[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <2f43e77c031b137fac6d64fb602d6f84d9454a87.1369312746.git.PuZZleDucK@gmail.com>
Date: Thu, 23 May 2013 22:50:00 +1000
From: Ben Minerds <puzzleduck@...il.com>
To: greg@...ah.com, rob@...dley.net
Cc: Ben Minerds <PuZZleDucK@...il.com>, linux-doc@...r.kernel.org,
linux-kernel@...r.kernel.org
Subject: [PATCH 8/8] Documentation: Move other patch related document
Moved a couple of other patch related documents into the
development-process/patches directory: applying-patches.txt and
SubmittingPatches.
Signed-off-by: Ben Minerds <puzzleduck@...il.com>
---
Documentation/SubmittingPatches | 743 ---------------------
Documentation/applying-patches.txt | 454 -------------
.../development-process/patches/SubmittingPatches | 743 +++++++++++++++++++++
.../patches/applying-patches.txt | 454 +++++++++++++
4 files changed, 1197 insertions(+), 1197 deletions(-)
delete mode 100644 Documentation/SubmittingPatches
delete mode 100644 Documentation/applying-patches.txt
create mode 100644 Documentation/development-process/patches/SubmittingPatches
create mode 100644 Documentation/development-process/patches/applying-patches.txt
diff --git a/Documentation/SubmittingPatches b/Documentation/SubmittingPatches
deleted file mode 100644
index 8cd0e1e..0000000
--- a/Documentation/SubmittingPatches
+++ /dev/null
@@ -1,743 +0,0 @@
-
- How to Get Your Change Into the Linux Kernel
- or
- Care And Operation Of Your Linus Torvalds
-
-
-
-For a person or company who wishes to submit a change to the Linux
-kernel, the process can sometimes be daunting if you're not familiar
-with "the system." This text is a collection of suggestions which
-can greatly increase the chances of your change being accepted.
-
-Read Documentation/SubmitChecklist for a list of items to check
-before submitting code. If you are submitting a driver, also read
-Documentation/SubmittingDrivers.
-
-
-
---------------------------------------------
-SECTION 1 - CREATING AND SENDING YOUR CHANGE
---------------------------------------------
-
-
-
-1) "diff -up"
-------------
-
-Use "diff -up" or "diff -uprN" to create patches.
-
-All changes to the Linux kernel occur in the form of patches, as
-generated by diff(1). When creating your patch, make sure to create it
-in "unified diff" format, as supplied by the '-u' argument to diff(1).
-Also, please use the '-p' argument which shows which C function each
-change is in - that makes the resultant diff a lot easier to read.
-Patches should be based in the root kernel source directory,
-not in any lower subdirectory.
-
-To create a patch for a single file, it is often sufficient to do:
-
- SRCTREE= linux-2.6
- MYFILE= drivers/net/mydriver.c
-
- cd $SRCTREE
- cp $MYFILE $MYFILE.orig
- vi $MYFILE # make your change
- cd ..
- diff -up $SRCTREE/$MYFILE{.orig,} > /tmp/patch
-
-To create a patch for multiple files, you should unpack a "vanilla",
-or unmodified kernel source tree, and generate a diff against your
-own source tree. For example:
-
- MYSRC= /devel/linux-2.6
-
- tar xvfz linux-2.6.12.tar.gz
- mv linux-2.6.12 linux-2.6.12-vanilla
- diff -uprN -X linux-2.6.12-vanilla/Documentation/dontdiff \
- linux-2.6.12-vanilla $MYSRC > /tmp/patch
-
-"dontdiff" is a list of files which are generated by the kernel during
-the build process, and should be ignored in any diff(1)-generated
-patch. The "dontdiff" file is included in the kernel tree in
-2.6.12 and later.
-
-Make sure your patch does not include any extra files which do not
-belong in a patch submission. Make sure to review your patch -after-
-generated it with diff(1), to ensure accuracy.
-
-If your changes produce a lot of deltas, you may want to look into
-splitting them into individual patches which modify things in
-logical stages. This will facilitate easier reviewing by other
-kernel developers, very important if you want your patch accepted.
-There are a number of scripts which can aid in this:
-
-Quilt:
-http://savannah.nongnu.org/projects/quilt
-
-Andrew Morton's patch scripts:
-http://userweb.kernel.org/~akpm/stuff/patch-scripts.tar.gz
-Instead of these scripts, quilt is the recommended patch management
-tool (see above).
-
-
-
-2) Describe your changes.
-
-Describe the technical detail of the change(s) your patch includes.
-
-Be as specific as possible. The WORST descriptions possible include
-things like "update driver X", "bug fix for driver X", or "this patch
-includes updates for subsystem X. Please apply."
-
-The maintainer will thank you if you write your patch description in a
-form which can be easily pulled into Linux's source code management
-system, git, as a "commit log". See #15, below.
-
-If your description starts to get long, that's a sign that you probably
-need to split up your patch. See #3, next.
-
-When you submit or resubmit a patch or patch series, include the
-complete patch description and justification for it. Don't just
-say that this is version N of the patch (series). Don't expect the
-patch merger to refer back to earlier patch versions or referenced
-URLs to find the patch description and put that into the patch.
-I.e., the patch (series) and its description should be self-contained.
-This benefits both the patch merger(s) and reviewers. Some reviewers
-probably didn't even receive earlier versions of the patch.
-
-If the patch fixes a logged bug entry, refer to that bug entry by
-number and URL.
-
-
-3) Separate your changes.
-
-Separate _logical changes_ into a single patch file.
-
-For example, if your changes include both bug fixes and performance
-enhancements for a single driver, separate those changes into two
-or more patches. If your changes include an API update, and a new
-driver which uses that new API, separate those into two patches.
-
-On the other hand, if you make a single change to numerous files,
-group those changes into a single patch. Thus a single logical change
-is contained within a single patch.
-
-If one patch depends on another patch in order for a change to be
-complete, that is OK. Simply note "this patch depends on patch X"
-in your patch description.
-
-If you cannot condense your patch set into a smaller set of patches,
-then only post say 15 or so at a time and wait for review and integration.
-
-
-
-4) Style check your changes.
-
-Check your patch for basic style violations, details of which can be
-found in Documentation/CodingStyle. Failure to do so simply wastes
-the reviewers time and will get your patch rejected, probably
-without even being read.
-
-At a minimum you should check your patches with the patch style
-checker prior to submission (scripts/checkpatch.pl). You should
-be able to justify all violations that remain in your patch.
-
-
-
-5) Select e-mail destination.
-
-Look through the MAINTAINERS file and the source code, and determine
-if your change applies to a specific subsystem of the kernel, with
-an assigned maintainer. If so, e-mail that person. The script
-scripts/get_maintainer.pl can be very useful at this step.
-
-If no maintainer is listed, or the maintainer does not respond, send
-your patch to the primary Linux kernel developer's mailing list,
-linux-kernel@...r.kernel.org. Most kernel developers monitor this
-e-mail list, and can comment on your changes.
-
-
-Do not send more than 15 patches at once to the vger mailing lists!!!
-
-
-Linus Torvalds is the final arbiter of all changes accepted into the
-Linux kernel. His e-mail address is <torvalds@...ux-foundation.org>.
-He gets a lot of e-mail, so typically you should do your best to -avoid-
-sending him e-mail.
-
-Patches which are bug fixes, are "obvious" changes, or similarly
-require little discussion should be sent or CC'd to Linus. Patches
-which require discussion or do not have a clear advantage should
-usually be sent first to linux-kernel. Only after the patch is
-discussed should the patch then be submitted to Linus.
-
-
-
-6) Select your CC (e-mail carbon copy) list.
-
-Unless you have a reason NOT to do so, CC linux-kernel@...r.kernel.org.
-
-Other kernel developers besides Linus need to be aware of your change,
-so that they may comment on it and offer code review and suggestions.
-linux-kernel is the primary Linux kernel developer mailing list.
-Other mailing lists are available for specific subsystems, such as
-USB, framebuffer devices, the VFS, the SCSI subsystem, etc. See the
-MAINTAINERS file for a mailing list that relates specifically to
-your change.
-
-Majordomo lists of VGER.KERNEL.ORG at:
- <http://vger.kernel.org/vger-lists.html>
-
-If changes affect userland-kernel interfaces, please send
-the MAN-PAGES maintainer (as listed in the MAINTAINERS file)
-a man-pages patch, or at least a notification of the change,
-so that some information makes its way into the manual pages.
-
-Even if the maintainer did not respond in step #5, make sure to ALWAYS
-copy the maintainer when you change their code.
-
-For small patches you may want to CC the Trivial Patch Monkey
-trivial@...nel.org which collects "trivial" patches. Have a look
-into the MAINTAINERS file for its current manager.
-Trivial patches must qualify for one of the following rules:
- Spelling fixes in documentation
- Spelling fixes which could break grep(1)
- Warning fixes (cluttering with useless warnings is bad)
- Compilation fixes (only if they are actually correct)
- Runtime fixes (only if they actually fix things)
- Removing use of deprecated functions/macros (eg. check_region)
- Contact detail and documentation fixes
- Non-portable code replaced by portable code (even in arch-specific,
- since people copy, as long as it's trivial)
- Any fix by the author/maintainer of the file (ie. patch monkey
- in re-transmission mode)
-
-
-
-7) No MIME, no links, no compression, no attachments. Just plain text.
-
-Linus and other kernel developers need to be able to read and comment
-on the changes you are submitting. It is important for a kernel
-developer to be able to "quote" your changes, using standard e-mail
-tools, so that they may comment on specific portions of your code.
-
-For this reason, all patches should be submitting e-mail "inline".
-WARNING: Be wary of your editor's word-wrap corrupting your patch,
-if you choose to cut-n-paste your patch.
-
-Do not attach the patch as a MIME attachment, compressed or not.
-Many popular e-mail applications will not always transmit a MIME
-attachment as plain text, making it impossible to comment on your
-code. A MIME attachment also takes Linus a bit more time to process,
-decreasing the likelihood of your MIME-attached change being accepted.
-
-Exception: If your mailer is mangling patches then someone may ask
-you to re-send them using MIME.
-
-See Documentation/email-clients.txt for hints about configuring
-your e-mail client so that it sends your patches untouched.
-
-8) E-mail size.
-
-When sending patches to Linus, always follow step #7.
-
-Large changes are not appropriate for mailing lists, and some
-maintainers. If your patch, uncompressed, exceeds 300 kB in size,
-it is preferred that you store your patch on an Internet-accessible
-server, and provide instead a URL (link) pointing to your patch.
-
-
-
-9) Name your kernel version.
-
-It is important to note, either in the subject line or in the patch
-description, the kernel version to which this patch applies.
-
-If the patch does not apply cleanly to the latest kernel version,
-Linus will not apply it.
-
-
-
-10) Don't get discouraged. Re-submit.
-
-After you have submitted your change, be patient and wait. If Linus
-likes your change and applies it, it will appear in the next version
-of the kernel that he releases.
-
-However, if your change doesn't appear in the next version of the
-kernel, there could be any number of reasons. It's YOUR job to
-narrow down those reasons, correct what was wrong, and submit your
-updated change.
-
-It is quite common for Linus to "drop" your patch without comment.
-That's the nature of the system. If he drops your patch, it could be
-due to
-* Your patch did not apply cleanly to the latest kernel version.
-* Your patch was not sufficiently discussed on linux-kernel.
-* A style issue (see section 2).
-* An e-mail formatting issue (re-read this section).
-* A technical problem with your change.
-* He gets tons of e-mail, and yours got lost in the shuffle.
-* You are being annoying.
-
-When in doubt, solicit comments on linux-kernel mailing list.
-
-
-
-11) Include PATCH in the subject
-
-Due to high e-mail traffic to Linus, and to linux-kernel, it is common
-convention to prefix your subject line with [PATCH]. This lets Linus
-and other kernel developers more easily distinguish patches from other
-e-mail discussions.
-
-
-
-12) Sign your work
-
-To improve tracking of who did what, especially with patches that can
-percolate to their final resting place in the kernel through several
-layers of maintainers, we've introduced a "sign-off" procedure on
-patches that are being emailed around.
-
-The sign-off is a simple line at the end of the explanation for the
-patch, which certifies that you wrote it or otherwise have the right to
-pass it on as an open-source patch. The rules are pretty simple: if you
-can certify the below:
-
- Developer's Certificate of Origin 1.1
-
- By making a contribution to this project, I certify that:
-
- (a) The contribution was created in whole or in part by me and I
- have the right to submit it under the open source license
- indicated in the file; or
-
- (b) The contribution is based upon previous work that, to the best
- of my knowledge, is covered under an appropriate open source
- license and I have the right under that license to submit that
- work with modifications, whether created in whole or in part
- by me, under the same open source license (unless I am
- permitted to submit under a different license), as indicated
- in the file; or
-
- (c) The contribution was provided directly to me by some other
- person who certified (a), (b) or (c) and I have not modified
- it.
-
- (d) I understand and agree that this project and the contribution
- are public and that a record of the contribution (including all
- personal information I submit with it, including my sign-off) is
- maintained indefinitely and may be redistributed consistent with
- this project or the open source license(s) involved.
-
-then you just add a line saying
-
- Signed-off-by: Random J Developer <random@...eloper.example.org>
-
-using your real name (sorry, no pseudonyms or anonymous contributions.)
-
-Some people also put extra tags at the end. They'll just be ignored for
-now, but you can do this to mark internal company procedures or just
-point out some special detail about the sign-off.
-
-If you are a subsystem or branch maintainer, sometimes you need to slightly
-modify patches you receive in order to merge them, because the code is not
-exactly the same in your tree and the submitters'. If you stick strictly to
-rule (c), you should ask the submitter to rediff, but this is a totally
-counter-productive waste of time and energy. Rule (b) allows you to adjust
-the code, but then it is very impolite to change one submitter's code and
-make him endorse your bugs. To solve this problem, it is recommended that
-you add a line between the last Signed-off-by header and yours, indicating
-the nature of your changes. While there is nothing mandatory about this, it
-seems like prepending the description with your mail and/or name, all
-enclosed in square brackets, is noticeable enough to make it obvious that
-you are responsible for last-minute changes. Example :
-
- Signed-off-by: Random J Developer <random@...eloper.example.org>
- [lucky@...ntainer.example.org: struct foo moved from foo.c to foo.h]
- Signed-off-by: Lucky K Maintainer <lucky@...ntainer.example.org>
-
-This practise is particularly helpful if you maintain a stable branch and
-want at the same time to credit the author, track changes, merge the fix,
-and protect the submitter from complaints. Note that under no circumstances
-can you change the author's identity (the From header), as it is the one
-which appears in the changelog.
-
-Special note to back-porters: It seems to be a common and useful practise
-to insert an indication of the origin of a patch at the top of the commit
-message (just after the subject line) to facilitate tracking. For instance,
-here's what we see in 2.6-stable :
-
- Date: Tue May 13 19:10:30 2008 +0000
-
- SCSI: libiscsi regression in 2.6.25: fix nop timer handling
-
- commit 4cf1043593db6a337f10e006c23c69e5fc93e722 upstream
-
-And here's what appears in 2.4 :
-
- Date: Tue May 13 22:12:27 2008 +0200
-
- wireless, airo: waitbusy() won't delay
-
- [backport of 2.6 commit b7acbdfbd1f277c1eb23f344f899cfa4cd0bf36a]
-
-Whatever the format, this information provides a valuable help to people
-tracking your trees, and to people trying to trouble-shoot bugs in your
-tree.
-
-
-13) When to use Acked-by: and Cc:
-
-The Signed-off-by: tag indicates that the signer was involved in the
-development of the patch, or that he/she was in the patch's delivery path.
-
-If a person was not directly involved in the preparation or handling of a
-patch but wishes to signify and record their approval of it then they can
-arrange to have an Acked-by: line added to the patch's changelog.
-
-Acked-by: is often used by the maintainer of the affected code when that
-maintainer neither contributed to nor forwarded the patch.
-
-Acked-by: is not as formal as Signed-off-by:. It is a record that the acker
-has at least reviewed the patch and has indicated acceptance. Hence patch
-mergers will sometimes manually convert an acker's "yep, looks good to me"
-into an Acked-by:.
-
-Acked-by: does not necessarily indicate acknowledgement of the entire patch.
-For example, if a patch affects multiple subsystems and has an Acked-by: from
-one subsystem maintainer then this usually indicates acknowledgement of just
-the part which affects that maintainer's code. Judgement should be used here.
-When in doubt people should refer to the original discussion in the mailing
-list archives.
-
-If a person has had the opportunity to comment on a patch, but has not
-provided such comments, you may optionally add a "Cc:" tag to the patch.
-This is the only tag which might be added without an explicit action by the
-person it names. This tag documents that potentially interested parties
-have been included in the discussion
-
-
-14) Using Reported-by:, Tested-by:, Reviewed-by: and Suggested-by:
-
-If this patch fixes a problem reported by somebody else, consider adding a
-Reported-by: tag to credit the reporter for their contribution. Please
-note that this tag should not be added without the reporter's permission,
-especially if the problem was not reported in a public forum. That said,
-if we diligently credit our bug reporters, they will, hopefully, be
-inspired to help us again in the future.
-
-A Tested-by: tag indicates that the patch has been successfully tested (in
-some environment) by the person named. This tag informs maintainers that
-some testing has been performed, provides a means to locate testers for
-future patches, and ensures credit for the testers.
-
-Reviewed-by:, instead, indicates that the patch has been reviewed and found
-acceptable according to the Reviewer's Statement:
-
- Reviewer's statement of oversight
-
- By offering my Reviewed-by: tag, I state that:
-
- (a) I have carried out a technical review of this patch to
- evaluate its appropriateness and readiness for inclusion into
- the mainline kernel.
-
- (b) Any problems, concerns, or questions relating to the patch
- have been communicated back to the submitter. I am satisfied
- with the submitter's response to my comments.
-
- (c) While there may be things that could be improved with this
- submission, I believe that it is, at this time, (1) a
- worthwhile modification to the kernel, and (2) free of known
- issues which would argue against its inclusion.
-
- (d) While I have reviewed the patch and believe it to be sound, I
- do not (unless explicitly stated elsewhere) make any
- warranties or guarantees that it will achieve its stated
- purpose or function properly in any given situation.
-
-A Reviewed-by tag is a statement of opinion that the patch is an
-appropriate modification of the kernel without any remaining serious
-technical issues. Any interested reviewer (who has done the work) can
-offer a Reviewed-by tag for a patch. This tag serves to give credit to
-reviewers and to inform maintainers of the degree of review which has been
-done on the patch. Reviewed-by: tags, when supplied by reviewers known to
-understand the subject area and to perform thorough reviews, will normally
-increase the likelihood of your patch getting into the kernel.
-
-A Suggested-by: tag indicates that the patch idea is suggested by the person
-named and ensures credit to the person for the idea. Please note that this
-tag should not be added without the reporter's permission, especially if the
-idea was not posted in a public forum. That said, if we diligently credit our
-idea reporters, they will, hopefully, be inspired to help us again in the
-future.
-
-
-15) The canonical patch format
-
-The canonical patch subject line is:
-
- Subject: [PATCH 001/123] subsystem: summary phrase
-
-The canonical patch message body contains the following:
-
- - A "from" line specifying the patch author.
-
- - An empty line.
-
- - The body of the explanation, which will be copied to the
- permanent changelog to describe this patch.
-
- - The "Signed-off-by:" lines, described above, which will
- also go in the changelog.
-
- - A marker line containing simply "---".
-
- - Any additional comments not suitable for the changelog.
-
- - The actual patch (diff output).
-
-The Subject line format makes it very easy to sort the emails
-alphabetically by subject line - pretty much any email reader will
-support that - since because the sequence number is zero-padded,
-the numerical and alphabetic sort is the same.
-
-The "subsystem" in the email's Subject should identify which
-area or subsystem of the kernel is being patched.
-
-The "summary phrase" in the email's Subject should concisely
-describe the patch which that email contains. The "summary
-phrase" should not be a filename. Do not use the same "summary
-phrase" for every patch in a whole patch series (where a "patch
-series" is an ordered sequence of multiple, related patches).
-
-Bear in mind that the "summary phrase" of your email becomes a
-globally-unique identifier for that patch. It propagates all the way
-into the git changelog. The "summary phrase" may later be used in
-developer discussions which refer to the patch. People will want to
-google for the "summary phrase" to read discussion regarding that
-patch. It will also be the only thing that people may quickly see
-when, two or three months later, they are going through perhaps
-thousands of patches using tools such as "gitk" or "git log
---oneline".
-
-For these reasons, the "summary" must be no more than 70-75
-characters, and it must describe both what the patch changes, as well
-as why the patch might be necessary. It is challenging to be both
-succinct and descriptive, but that is what a well-written summary
-should do.
-
-The "summary phrase" may be prefixed by tags enclosed in square
-brackets: "Subject: [PATCH tag] <summary phrase>". The tags are not
-considered part of the summary phrase, but describe how the patch
-should be treated. Common tags might include a version descriptor if
-the multiple versions of the patch have been sent out in response to
-comments (i.e., "v1, v2, v3"), or "RFC" to indicate a request for
-comments. If there are four patches in a patch series the individual
-patches may be numbered like this: 1/4, 2/4, 3/4, 4/4. This assures
-that developers understand the order in which the patches should be
-applied and that they have reviewed or applied all of the patches in
-the patch series.
-
-A couple of example Subjects:
-
- Subject: [patch 2/5] ext2: improve scalability of bitmap searching
- Subject: [PATCHv2 001/207] x86: fix eflags tracking
-
-The "from" line must be the very first line in the message body,
-and has the form:
-
- From: Original Author <author@...mple.com>
-
-The "from" line specifies who will be credited as the author of the
-patch in the permanent changelog. If the "from" line is missing,
-then the "From:" line from the email header will be used to determine
-the patch author in the changelog.
-
-The explanation body will be committed to the permanent source
-changelog, so should make sense to a competent reader who has long
-since forgotten the immediate details of the discussion that might
-have led to this patch. Including symptoms of the failure which the
-patch addresses (kernel log messages, oops messages, etc.) is
-especially useful for people who might be searching the commit logs
-looking for the applicable patch. If a patch fixes a compile failure,
-it may not be necessary to include _all_ of the compile failures; just
-enough that it is likely that someone searching for the patch can find
-it. As in the "summary phrase", it is important to be both succinct as
-well as descriptive.
-
-The "---" marker line serves the essential purpose of marking for patch
-handling tools where the changelog message ends.
-
-One good use for the additional comments after the "---" marker is for
-a diffstat, to show what files have changed, and the number of
-inserted and deleted lines per file. A diffstat is especially useful
-on bigger patches. Other comments relevant only to the moment or the
-maintainer, not suitable for the permanent changelog, should also go
-here. A good example of such comments might be "patch changelogs"
-which describe what has changed between the v1 and v2 version of the
-patch.
-
-If you are going to include a diffstat after the "---" marker, please
-use diffstat options "-p 1 -w 70" so that filenames are listed from
-the top of the kernel source tree and don't use too much horizontal
-space (easily fit in 80 columns, maybe with some indentation).
-
-See more details on the proper patch format in the following
-references.
-
-
-16) Sending "git pull" requests (from Linus emails)
-
-Please write the git repo address and branch name alone on the same line
-so that I can't even by mistake pull from the wrong branch, and so
-that a triple-click just selects the whole thing.
-
-So the proper format is something along the lines of:
-
- "Please pull from
-
- git://jdelvare.pck.nerim.net/jdelvare-2.6 i2c-for-linus
-
- to get these changes:"
-
-so that I don't have to hunt-and-peck for the address and inevitably
-get it wrong (actually, I've only gotten it wrong a few times, and
-checking against the diffstat tells me when I get it wrong, but I'm
-just a lot more comfortable when I don't have to "look for" the right
-thing to pull, and double-check that I have the right branch-name).
-
-
-Please use "git diff -M --stat --summary" to generate the diffstat:
-the -M enables rename detection, and the summary enables a summary of
-new/deleted or renamed files.
-
-With rename detection, the statistics are rather different [...]
-because git will notice that a fair number of the changes are renames.
-
------------------------------------
-SECTION 2 - HINTS, TIPS, AND TRICKS
------------------------------------
-
-This section lists many of the common "rules" associated with code
-submitted to the kernel. There are always exceptions... but you must
-have a really good reason for doing so. You could probably call this
-section Linus Computer Science 101.
-
-
-
-1) Read Documentation/CodingStyle
-
-Nuff said. If your code deviates too much from this, it is likely
-to be rejected without further review, and without comment.
-
-One significant exception is when moving code from one file to
-another -- in this case you should not modify the moved code at all in
-the same patch which moves it. This clearly delineates the act of
-moving the code and your changes. This greatly aids review of the
-actual differences and allows tools to better track the history of
-the code itself.
-
-Check your patches with the patch style checker prior to submission
-(scripts/checkpatch.pl). The style checker should be viewed as
-a guide not as the final word. If your code looks better with
-a violation then its probably best left alone.
-
-The checker reports at three levels:
- - ERROR: things that are very likely to be wrong
- - WARNING: things requiring careful review
- - CHECK: things requiring thought
-
-You should be able to justify all violations that remain in your
-patch.
-
-
-
-2) #ifdefs are ugly
-
-Code cluttered with ifdefs is difficult to read and maintain. Don't do
-it. Instead, put your ifdefs in a header, and conditionally define
-'static inline' functions, or macros, which are used in the code.
-Let the compiler optimize away the "no-op" case.
-
-Simple example, of poor code:
-
- dev = alloc_etherdev (sizeof(struct funky_private));
- if (!dev)
- return -ENODEV;
- #ifdef CONFIG_NET_FUNKINESS
- init_funky_net(dev);
- #endif
-
-Cleaned-up example:
-
-(in header)
- #ifndef CONFIG_NET_FUNKINESS
- static inline void init_funky_net (struct net_device *d) {}
- #endif
-
-(in the code itself)
- dev = alloc_etherdev (sizeof(struct funky_private));
- if (!dev)
- return -ENODEV;
- init_funky_net(dev);
-
-
-
-3) 'static inline' is better than a macro
-
-Static inline functions are greatly preferred over macros.
-They provide type safety, have no length limitations, no formatting
-limitations, and under gcc they are as cheap as macros.
-
-Macros should only be used for cases where a static inline is clearly
-suboptimal [there are a few, isolated cases of this in fast paths],
-or where it is impossible to use a static inline function [such as
-string-izing].
-
-'static inline' is preferred over 'static __inline__', 'extern inline',
-and 'extern __inline__'.
-
-
-
-4) Don't over-design.
-
-Don't try to anticipate nebulous future cases which may or may not
-be useful: "Make it as simple as you can, and no simpler."
-
-
-
-----------------------
-SECTION 3 - REFERENCES
-----------------------
-
-Andrew Morton, "The perfect patch" (tpp).
- Documentation/development-process/patches/The-Perfect-Patch.txt
-
-Jeff Garzik, "Linux kernel patch submission format".
- Documentation/development-process/patches/Patch-Submission-Format.txt
-
-Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
- <http://www.kroah.com/log/linux/maintainer.html>
- <http://www.kroah.com/log/linux/maintainer-02.html>
- <http://www.kroah.com/log/linux/maintainer-03.html>
- <http://www.kroah.com/log/linux/maintainer-04.html>
- <http://www.kroah.com/log/linux/maintainer-05.html>
-
-NO!!!! No more huge patch bombs to linux-kernel@...r.kernel.org people!
- <http://marc.theaimsgroup.com/?l=linux-kernel&m=112112749912944&w=2>
-
-Kernel Documentation/CodingStyle:
- <http://users.sosdg.org/~qiyong/lxr/source/Documentation/CodingStyle>
-
-Linus Torvalds's mail on the canonical patch format:
- <http://lkml.org/lkml/2005/4/7/183>
-
-Andi Kleen, "On submitting kernel patches"
- Some strategies to get difficult or controversial changes in.
- http://halobates.de/on-submitting-patches.pdf
-
---
diff --git a/Documentation/applying-patches.txt b/Documentation/applying-patches.txt
deleted file mode 100644
index a083ba3..0000000
--- a/Documentation/applying-patches.txt
+++ /dev/null
@@ -1,454 +0,0 @@
-
- Applying Patches To The Linux Kernel
- ------------------------------------
-
- Original by: Jesper Juhl, August 2005
- Last update: 2006-01-05
-
-
-A frequently asked question on the Linux Kernel Mailing List is how to apply
-a patch to the kernel or, more specifically, what base kernel a patch for
-one of the many trees/branches should be applied to. Hopefully this document
-will explain this to you.
-
-In addition to explaining how to apply and revert patches, a brief
-description of the different kernel trees (and examples of how to apply
-their specific patches) is also provided.
-
-
-What is a patch?
----
- A patch is a small text document containing a delta of changes between two
-different versions of a source tree. Patches are created with the `diff'
-program.
-To correctly apply a patch you need to know what base it was generated from
-and what new version the patch will change the source tree into. These
-should both be present in the patch file metadata or be possible to deduce
-from the filename.
-
-
-How do I apply or revert a patch?
----
- You apply a patch with the `patch' program. The patch program reads a diff
-(or patch) file and makes the changes to the source tree described in it.
-
-Patches for the Linux kernel are generated relative to the parent directory
-holding the kernel source dir.
-
-This means that paths to files inside the patch file contain the name of the
-kernel source directories it was generated against (or some other directory
-names like "a/" and "b/").
-Since this is unlikely to match the name of the kernel source dir on your
-local machine (but is often useful info to see what version an otherwise
-unlabeled patch was generated against) you should change into your kernel
-source directory and then strip the first element of the path from filenames
-in the patch file when applying it (the -p1 argument to `patch' does this).
-
-To revert a previously applied patch, use the -R argument to patch.
-So, if you applied a patch like this:
- patch -p1 < ../patch-x.y.z
-
-You can revert (undo) it like this:
- patch -R -p1 < ../patch-x.y.z
-
-
-How do I feed a patch/diff file to `patch'?
----
- This (as usual with Linux and other UNIX like operating systems) can be
-done in several different ways.
-In all the examples below I feed the file (in uncompressed form) to patch
-via stdin using the following syntax:
- patch -p1 < path/to/patch-x.y.z
-
-If you just want to be able to follow the examples below and don't want to
-know of more than one way to use patch, then you can stop reading this
-section here.
-
-Patch can also get the name of the file to use via the -i argument, like
-this:
- patch -p1 -i path/to/patch-x.y.z
-
-If your patch file is compressed with gzip or bzip2 and you don't want to
-uncompress it before applying it, then you can feed it to patch like this
-instead:
- zcat path/to/patch-x.y.z.gz | patch -p1
- bzcat path/to/patch-x.y.z.bz2 | patch -p1
-
-If you wish to uncompress the patch file by hand first before applying it
-(what I assume you've done in the examples below), then you simply run
-gunzip or bunzip2 on the file -- like this:
- gunzip patch-x.y.z.gz
- bunzip2 patch-x.y.z.bz2
-
-Which will leave you with a plain text patch-x.y.z file that you can feed to
-patch via stdin or the -i argument, as you prefer.
-
-A few other nice arguments for patch are -s which causes patch to be silent
-except for errors which is nice to prevent errors from scrolling out of the
-screen too fast, and --dry-run which causes patch to just print a listing of
-what would happen, but doesn't actually make any changes. Finally --verbose
-tells patch to print more information about the work being done.
-
-
-Common errors when patching
----
- When patch applies a patch file it attempts to verify the sanity of the
-file in different ways.
-Checking that the file looks like a valid patch file & checking the code
-around the bits being modified matches the context provided in the patch are
-just two of the basic sanity checks patch does.
-
-If patch encounters something that doesn't look quite right it has two
-options. It can either refuse to apply the changes and abort or it can try
-to find a way to make the patch apply with a few minor changes.
-
-One example of something that's not 'quite right' that patch will attempt to
-fix up is if all the context matches, the lines being changed match, but the
-line numbers are different. This can happen, for example, if the patch makes
-a change in the middle of the file but for some reasons a few lines have
-been added or removed near the beginning of the file. In that case
-everything looks good it has just moved up or down a bit, and patch will
-usually adjust the line numbers and apply the patch.
-
-Whenever patch applies a patch that it had to modify a bit to make it fit
-it'll tell you about it by saying the patch applied with 'fuzz'.
-You should be wary of such changes since even though patch probably got it
-right it doesn't /always/ get it right, and the result will sometimes be
-wrong.
-
-When patch encounters a change that it can't fix up with fuzz it rejects it
-outright and leaves a file with a .rej extension (a reject file). You can
-read this file to see exactly what change couldn't be applied, so you can
-go fix it up by hand if you wish.
-
-If you don't have any third-party patches applied to your kernel source, but
-only patches from kernel.org and you apply the patches in the correct order,
-and have made no modifications yourself to the source files, then you should
-never see a fuzz or reject message from patch. If you do see such messages
-anyway, then there's a high risk that either your local source tree or the
-patch file is corrupted in some way. In that case you should probably try
-re-downloading the patch and if things are still not OK then you'd be advised
-to start with a fresh tree downloaded in full from kernel.org.
-
-Let's look a bit more at some of the messages patch can produce.
-
-If patch stops and presents a "File to patch:" prompt, then patch could not
-find a file to be patched. Most likely you forgot to specify -p1 or you are
-in the wrong directory. Less often, you'll find patches that need to be
-applied with -p0 instead of -p1 (reading the patch file should reveal if
-this is the case -- if so, then this is an error by the person who created
-the patch but is not fatal).
-
-If you get "Hunk #2 succeeded at 1887 with fuzz 2 (offset 7 lines)." or a
-message similar to that, then it means that patch had to adjust the location
-of the change (in this example it needed to move 7 lines from where it
-expected to make the change to make it fit).
-The resulting file may or may not be OK, depending on the reason the file
-was different than expected.
-This often happens if you try to apply a patch that was generated against a
-different kernel version than the one you are trying to patch.
-
-If you get a message like "Hunk #3 FAILED at 2387.", then it means that the
-patch could not be applied correctly and the patch program was unable to
-fuzz its way through. This will generate a .rej file with the change that
-caused the patch to fail and also a .orig file showing you the original
-content that couldn't be changed.
-
-If you get "Reversed (or previously applied) patch detected! Assume -R? [n]"
-then patch detected that the change contained in the patch seems to have
-already been made.
-If you actually did apply this patch previously and you just re-applied it
-in error, then just say [n]o and abort this patch. If you applied this patch
-previously and actually intended to revert it, but forgot to specify -R,
-then you can say [y]es here to make patch revert it for you.
-This can also happen if the creator of the patch reversed the source and
-destination directories when creating the patch, and in that case reverting
-the patch will in fact apply it.
-
-A message similar to "patch: **** unexpected end of file in patch" or "patch
-unexpectedly ends in middle of line" means that patch could make no sense of
-the file you fed to it. Either your download is broken, you tried to feed
-patch a compressed patch file without uncompressing it first, or the patch
-file that you are using has been mangled by a mail client or mail transfer
-agent along the way somewhere, e.g., by splitting a long line into two lines.
-Often these warnings can easily be fixed by joining (concatenating) the
-two lines that had been split.
-
-As I already mentioned above, these errors should never happen if you apply
-a patch from kernel.org to the correct version of an unmodified source tree.
-So if you get these errors with kernel.org patches then you should probably
-assume that either your patch file or your tree is broken and I'd advise you
-to start over with a fresh download of a full kernel tree and the patch you
-wish to apply.
-
-
-Are there any alternatives to `patch'?
----
- Yes there are alternatives.
-
- You can use the `interdiff' program (http://cyberelk.net/tim/patchutils/) to
-generate a patch representing the differences between two patches and then
-apply the result.
-This will let you move from something like 2.6.12.2 to 2.6.12.3 in a single
-step. The -z flag to interdiff will even let you feed it patches in gzip or
-bzip2 compressed form directly without the use of zcat or bzcat or manual
-decompression.
-
-Here's how you'd go from 2.6.12.2 to 2.6.12.3 in a single step:
- interdiff -z ../patch-2.6.12.2.bz2 ../patch-2.6.12.3.gz | patch -p1
-
-Although interdiff may save you a step or two you are generally advised to
-do the additional steps since interdiff can get things wrong in some cases.
-
- Another alternative is `ketchup', which is a python script for automatic
-downloading and applying of patches (http://www.selenic.com/ketchup/).
-
- Other nice tools are diffstat, which shows a summary of changes made by a
-patch; lsdiff, which displays a short listing of affected files in a patch
-file, along with (optionally) the line numbers of the start of each patch;
-and grepdiff, which displays a list of the files modified by a patch where
-the patch contains a given regular expression.
-
-
-Where can I download the patches?
----
- The patches are available at http://kernel.org/
-Most recent patches are linked from the front page, but they also have
-specific homes.
-
-The 2.6.x.y (-stable) and 2.6.x patches live at
- ftp://ftp.kernel.org/pub/linux/kernel/v2.6/
-
-The -rc patches live at
- ftp://ftp.kernel.org/pub/linux/kernel/v2.6/testing/
-
-The -git patches live at
- ftp://ftp.kernel.org/pub/linux/kernel/v2.6/snapshots/
-
-The -mm kernels live at
- ftp://ftp.kernel.org/pub/linux/kernel/people/akpm/patches/2.6/
-
-In place of ftp.kernel.org you can use ftp.cc.kernel.org, where cc is a
-country code. This way you'll be downloading from a mirror site that's most
-likely geographically closer to you, resulting in faster downloads for you,
-less bandwidth used globally and less load on the main kernel.org servers --
-these are good things, so do use mirrors when possible.
-
-
-The 2.6.x kernels
----
- These are the base stable releases released by Linus. The highest numbered
-release is the most recent.
-
-If regressions or other serious flaws are found, then a -stable fix patch
-will be released (see below) on top of this base. Once a new 2.6.x base
-kernel is released, a patch is made available that is a delta between the
-previous 2.6.x kernel and the new one.
-
-To apply a patch moving from 2.6.11 to 2.6.12, you'd do the following (note
-that such patches do *NOT* apply on top of 2.6.x.y kernels but on top of the
-base 2.6.x kernel -- if you need to move from 2.6.x.y to 2.6.x+1 you need to
-first revert the 2.6.x.y patch).
-
-Here are some examples:
-
-# moving from 2.6.11 to 2.6.12
-$ cd ~/linux-2.6.11 # change to kernel source dir
-$ patch -p1 < ../patch-2.6.12 # apply the 2.6.12 patch
-$ cd ..
-$ mv linux-2.6.11 linux-2.6.12 # rename source dir
-
-# moving from 2.6.11.1 to 2.6.12
-$ cd ~/linux-2.6.11.1 # change to kernel source dir
-$ patch -p1 -R < ../patch-2.6.11.1 # revert the 2.6.11.1 patch
- # source dir is now 2.6.11
-$ patch -p1 < ../patch-2.6.12 # apply new 2.6.12 patch
-$ cd ..
-$ mv linux-2.6.11.1 linux-2.6.12 # rename source dir
-
-
-The 2.6.x.y kernels
----
- Kernels with 4-digit versions are -stable kernels. They contain small(ish)
-critical fixes for security problems or significant regressions discovered
-in a given 2.6.x kernel.
-
-This is the recommended branch for users who want the most recent stable
-kernel and are not interested in helping test development/experimental
-versions.
-
-If no 2.6.x.y kernel is available, then the highest numbered 2.6.x kernel is
-the current stable kernel.
-
- note: the -stable team usually do make incremental patches available as well
- as patches against the latest mainline release, but I only cover the
- non-incremental ones below. The incremental ones can be found at
- ftp://ftp.kernel.org/pub/linux/kernel/v2.6/incr/
-
-These patches are not incremental, meaning that for example the 2.6.12.3
-patch does not apply on top of the 2.6.12.2 kernel source, but rather on top
-of the base 2.6.12 kernel source .
-So, in order to apply the 2.6.12.3 patch to your existing 2.6.12.2 kernel
-source you have to first back out the 2.6.12.2 patch (so you are left with a
-base 2.6.12 kernel source) and then apply the new 2.6.12.3 patch.
-
-Here's a small example:
-
-$ cd ~/linux-2.6.12.2 # change into the kernel source dir
-$ patch -p1 -R < ../patch-2.6.12.2 # revert the 2.6.12.2 patch
-$ patch -p1 < ../patch-2.6.12.3 # apply the new 2.6.12.3 patch
-$ cd ..
-$ mv linux-2.6.12.2 linux-2.6.12.3 # rename the kernel source dir
-
-
-The -rc kernels
----
- These are release-candidate kernels. These are development kernels released
-by Linus whenever he deems the current git (the kernel's source management
-tool) tree to be in a reasonably sane state adequate for testing.
-
-These kernels are not stable and you should expect occasional breakage if
-you intend to run them. This is however the most stable of the main
-development branches and is also what will eventually turn into the next
-stable kernel, so it is important that it be tested by as many people as
-possible.
-
-This is a good branch to run for people who want to help out testing
-development kernels but do not want to run some of the really experimental
-stuff (such people should see the sections about -git and -mm kernels below).
-
-The -rc patches are not incremental, they apply to a base 2.6.x kernel, just
-like the 2.6.x.y patches described above. The kernel version before the -rcN
-suffix denotes the version of the kernel that this -rc kernel will eventually
-turn into.
-So, 2.6.13-rc5 means that this is the fifth release candidate for the 2.6.13
-kernel and the patch should be applied on top of the 2.6.12 kernel source.
-
-Here are 3 examples of how to apply these patches:
-
-# first an example of moving from 2.6.12 to 2.6.13-rc3
-$ cd ~/linux-2.6.12 # change into the 2.6.12 source dir
-$ patch -p1 < ../patch-2.6.13-rc3 # apply the 2.6.13-rc3 patch
-$ cd ..
-$ mv linux-2.6.12 linux-2.6.13-rc3 # rename the source dir
-
-# now let's move from 2.6.13-rc3 to 2.6.13-rc5
-$ cd ~/linux-2.6.13-rc3 # change into the 2.6.13-rc3 dir
-$ patch -p1 -R < ../patch-2.6.13-rc3 # revert the 2.6.13-rc3 patch
-$ patch -p1 < ../patch-2.6.13-rc5 # apply the new 2.6.13-rc5 patch
-$ cd ..
-$ mv linux-2.6.13-rc3 linux-2.6.13-rc5 # rename the source dir
-
-# finally let's try and move from 2.6.12.3 to 2.6.13-rc5
-$ cd ~/linux-2.6.12.3 # change to the kernel source dir
-$ patch -p1 -R < ../patch-2.6.12.3 # revert the 2.6.12.3 patch
-$ patch -p1 < ../patch-2.6.13-rc5 # apply new 2.6.13-rc5 patch
-$ cd ..
-$ mv linux-2.6.12.3 linux-2.6.13-rc5 # rename the kernel source dir
-
-
-The -git kernels
----
- These are daily snapshots of Linus' kernel tree (managed in a git
-repository, hence the name).
-
-These patches are usually released daily and represent the current state of
-Linus's tree. They are more experimental than -rc kernels since they are
-generated automatically without even a cursory glance to see if they are
-sane.
-
--git patches are not incremental and apply either to a base 2.6.x kernel or
-a base 2.6.x-rc kernel -- you can see which from their name.
-A patch named 2.6.12-git1 applies to the 2.6.12 kernel source and a patch
-named 2.6.13-rc3-git2 applies to the source of the 2.6.13-rc3 kernel.
-
-Here are some examples of how to apply these patches:
-
-# moving from 2.6.12 to 2.6.12-git1
-$ cd ~/linux-2.6.12 # change to the kernel source dir
-$ patch -p1 < ../patch-2.6.12-git1 # apply the 2.6.12-git1 patch
-$ cd ..
-$ mv linux-2.6.12 linux-2.6.12-git1 # rename the kernel source dir
-
-# moving from 2.6.12-git1 to 2.6.13-rc2-git3
-$ cd ~/linux-2.6.12-git1 # change to the kernel source dir
-$ patch -p1 -R < ../patch-2.6.12-git1 # revert the 2.6.12-git1 patch
- # we now have a 2.6.12 kernel
-$ patch -p1 < ../patch-2.6.13-rc2 # apply the 2.6.13-rc2 patch
- # the kernel is now 2.6.13-rc2
-$ patch -p1 < ../patch-2.6.13-rc2-git3 # apply the 2.6.13-rc2-git3 patch
- # the kernel is now 2.6.13-rc2-git3
-$ cd ..
-$ mv linux-2.6.12-git1 linux-2.6.13-rc2-git3 # rename source dir
-
-
-The -mm kernels
----
- These are experimental kernels released by Andrew Morton.
-
-The -mm tree serves as a sort of proving ground for new features and other
-experimental patches.
-Once a patch has proved its worth in -mm for a while Andrew pushes it on to
-Linus for inclusion in mainline.
-
-Although it's encouraged that patches flow to Linus via the -mm tree, this
-is not always enforced.
-Subsystem maintainers (or individuals) sometimes push their patches directly
-to Linus, even though (or after) they have been merged and tested in -mm (or
-sometimes even without prior testing in -mm).
-
-You should generally strive to get your patches into mainline via -mm to
-ensure maximum testing.
-
-This branch is in constant flux and contains many experimental features, a
-lot of debugging patches not appropriate for mainline etc., and is the most
-experimental of the branches described in this document.
-
-These kernels are not appropriate for use on systems that are supposed to be
-stable and they are more risky to run than any of the other branches (make
-sure you have up-to-date backups -- that goes for any experimental kernel but
-even more so for -mm kernels).
-
-These kernels in addition to all the other experimental patches they contain
-usually also contain any changes in the mainline -git kernels available at
-the time of release.
-
-Testing of -mm kernels is greatly appreciated since the whole point of the
-tree is to weed out regressions, crashes, data corruption bugs, build
-breakage (and any other bug in general) before changes are merged into the
-more stable mainline Linus tree.
-But testers of -mm should be aware that breakage in this tree is more common
-than in any other tree.
-
-The -mm kernels are not released on a fixed schedule, but usually a few -mm
-kernels are released in between each -rc kernel (1 to 3 is common).
-The -mm kernels apply to either a base 2.6.x kernel (when no -rc kernels
-have been released yet) or to a Linus -rc kernel.
-
-Here are some examples of applying the -mm patches:
-
-# moving from 2.6.12 to 2.6.12-mm1
-$ cd ~/linux-2.6.12 # change to the 2.6.12 source dir
-$ patch -p1 < ../2.6.12-mm1 # apply the 2.6.12-mm1 patch
-$ cd ..
-$ mv linux-2.6.12 linux-2.6.12-mm1 # rename the source appropriately
-
-# moving from 2.6.12-mm1 to 2.6.13-rc3-mm3
-$ cd ~/linux-2.6.12-mm1
-$ patch -p1 -R < ../2.6.12-mm1 # revert the 2.6.12-mm1 patch
- # we now have a 2.6.12 source
-$ patch -p1 < ../patch-2.6.13-rc3 # apply the 2.6.13-rc3 patch
- # we now have a 2.6.13-rc3 source
-$ patch -p1 < ../2.6.13-rc3-mm3 # apply the 2.6.13-rc3-mm3 patch
-$ cd ..
-$ mv linux-2.6.12-mm1 linux-2.6.13-rc3-mm3 # rename the source dir
-
-
-This concludes this list of explanations of the various kernel trees.
-I hope you are now clear on how to apply the various patches and help testing
-the kernel.
-
-Thank you's to Randy Dunlap, Rolf Eike Beer, Linus Torvalds, Bodo Eggert,
-Johannes Stezenbach, Grant Coady, Pavel Machek and others that I may have
-forgotten for their reviews and contributions to this document.
-
diff --git a/Documentation/development-process/patches/SubmittingPatches b/Documentation/development-process/patches/SubmittingPatches
new file mode 100644
index 0000000..8cd0e1e
--- /dev/null
+++ b/Documentation/development-process/patches/SubmittingPatches
@@ -0,0 +1,743 @@
+
+ How to Get Your Change Into the Linux Kernel
+ or
+ Care And Operation Of Your Linus Torvalds
+
+
+
+For a person or company who wishes to submit a change to the Linux
+kernel, the process can sometimes be daunting if you're not familiar
+with "the system." This text is a collection of suggestions which
+can greatly increase the chances of your change being accepted.
+
+Read Documentation/SubmitChecklist for a list of items to check
+before submitting code. If you are submitting a driver, also read
+Documentation/SubmittingDrivers.
+
+
+
+--------------------------------------------
+SECTION 1 - CREATING AND SENDING YOUR CHANGE
+--------------------------------------------
+
+
+
+1) "diff -up"
+------------
+
+Use "diff -up" or "diff -uprN" to create patches.
+
+All changes to the Linux kernel occur in the form of patches, as
+generated by diff(1). When creating your patch, make sure to create it
+in "unified diff" format, as supplied by the '-u' argument to diff(1).
+Also, please use the '-p' argument which shows which C function each
+change is in - that makes the resultant diff a lot easier to read.
+Patches should be based in the root kernel source directory,
+not in any lower subdirectory.
+
+To create a patch for a single file, it is often sufficient to do:
+
+ SRCTREE= linux-2.6
+ MYFILE= drivers/net/mydriver.c
+
+ cd $SRCTREE
+ cp $MYFILE $MYFILE.orig
+ vi $MYFILE # make your change
+ cd ..
+ diff -up $SRCTREE/$MYFILE{.orig,} > /tmp/patch
+
+To create a patch for multiple files, you should unpack a "vanilla",
+or unmodified kernel source tree, and generate a diff against your
+own source tree. For example:
+
+ MYSRC= /devel/linux-2.6
+
+ tar xvfz linux-2.6.12.tar.gz
+ mv linux-2.6.12 linux-2.6.12-vanilla
+ diff -uprN -X linux-2.6.12-vanilla/Documentation/dontdiff \
+ linux-2.6.12-vanilla $MYSRC > /tmp/patch
+
+"dontdiff" is a list of files which are generated by the kernel during
+the build process, and should be ignored in any diff(1)-generated
+patch. The "dontdiff" file is included in the kernel tree in
+2.6.12 and later.
+
+Make sure your patch does not include any extra files which do not
+belong in a patch submission. Make sure to review your patch -after-
+generated it with diff(1), to ensure accuracy.
+
+If your changes produce a lot of deltas, you may want to look into
+splitting them into individual patches which modify things in
+logical stages. This will facilitate easier reviewing by other
+kernel developers, very important if you want your patch accepted.
+There are a number of scripts which can aid in this:
+
+Quilt:
+http://savannah.nongnu.org/projects/quilt
+
+Andrew Morton's patch scripts:
+http://userweb.kernel.org/~akpm/stuff/patch-scripts.tar.gz
+Instead of these scripts, quilt is the recommended patch management
+tool (see above).
+
+
+
+2) Describe your changes.
+
+Describe the technical detail of the change(s) your patch includes.
+
+Be as specific as possible. The WORST descriptions possible include
+things like "update driver X", "bug fix for driver X", or "this patch
+includes updates for subsystem X. Please apply."
+
+The maintainer will thank you if you write your patch description in a
+form which can be easily pulled into Linux's source code management
+system, git, as a "commit log". See #15, below.
+
+If your description starts to get long, that's a sign that you probably
+need to split up your patch. See #3, next.
+
+When you submit or resubmit a patch or patch series, include the
+complete patch description and justification for it. Don't just
+say that this is version N of the patch (series). Don't expect the
+patch merger to refer back to earlier patch versions or referenced
+URLs to find the patch description and put that into the patch.
+I.e., the patch (series) and its description should be self-contained.
+This benefits both the patch merger(s) and reviewers. Some reviewers
+probably didn't even receive earlier versions of the patch.
+
+If the patch fixes a logged bug entry, refer to that bug entry by
+number and URL.
+
+
+3) Separate your changes.
+
+Separate _logical changes_ into a single patch file.
+
+For example, if your changes include both bug fixes and performance
+enhancements for a single driver, separate those changes into two
+or more patches. If your changes include an API update, and a new
+driver which uses that new API, separate those into two patches.
+
+On the other hand, if you make a single change to numerous files,
+group those changes into a single patch. Thus a single logical change
+is contained within a single patch.
+
+If one patch depends on another patch in order for a change to be
+complete, that is OK. Simply note "this patch depends on patch X"
+in your patch description.
+
+If you cannot condense your patch set into a smaller set of patches,
+then only post say 15 or so at a time and wait for review and integration.
+
+
+
+4) Style check your changes.
+
+Check your patch for basic style violations, details of which can be
+found in Documentation/CodingStyle. Failure to do so simply wastes
+the reviewers time and will get your patch rejected, probably
+without even being read.
+
+At a minimum you should check your patches with the patch style
+checker prior to submission (scripts/checkpatch.pl). You should
+be able to justify all violations that remain in your patch.
+
+
+
+5) Select e-mail destination.
+
+Look through the MAINTAINERS file and the source code, and determine
+if your change applies to a specific subsystem of the kernel, with
+an assigned maintainer. If so, e-mail that person. The script
+scripts/get_maintainer.pl can be very useful at this step.
+
+If no maintainer is listed, or the maintainer does not respond, send
+your patch to the primary Linux kernel developer's mailing list,
+linux-kernel@...r.kernel.org. Most kernel developers monitor this
+e-mail list, and can comment on your changes.
+
+
+Do not send more than 15 patches at once to the vger mailing lists!!!
+
+
+Linus Torvalds is the final arbiter of all changes accepted into the
+Linux kernel. His e-mail address is <torvalds@...ux-foundation.org>.
+He gets a lot of e-mail, so typically you should do your best to -avoid-
+sending him e-mail.
+
+Patches which are bug fixes, are "obvious" changes, or similarly
+require little discussion should be sent or CC'd to Linus. Patches
+which require discussion or do not have a clear advantage should
+usually be sent first to linux-kernel. Only after the patch is
+discussed should the patch then be submitted to Linus.
+
+
+
+6) Select your CC (e-mail carbon copy) list.
+
+Unless you have a reason NOT to do so, CC linux-kernel@...r.kernel.org.
+
+Other kernel developers besides Linus need to be aware of your change,
+so that they may comment on it and offer code review and suggestions.
+linux-kernel is the primary Linux kernel developer mailing list.
+Other mailing lists are available for specific subsystems, such as
+USB, framebuffer devices, the VFS, the SCSI subsystem, etc. See the
+MAINTAINERS file for a mailing list that relates specifically to
+your change.
+
+Majordomo lists of VGER.KERNEL.ORG at:
+ <http://vger.kernel.org/vger-lists.html>
+
+If changes affect userland-kernel interfaces, please send
+the MAN-PAGES maintainer (as listed in the MAINTAINERS file)
+a man-pages patch, or at least a notification of the change,
+so that some information makes its way into the manual pages.
+
+Even if the maintainer did not respond in step #5, make sure to ALWAYS
+copy the maintainer when you change their code.
+
+For small patches you may want to CC the Trivial Patch Monkey
+trivial@...nel.org which collects "trivial" patches. Have a look
+into the MAINTAINERS file for its current manager.
+Trivial patches must qualify for one of the following rules:
+ Spelling fixes in documentation
+ Spelling fixes which could break grep(1)
+ Warning fixes (cluttering with useless warnings is bad)
+ Compilation fixes (only if they are actually correct)
+ Runtime fixes (only if they actually fix things)
+ Removing use of deprecated functions/macros (eg. check_region)
+ Contact detail and documentation fixes
+ Non-portable code replaced by portable code (even in arch-specific,
+ since people copy, as long as it's trivial)
+ Any fix by the author/maintainer of the file (ie. patch monkey
+ in re-transmission mode)
+
+
+
+7) No MIME, no links, no compression, no attachments. Just plain text.
+
+Linus and other kernel developers need to be able to read and comment
+on the changes you are submitting. It is important for a kernel
+developer to be able to "quote" your changes, using standard e-mail
+tools, so that they may comment on specific portions of your code.
+
+For this reason, all patches should be submitting e-mail "inline".
+WARNING: Be wary of your editor's word-wrap corrupting your patch,
+if you choose to cut-n-paste your patch.
+
+Do not attach the patch as a MIME attachment, compressed or not.
+Many popular e-mail applications will not always transmit a MIME
+attachment as plain text, making it impossible to comment on your
+code. A MIME attachment also takes Linus a bit more time to process,
+decreasing the likelihood of your MIME-attached change being accepted.
+
+Exception: If your mailer is mangling patches then someone may ask
+you to re-send them using MIME.
+
+See Documentation/email-clients.txt for hints about configuring
+your e-mail client so that it sends your patches untouched.
+
+8) E-mail size.
+
+When sending patches to Linus, always follow step #7.
+
+Large changes are not appropriate for mailing lists, and some
+maintainers. If your patch, uncompressed, exceeds 300 kB in size,
+it is preferred that you store your patch on an Internet-accessible
+server, and provide instead a URL (link) pointing to your patch.
+
+
+
+9) Name your kernel version.
+
+It is important to note, either in the subject line or in the patch
+description, the kernel version to which this patch applies.
+
+If the patch does not apply cleanly to the latest kernel version,
+Linus will not apply it.
+
+
+
+10) Don't get discouraged. Re-submit.
+
+After you have submitted your change, be patient and wait. If Linus
+likes your change and applies it, it will appear in the next version
+of the kernel that he releases.
+
+However, if your change doesn't appear in the next version of the
+kernel, there could be any number of reasons. It's YOUR job to
+narrow down those reasons, correct what was wrong, and submit your
+updated change.
+
+It is quite common for Linus to "drop" your patch without comment.
+That's the nature of the system. If he drops your patch, it could be
+due to
+* Your patch did not apply cleanly to the latest kernel version.
+* Your patch was not sufficiently discussed on linux-kernel.
+* A style issue (see section 2).
+* An e-mail formatting issue (re-read this section).
+* A technical problem with your change.
+* He gets tons of e-mail, and yours got lost in the shuffle.
+* You are being annoying.
+
+When in doubt, solicit comments on linux-kernel mailing list.
+
+
+
+11) Include PATCH in the subject
+
+Due to high e-mail traffic to Linus, and to linux-kernel, it is common
+convention to prefix your subject line with [PATCH]. This lets Linus
+and other kernel developers more easily distinguish patches from other
+e-mail discussions.
+
+
+
+12) Sign your work
+
+To improve tracking of who did what, especially with patches that can
+percolate to their final resting place in the kernel through several
+layers of maintainers, we've introduced a "sign-off" procedure on
+patches that are being emailed around.
+
+The sign-off is a simple line at the end of the explanation for the
+patch, which certifies that you wrote it or otherwise have the right to
+pass it on as an open-source patch. The rules are pretty simple: if you
+can certify the below:
+
+ Developer's Certificate of Origin 1.1
+
+ By making a contribution to this project, I certify that:
+
+ (a) The contribution was created in whole or in part by me and I
+ have the right to submit it under the open source license
+ indicated in the file; or
+
+ (b) The contribution is based upon previous work that, to the best
+ of my knowledge, is covered under an appropriate open source
+ license and I have the right under that license to submit that
+ work with modifications, whether created in whole or in part
+ by me, under the same open source license (unless I am
+ permitted to submit under a different license), as indicated
+ in the file; or
+
+ (c) The contribution was provided directly to me by some other
+ person who certified (a), (b) or (c) and I have not modified
+ it.
+
+ (d) I understand and agree that this project and the contribution
+ are public and that a record of the contribution (including all
+ personal information I submit with it, including my sign-off) is
+ maintained indefinitely and may be redistributed consistent with
+ this project or the open source license(s) involved.
+
+then you just add a line saying
+
+ Signed-off-by: Random J Developer <random@...eloper.example.org>
+
+using your real name (sorry, no pseudonyms or anonymous contributions.)
+
+Some people also put extra tags at the end. They'll just be ignored for
+now, but you can do this to mark internal company procedures or just
+point out some special detail about the sign-off.
+
+If you are a subsystem or branch maintainer, sometimes you need to slightly
+modify patches you receive in order to merge them, because the code is not
+exactly the same in your tree and the submitters'. If you stick strictly to
+rule (c), you should ask the submitter to rediff, but this is a totally
+counter-productive waste of time and energy. Rule (b) allows you to adjust
+the code, but then it is very impolite to change one submitter's code and
+make him endorse your bugs. To solve this problem, it is recommended that
+you add a line between the last Signed-off-by header and yours, indicating
+the nature of your changes. While there is nothing mandatory about this, it
+seems like prepending the description with your mail and/or name, all
+enclosed in square brackets, is noticeable enough to make it obvious that
+you are responsible for last-minute changes. Example :
+
+ Signed-off-by: Random J Developer <random@...eloper.example.org>
+ [lucky@...ntainer.example.org: struct foo moved from foo.c to foo.h]
+ Signed-off-by: Lucky K Maintainer <lucky@...ntainer.example.org>
+
+This practise is particularly helpful if you maintain a stable branch and
+want at the same time to credit the author, track changes, merge the fix,
+and protect the submitter from complaints. Note that under no circumstances
+can you change the author's identity (the From header), as it is the one
+which appears in the changelog.
+
+Special note to back-porters: It seems to be a common and useful practise
+to insert an indication of the origin of a patch at the top of the commit
+message (just after the subject line) to facilitate tracking. For instance,
+here's what we see in 2.6-stable :
+
+ Date: Tue May 13 19:10:30 2008 +0000
+
+ SCSI: libiscsi regression in 2.6.25: fix nop timer handling
+
+ commit 4cf1043593db6a337f10e006c23c69e5fc93e722 upstream
+
+And here's what appears in 2.4 :
+
+ Date: Tue May 13 22:12:27 2008 +0200
+
+ wireless, airo: waitbusy() won't delay
+
+ [backport of 2.6 commit b7acbdfbd1f277c1eb23f344f899cfa4cd0bf36a]
+
+Whatever the format, this information provides a valuable help to people
+tracking your trees, and to people trying to trouble-shoot bugs in your
+tree.
+
+
+13) When to use Acked-by: and Cc:
+
+The Signed-off-by: tag indicates that the signer was involved in the
+development of the patch, or that he/she was in the patch's delivery path.
+
+If a person was not directly involved in the preparation or handling of a
+patch but wishes to signify and record their approval of it then they can
+arrange to have an Acked-by: line added to the patch's changelog.
+
+Acked-by: is often used by the maintainer of the affected code when that
+maintainer neither contributed to nor forwarded the patch.
+
+Acked-by: is not as formal as Signed-off-by:. It is a record that the acker
+has at least reviewed the patch and has indicated acceptance. Hence patch
+mergers will sometimes manually convert an acker's "yep, looks good to me"
+into an Acked-by:.
+
+Acked-by: does not necessarily indicate acknowledgement of the entire patch.
+For example, if a patch affects multiple subsystems and has an Acked-by: from
+one subsystem maintainer then this usually indicates acknowledgement of just
+the part which affects that maintainer's code. Judgement should be used here.
+When in doubt people should refer to the original discussion in the mailing
+list archives.
+
+If a person has had the opportunity to comment on a patch, but has not
+provided such comments, you may optionally add a "Cc:" tag to the patch.
+This is the only tag which might be added without an explicit action by the
+person it names. This tag documents that potentially interested parties
+have been included in the discussion
+
+
+14) Using Reported-by:, Tested-by:, Reviewed-by: and Suggested-by:
+
+If this patch fixes a problem reported by somebody else, consider adding a
+Reported-by: tag to credit the reporter for their contribution. Please
+note that this tag should not be added without the reporter's permission,
+especially if the problem was not reported in a public forum. That said,
+if we diligently credit our bug reporters, they will, hopefully, be
+inspired to help us again in the future.
+
+A Tested-by: tag indicates that the patch has been successfully tested (in
+some environment) by the person named. This tag informs maintainers that
+some testing has been performed, provides a means to locate testers for
+future patches, and ensures credit for the testers.
+
+Reviewed-by:, instead, indicates that the patch has been reviewed and found
+acceptable according to the Reviewer's Statement:
+
+ Reviewer's statement of oversight
+
+ By offering my Reviewed-by: tag, I state that:
+
+ (a) I have carried out a technical review of this patch to
+ evaluate its appropriateness and readiness for inclusion into
+ the mainline kernel.
+
+ (b) Any problems, concerns, or questions relating to the patch
+ have been communicated back to the submitter. I am satisfied
+ with the submitter's response to my comments.
+
+ (c) While there may be things that could be improved with this
+ submission, I believe that it is, at this time, (1) a
+ worthwhile modification to the kernel, and (2) free of known
+ issues which would argue against its inclusion.
+
+ (d) While I have reviewed the patch and believe it to be sound, I
+ do not (unless explicitly stated elsewhere) make any
+ warranties or guarantees that it will achieve its stated
+ purpose or function properly in any given situation.
+
+A Reviewed-by tag is a statement of opinion that the patch is an
+appropriate modification of the kernel without any remaining serious
+technical issues. Any interested reviewer (who has done the work) can
+offer a Reviewed-by tag for a patch. This tag serves to give credit to
+reviewers and to inform maintainers of the degree of review which has been
+done on the patch. Reviewed-by: tags, when supplied by reviewers known to
+understand the subject area and to perform thorough reviews, will normally
+increase the likelihood of your patch getting into the kernel.
+
+A Suggested-by: tag indicates that the patch idea is suggested by the person
+named and ensures credit to the person for the idea. Please note that this
+tag should not be added without the reporter's permission, especially if the
+idea was not posted in a public forum. That said, if we diligently credit our
+idea reporters, they will, hopefully, be inspired to help us again in the
+future.
+
+
+15) The canonical patch format
+
+The canonical patch subject line is:
+
+ Subject: [PATCH 001/123] subsystem: summary phrase
+
+The canonical patch message body contains the following:
+
+ - A "from" line specifying the patch author.
+
+ - An empty line.
+
+ - The body of the explanation, which will be copied to the
+ permanent changelog to describe this patch.
+
+ - The "Signed-off-by:" lines, described above, which will
+ also go in the changelog.
+
+ - A marker line containing simply "---".
+
+ - Any additional comments not suitable for the changelog.
+
+ - The actual patch (diff output).
+
+The Subject line format makes it very easy to sort the emails
+alphabetically by subject line - pretty much any email reader will
+support that - since because the sequence number is zero-padded,
+the numerical and alphabetic sort is the same.
+
+The "subsystem" in the email's Subject should identify which
+area or subsystem of the kernel is being patched.
+
+The "summary phrase" in the email's Subject should concisely
+describe the patch which that email contains. The "summary
+phrase" should not be a filename. Do not use the same "summary
+phrase" for every patch in a whole patch series (where a "patch
+series" is an ordered sequence of multiple, related patches).
+
+Bear in mind that the "summary phrase" of your email becomes a
+globally-unique identifier for that patch. It propagates all the way
+into the git changelog. The "summary phrase" may later be used in
+developer discussions which refer to the patch. People will want to
+google for the "summary phrase" to read discussion regarding that
+patch. It will also be the only thing that people may quickly see
+when, two or three months later, they are going through perhaps
+thousands of patches using tools such as "gitk" or "git log
+--oneline".
+
+For these reasons, the "summary" must be no more than 70-75
+characters, and it must describe both what the patch changes, as well
+as why the patch might be necessary. It is challenging to be both
+succinct and descriptive, but that is what a well-written summary
+should do.
+
+The "summary phrase" may be prefixed by tags enclosed in square
+brackets: "Subject: [PATCH tag] <summary phrase>". The tags are not
+considered part of the summary phrase, but describe how the patch
+should be treated. Common tags might include a version descriptor if
+the multiple versions of the patch have been sent out in response to
+comments (i.e., "v1, v2, v3"), or "RFC" to indicate a request for
+comments. If there are four patches in a patch series the individual
+patches may be numbered like this: 1/4, 2/4, 3/4, 4/4. This assures
+that developers understand the order in which the patches should be
+applied and that they have reviewed or applied all of the patches in
+the patch series.
+
+A couple of example Subjects:
+
+ Subject: [patch 2/5] ext2: improve scalability of bitmap searching
+ Subject: [PATCHv2 001/207] x86: fix eflags tracking
+
+The "from" line must be the very first line in the message body,
+and has the form:
+
+ From: Original Author <author@...mple.com>
+
+The "from" line specifies who will be credited as the author of the
+patch in the permanent changelog. If the "from" line is missing,
+then the "From:" line from the email header will be used to determine
+the patch author in the changelog.
+
+The explanation body will be committed to the permanent source
+changelog, so should make sense to a competent reader who has long
+since forgotten the immediate details of the discussion that might
+have led to this patch. Including symptoms of the failure which the
+patch addresses (kernel log messages, oops messages, etc.) is
+especially useful for people who might be searching the commit logs
+looking for the applicable patch. If a patch fixes a compile failure,
+it may not be necessary to include _all_ of the compