, linux-mm@...ck.org,
linux-kernel@...r.kernel.org, devel@...verdev.osuosl.org
Subject: Re: [PATCHv11 3/4] zswap: add to mm/
On Tue, May 14, 2013 at 05:19:19PM +0800, Bob Liu wrote:
> Hi Seth,
Hi Bob, thanks for the review!
>
> On 05/13/2013 08:40 PM, Seth Jennings wrote:
> > zswap is a thin compression backend for frontswap. It receives pages from
> > frontswap and attempts to store them in a compressed memory pool, resulting in
> > an effective partial memory reclaim and dramatically reduced swap device I/O.
> >
> > Additionally, in most cases, pages can be retrieved from this compressed store
> > much more quickly than reading from tradition swap devices resulting in faster
> > performance for many workloads.
> >
> > It also has support for evicting swap pages that are currently compressed in
> > zswap to the swap device on an LRU(ish) basis. This functionality is very
> > important and make zswap a true cache in that, once the cache is full or can't
> > grow due to memory pressure, the oldest pages can be moved out of zswap to the
> > swap device so newer pages can be compressed and stored in zswap.
> >
> > This patch adds the zswap driver to mm/
> >
> > Signed-off-by: Seth Jennings <sjenning@...ux.vnet.ibm.com>
>
> It seems that you didn't address some comments from Mel in
> [PATCHv9 4/8] zswap: add to mm/
>
> > ---
> > mm/Kconfig | 15 +
> > mm/Makefile | 1 +
> > mm/zswap.c | 952 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
> > 3 files changed, 968 insertions(+)
> > create mode 100644 mm/zswap.c
> >
> > diff --git a/mm/Kconfig b/mm/Kconfig
> > index 908f41b..4042e07 100644
> > --- a/mm/Kconfig
> > +++ b/mm/Kconfig
> > @@ -487,3 +487,18 @@ config ZBUD
> > While this design limits storage density, it has simple and
> > deterministic reclaim properties that make it preferable to a higher
> > density approach when reclaim will be used.
> > +
> > +config ZSWAP
> > + bool "In-kernel swap page compression"
> > + depends on FRONTSWAP && CRYPTO
> > + select CRYPTO_LZO
> > + select ZBUD
> > + default n
> > + help
> > + Zswap is a backend for the frontswap mechanism in the VMM.
> > + It receives pages from frontswap and attempts to store them
> > + in a compressed memory pool, resulting in an effective
> > + partial memory reclaim. In addition, pages and be retrieved
> > + from this compressed store much faster than most tradition
> > + swap devices resulting in reduced I/O and faster performance
> > + for many workloads.
> > diff --git a/mm/Makefile b/mm/Makefile
> > index 95f0197..f008033 100644
> > --- a/mm/Makefile
> > +++ b/mm/Makefile
> > @@ -32,6 +32,7 @@ obj-$(CONFIG_HAVE_MEMBLOCK) += memblock.o
> > obj-$(CONFIG_BOUNCE) += bounce.o
> > obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o
> > obj-$(CONFIG_FRONTSWAP) += frontswap.o
> > +obj-$(CONFIG_ZSWAP) += zswap.o
> > obj-$(CONFIG_HAS_DMA) += dmapool.o
> > obj-$(CONFIG_HUGETLBFS) += hugetlb.o
> > obj-$(CONFIG_NUMA) += mempolicy.o
> > diff --git a/mm/zswap.c b/mm/zswap.c
> > new file mode 100644
> > index 0000000..b1070ca
> > --- /dev/null
> > +++ b/mm/zswap.c
> > @@ -0,0 +1,952 @@
> > +/*
> > + * zswap.c - zswap driver file
> > + *
> > + * zswap is a backend for frontswap that takes pages that are in the
> > + * process of being swapped out and attempts to compress them and store
> > + * them in a RAM-based memory pool. This results in a significant I/O
> > + * reduction on the real swap device and, in the case of a slow swap
> > + * device, can also improve workload performance.
> > + *
> > + * Copyright (C) 2012 Seth Jennings <sjenning@...ux.vnet.ibm.com>
> > + *
> > + * This program is free software; you can redistribute it and/or
> > + * modify it under the terms of the GNU General Public License
> > + * as published by the Free Software Foundation; either version 2
> > + * of the License, or (at your option) any later version.
> > + *
> > + * This program is distributed in the hope that it will be useful,
> > + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> > + * GNU General Public License for more details.
> > +*/
> > +
> > +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
> > +
> > +#include <linux/module.h>
> > +#include <linux/cpu.h>
> > +#include <linux/highmem.h>
> > +#include <linux/slab.h>
> > +#include <linux/spinlock.h>
> > +#include <linux/types.h>
> > +#include <linux/atomic.h>
> > +#include <linux/frontswap.h>
> > +#include <linux/rbtree.h>
> > +#include <linux/swap.h>
> > +#include <linux/crypto.h>
> > +#include <linux/mempool.h>
> > +#include <linux/zbud.h>
> > +
> > +#include <linux/mm_types.h>
> > +#include <linux/page-flags.h>
> > +#include <linux/swapops.h>
> > +#include <linux/writeback.h>
> > +#include <linux/pagemap.h>
> > +
> > +/*********************************
> > +* statistics
> > +**********************************/
> > +/* Number of memory pages used by the compressed pool */
> > +static atomic_t zswap_pool_pages = ATOMIC_INIT(0);
> > +/* The number of compressed pages currently stored in zswap */
> > +static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
> > +
> > +/*
> > + * The statistics below are not protected from concurrent access for
> > + * performance reasons so they may not be a 100% accurate. However,
> > + * they do provide useful information on roughly how many times a
> > + * certain event is occurring.
> > +*/
> > +static u64 zswap_pool_limit_hit;
> > +static u64 zswap_written_back_pages;
> > +static u64 zswap_reject_reclaim_fail;
> > +static u64 zswap_reject_compress_poor;
> > +static u64 zswap_reject_alloc_fail;
> > +static u64 zswap_reject_kmemcache_fail;
> > +static u64 zswap_duplicate_entry;
> > +
> > +/*********************************
> > +* tunables
> > +**********************************/
> > +/* Enable/disable zswap (disabled by default, fixed at boot for now) */
> > +static bool zswap_enabled;
> > +module_param_named(enabled, zswap_enabled, bool, 0);
> > +
> > +/* Compressor to be used by zswap (fixed at boot for now) */
> > +#define ZSWAP_COMPRESSOR_DEFAULT "lzo"
> > +static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
> > +module_param_named(compressor, zswap_compressor, charp, 0);
> > +
> > +/* The maximum percentage of memory that the compressed pool can occupy */
> > +static unsigned int zswap_max_pool_percent = 20;
> > +module_param_named(max_pool_percent,
> > + zswap_max_pool_percent, uint, 0644);
> > +
>
> I think it's reasonable but... see comments in zbud_reclaim_page().
>
> > +/*
> > + * Maximum compression ratio, as as percentage, for an acceptable
> > + * compressed page. Any pages that do not compress by at least
> > + * this ratio will be rejected.
> > +*/
> > +static unsigned int zswap_max_compression_ratio = 80;
> > +module_param_named(max_compression_ratio,
> > + zswap_max_compression_ratio, uint, 0644);
> > +
>
> Prefer not export it, it's hard for use to know what value should set to.
True, this is kind of a remnant from zsmalloc. I can remove it.
>
> > +/*********************************
> > +* compression functions
> > +**********************************/
> > +/* per-cpu compression transforms */
> > +static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms;
> > +
> > +enum comp_op {
> > + ZSWAP_COMPOP_COMPRESS,
> > + ZSWAP_COMPOP_DECOMPRESS
> > +};
> > +
> > +static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen,
> > + u8 *dst, unsigned int *dlen)
> > +{
> > + struct crypto_comp *tfm;
> > + int ret;
> > +
> > + tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu());
> > + switch (op) {
> > + case ZSWAP_COMPOP_COMPRESS:
> > + ret = crypto_comp_compress(tfm, src, slen, dst, dlen);
> > + break;
> > + case ZSWAP_COMPOP_DECOMPRESS:
> > + ret = crypto_comp_decompress(tfm, src, slen, dst, dlen);
> > + break;
> > + default:
> > + ret = -EINVAL;
> > + }
> > +
> > + put_cpu();
> > + return ret;
> > +}
> > +
> > +static int __init zswap_comp_init(void)
> > +{
> > + if (!crypto_has_comp(zswap_compressor, 0, 0)) {
> > + pr_info("%s compressor not available\n", zswap_compressor);
> > + /* fall back to default compressor */
> > + zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
> > + if (!crypto_has_comp(zswap_compressor, 0, 0))
> > + /* can't even load the default compressor */
> > + return -ENODEV;
> > + }
> > + pr_info("using %s compressor\n", zswap_compressor);
> > +
> > + /* alloc percpu transforms */
> > + zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *);
> > + if (!zswap_comp_pcpu_tfms)
> > + return -ENOMEM;
> > + return 0;
> > +}
> > +
> > +static void zswap_comp_exit(void)
> > +{
> > + /* free percpu transforms */
> > + if (zswap_comp_pcpu_tfms)
> > + free_percpu(zswap_comp_pcpu_tfms);
> > +}
> > +
> > +/*********************************
> > +* data structures
> > +**********************************/
> > +/*
> > + * struct zswap_entry
> > + *
> > + * This structure contains the metadata for tracking a single compressed
> > + * page within zswap.
> > + *
> > + * rbnode - links the entry into red-black tree for the appropriate swap type
> > + * refcount - the number of outstanding reference to the entry. This is needed
> > + * to protect against premature freeing of the entry by code
> > + * concurent calls to load, invalidate, and writeback. The lock
> > + * for the zswap_tree structure that contains the entry must
> > + * be held while changing the refcount. Since the lock must
> > + * be held, there is no reason to also make refcount atomic.
> > + * type - the swap type for the entry. Used to map back to the zswap_tree
> > + * structure that contains the entry.
> > + * offset - the swap offset for the entry. Index into the red-black tree.
> > + * handle - zsmalloc allocation handle that stores the compressed page data
> > + * length - the length in bytes of the compressed page data. Needed during
> > + * decompression
>
> The sequence is different from the struct define?
Yes, Mel pointed this out too and I forgot to make the change.
>
> > + */
> > +struct zswap_entry {
> > + struct rb_node rbnode;
> > + pgoff_t offset;
> > + int refcount;
> > + unsigned int length;
> > + unsigned long handle;
> > +};
> > +
> > +struct zswap_header {
> > + swp_entry_t swpentry;
> > +};
> > +
> > +/*
> > + * The tree lock in the zswap_tree struct protects a few things:
> > + * - the rbtree
> > + * - the refcount field of each entry in the tree
> > + */
> > +struct zswap_tree {
> > + struct rb_root rbroot;
> > + spinlock_t lock;
> > + struct zbud_pool *pool;
> > + unsigned type;
>
> It seems that zswap_tree->type have no usage for zswap.
Good catch. Seems that it isn't used anymore.
>
> > +};
> > +
> > +static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
> > +
> > +/*********************************
> > +* zswap entry functions
> > +**********************************/
> > +#define ZSWAP_KMEM_CACHE_NAME "zswap_entry_cache"
> > +static struct kmem_cache *zswap_entry_cache;
> > +
> > +static inline int zswap_entry_cache_create(void)
> > +{
> > + zswap_entry_cache =
> > + kmem_cache_create(ZSWAP_KMEM_CACHE_NAME,
> > + sizeof(struct zswap_entry), 0, 0, NULL);
> > + return (zswap_entry_cache == NULL);
> > +}
> > +
> > +static inline void zswap_entry_cache_destory(void)
> > +{
> > + kmem_cache_destroy(zswap_entry_cache);
> > +}
> > +
> > +static inline struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
> > +{
> > + struct zswap_entry *entry;
> > + entry = kmem_cache_alloc(zswap_entry_cache, gfp);
> > + if (!entry)
> > + return NULL;
> > + entry->refcount = 1;
> > + return entry;
> > +}
> > +
> > +static inline void zswap_entry_cache_free(struct zswap_entry *entry)
> > +{
> > + kmem_cache_free(zswap_entry_cache, entry);
> > +}
> > +
> > +static inline void zswap_entry_get(struct zswap_entry *entry)
> > +{
> > + entry->refcount++;
> > +}
> > +
> > +static inline int zswap_entry_put(struct zswap_entry *entry)
> > +{
> > + entry->refcount--;
> > + return entry->refcount;
> > +}
>
> Better if have lock comments here.
will do.
>
> > +
> > +/*********************************
> > +* rbtree functions
> > +**********************************/
> > +static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
> > +{
> > + struct rb_node *node = root->rb_node;
> > + struct zswap_entry *entry;
> > +
> > + while (node) {
> > + entry = rb_entry(node, struct zswap_entry, rbnode);
> > + if (entry->offset > offset)
> > + node = node->rb_left;
> > + else if (entry->offset < offset)
> > + node = node->rb_right;
> > + else
> > + return entry;
> > + }
> > + return NULL;
> > +}
> > +
> > +/*
> > + * In the case that a entry with the same offset is found, it a pointer to
> > + * the existing entry is stored in dupentry and the function returns -EEXIST
> > +*/
> > +static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
> > + struct zswap_entry **dupentry)
> > +{
> > + struct rb_node **link = &root->rb_node, *parent = NULL;
> > + struct zswap_entry *myentry;
> > +
> > + while (*link) {
> > + parent = *link;
> > + myentry = rb_entry(parent, struct zswap_entry, rbnode);
> > + if (myentry->offset > entry->offset)
> > + link = &(*link)->rb_left;
> > + else if (myentry->offset < entry->offset)
> > + link = &(*link)->rb_right;
> > + else {
> > + *dupentry = myentry;
> > + return -EEXIST;
> > + }
> > + }
> > + rb_link_node(&entry->rbnode, parent, link);
> > + rb_insert_color(&entry->rbnode, root);
> > + return 0;
> > +}
> > +
> > +/*********************************
> > +* per-cpu code
> > +**********************************/
> > +static DEFINE_PER_CPU(u8 *, zswap_dstmem);
> > +
> > +static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu)
> > +{
> > + struct crypto_comp *tfm;
> > + u8 *dst;
> > +
> > + switch (action) {
> > + case CPU_UP_PREPARE:
> > + tfm = crypto_alloc_comp(zswap_compressor, 0, 0);
> > + if (IS_ERR(tfm)) {
> > + pr_err("can't allocate compressor transform\n");
> > + return NOTIFY_BAD;
> > + }
> > + *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm;
> > + dst = kmalloc(PAGE_SIZE * 2, GFP_KERNEL);
> > + if (!dst) {
> > + pr_err("can't allocate compressor buffer\n");
> > + crypto_free_comp(tfm);
> > + *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
> > + return NOTIFY_BAD;
> > + }
> > + per_cpu(zswap_dstmem, cpu) = dst;
> > + break;
> > + case CPU_DEAD:
> > + case CPU_UP_CANCELED:
> > + tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu);
> > + if (tfm) {
> > + crypto_free_comp(tfm);
> > + *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
> > + }
> > + dst = per_cpu(zswap_dstmem, cpu);
> > + kfree(dst);
> > + per_cpu(zswap_dstmem, cpu) = NULL;
> > + break;
> > + default:
> > + break;
> > + }
> > + return NOTIFY_OK;
> > +}
> > +
> > +static int zswap_cpu_notifier(struct notifier_block *nb,
> > + unsigned long action, void *pcpu)
> > +{
> > + unsigned long cpu = (unsigned long)pcpu;
> > + return __zswap_cpu_notifier(action, cpu);
> > +}
> > +
> > +static struct notifier_block zswap_cpu_notifier_block = {
> > + .notifier_call = zswap_cpu_notifier
> > +};
> > +
> > +static int zswap_cpu_init(void)
> > +{
> > + unsigned long cpu;
> > +
> > + get_online_cpus();
> > + for_each_online_cpu(cpu)
> > + if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK)
> > + goto cleanup;
> > + register_cpu_notifier(&zswap_cpu_notifier_block);
> > + put_online_cpus();
> > + return 0;
> > +
> > +cleanup:
> > + for_each_online_cpu(cpu)
> > + __zswap_cpu_notifier(CPU_UP_CANCELED, cpu);
> > + put_online_cpus();
> > + return -ENOMEM;
> > +}
> > +
> > +/*********************************
> > +* helpers
> > +**********************************/
> > +static inline bool zswap_is_full(void)
> > +{
> > + int pool_pages = atomic_read(&zswap_pool_pages);
> > + return (totalram_pages * zswap_max_pool_percent / 100 < pool_pages);
> > +}
> > +
> > +/*
> > + * Carries out the common pattern of freeing and entry's zsmalloc allocation,
> > + * freeing the entry itself, and decrementing the number of stored pages.
> > + */
> > +static void zswap_free_entry(struct zswap_tree *tree, struct zswap_entry *entry)
> > +{
> > + zbud_free(tree->pool, entry->handle);
> > + zswap_entry_cache_free(entry);
> > + atomic_dec(&zswap_stored_pages);
> > + atomic_set(&zswap_pool_pages, zbud_get_pool_size(tree->pool));
> > +}
> > +
> > +/*********************************
> > +* writeback code
> > +**********************************/
> > +/* return enum for zswap_get_swap_cache_page */
> > +enum zswap_get_swap_ret {
> > + ZSWAP_SWAPCACHE_NEW,
> > + ZSWAP_SWAPCACHE_EXIST,
> > + ZSWAP_SWAPCACHE_NOMEM
> > +};
> > +
> > +/*
> > + * zswap_get_swap_cache_page
> > + *
> > + * This is an adaption of read_swap_cache_async()
> > + *
> > + * This function tries to find a page with the given swap entry
> > + * in the swapper_space address space (the swap cache). If the page
> > + * is found, it is returned in retpage. Otherwise, a page is allocated,
> > + * added to the swap cache, and returned in retpage.
> > + *
> > + * If success, the swap cache page is returned in retpage
> > + * Returns 0 if page was already in the swap cache, page is not locked
> > + * Returns 1 if the new page needs to be populated, page is locked
> > + * Returns <0 on error
> > + */
> > +static int zswap_get_swap_cache_page(swp_entry_t entry,
> > + struct page **retpage)
> > +{
> > + struct page *found_page, *new_page = NULL;
> > + struct address_space *swapper_space = &swapper_spaces[swp_type(entry)];
> > + int err;
> > +
> > + *retpage = NULL;
> > + do {
> > + /*
> > + * First check the swap cache. Since this is normally
> > + * called after lookup_swap_cache() failed, re-calling
> > + * that would confuse statistics.
> > + */
> > + found_page = find_get_page(swapper_space, entry.val);
> > + if (found_page)
> > + break;
> > +
> > + /*
> > + * Get a new page to read into from swap.
> > + */
> > + if (!new_page) {
> > + new_page = alloc_page(GFP_KERNEL);
> > + if (!new_page)
> > + break; /* Out of memory */
> > + }
> > +
> > + /*
> > + * call radix_tree_preload() while we can wait.
> > + */
> > + err = radix_tree_preload(GFP_KERNEL);
> > + if (err)
> > + break;
> > +
> > + /*
> > + * Swap entry may have been freed since our caller observed it.
> > + */
> > + err = swapcache_prepare(entry);
> > + if (err == -EEXIST) { /* seems racy */
> > + radix_tree_preload_end();
> > + continue;
> > + }
> > + if (err) { /* swp entry is obsolete ? */
> > + radix_tree_preload_end();
> > + break;
> > + }
> > +
> > + /* May fail (-ENOMEM) if radix-tree node allocation failed. */
> > + __set_page_locked(new_page);
> > + SetPageSwapBacked(new_page);
> > + err = __add_to_swap_cache(new_page, entry);
> > + if (likely(!err)) {
> > + radix_tree_preload_end();
> > + lru_cache_add_anon(new_page);
> > + *retpage = new_page;
> > + return ZSWAP_SWAPCACHE_NEW;
> > + }
> > + radix_tree_preload_end();
> > + ClearPageSwapBacked(new_page);
> > + __clear_page_locked(new_page);
> > + /*
> > + * add_to_swap_cache() doesn't return -EEXIST, so we can safely
> > + * clear SWAP_HAS_CACHE flag.
> > + */
> > + swapcache_free(entry, NULL);
> > + } while (err != -ENOMEM);
> > +
> > + if (new_page)
> > + page_cache_release(new_page);
> > + if (!found_page)
> > + return ZSWAP_SWAPCACHE_NOMEM;
> > + *retpage = found_page;
> > + return ZSWAP_SWAPCACHE_EXIST;
> > +}
> > +
> > +/*
> > + * Attempts to free and entry by adding a page to the swap cache,
> > + * decompressing the entry data into the page, and issuing a
> > + * bio write to write the page back to the swap device.
> > + *
> > + * This can be thought of as a "resumed writeback" of the page
> > + * to the swap device. We are basically resuming the same swap
> > + * writeback path that was intercepted with the frontswap_store()
> > + * in the first place. After the page has been decompressed into
> > + * the swap cache, the compressed version stored by zswap can be
> > + * freed.
> > + */
> > +static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
> > +{
> > + struct zswap_header *zhdr;
> > + swp_entry_t swpentry;
> > + struct zswap_tree *tree;
> > + pgoff_t offset;
> > + struct zswap_entry *entry;
> > + struct page *page;
> > + u8 *src, *dst;
> > + unsigned int dlen;
> > + int ret, refcount;
> > + struct writeback_control wbc = {
> > + .sync_mode = WB_SYNC_NONE,
> > + };
> > +
> > + /* extract swpentry from data */
> > + zhdr = zbud_map(pool, handle);
> > + swpentry = zhdr->swpentry; /* here */
> > + zbud_unmap(pool, handle);
> > + tree = zswap_trees[swp_type(swpentry)];
> > + offset = swp_offset(swpentry);
> > + BUG_ON(pool != tree->pool);
> > +
> > + /* find and ref zswap entry */
> > + spin_lock(&tree->lock);
> > + entry = zswap_rb_search(&tree->rbroot, offset);
> > + if (!entry) {
> > + /* entry was invalidated */
> > + spin_unlock(&tree->lock);
> > + return 0;
> > + }
> > + zswap_entry_get(entry);
> > + spin_unlock(&tree->lock);
> > + BUG_ON(offset != entry->offset);
> > +
> > + /* try to allocate swap cache page */
> > + switch (zswap_get_swap_cache_page(swpentry, &page)) {
> > + case ZSWAP_SWAPCACHE_NOMEM: /* no memory */
> > + ret = -ENOMEM;
> > + goto fail;
> > +
> > + case ZSWAP_SWAPCACHE_EXIST: /* page is unlocked */
> > + /* page is already in the swap cache, ignore for now */
> > + page_cache_release(page);
> > + ret = -EEXIST;
> > + goto fail;
> > +
> > + case ZSWAP_SWAPCACHE_NEW: /* page is locked */
> > + /* decompress */
> > + dlen = PAGE_SIZE;
> > + src = (u8 *)zbud_map(tree->pool, entry->handle) +
> > + sizeof(struct zswap_header);
> > + dst = kmap_atomic(page);
> > + ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src,
> > + entry->length, dst, &dlen);
> > + kunmap_atomic(dst);
> > + zbud_unmap(tree->pool, entry->handle);
> > + BUG_ON(ret);
> > + BUG_ON(dlen != PAGE_SIZE);
> > +
> > + /* page is up to date */
> > + SetPageUptodate(page);
> > + }
> > +
> > + /* start writeback */
> > + SetPageReclaim(page);
> > + __swap_writepage(page, &wbc, end_swap_bio_write);
> > + page_cache_release(page);
> > + zswap_written_back_pages++;
> > +
> > + spin_lock(&tree->lock);
> > +
> > + /* drop local reference */
> > + zswap_entry_put(entry);
> > + /* drop the initial reference from entry creation */
> > + refcount = zswap_entry_put(entry);
> > +
> > + /*
> > + * There are three possible values for refcount here:
> > + * (1) refcount is 1, load is in progress, unlink from rbtree,
> > + * load will free
> > + * (2) refcount is 0, (normal case) entry is valid,
> > + * remove from rbtree and free entry
> > + * (3) refcount is -1, invalidate happened during writeback,
> > + * free entry
> > + */
> > + if (refcount >= 0) {
> > + /* no invalidate yet, remove from rbtree */
> > + rb_erase(&entry->rbnode, &tree->rbroot);
> > + }
> > + spin_unlock(&tree->lock);
> > + if (refcount <= 0) {
> > + /* free the entry */
> > + zswap_free_entry(tree, entry);
> > + return 0;
> > + }
> > + return -EAGAIN;
> > +
> > +fail:
> > + spin_lock(&tree->lock);
> > + zswap_entry_put(entry);
> > + spin_unlock(&tree->lock);
> > + return ret;
> > +}
> > +
> > +/*********************************
> > +* frontswap hooks
> > +**********************************/
> > +/* attempts to compress and store an single page */
> > +static int zswap_frontswap_store(unsigned type, pgoff_t offset,
> > + struct page *page)
> > +{
> > + struct zswap_tree *tree = zswap_trees[type];
> > + struct zswap_entry *entry, *dupentry;
> > + int ret;
> > + unsigned int dlen = PAGE_SIZE, len;
> > + unsigned long handle;
> > + char *buf;
> > + u8 *src, *dst;
> > + struct zswap_header *zhdr;
> > +
> > + if (!tree) {
> > + ret = -ENODEV;
> > + goto reject;
> > + }
> > +
> > + /* reclaim space if needed */
> > + if (zswap_is_full()) {
> > + zswap_pool_limit_hit++;
> > + if (zbud_reclaim_page(tree->pool, 8)) {
>
> My idea is to wake up a kernel thread here to do the reclaim.
> Once zswap is full(20% percent of total mem currently), the kernel
> thread should reclaim pages from it. Not only reclaim one page, it
> should depend on the current memory pressure.
> And then the API in zbud may like this:
> zbud_reclaim_page(pool, nr_pages_to_reclaim, nr_retry);
So kswapd for zswap. I'm not opposed to the idea if a case can be
made for the complexity. I must say, I don't see that case though.
The policy can evolve as deficiencies are demonstrated and solutions are
found. Can I get your ack on this pending the other changes?
Thanks,
Seth
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists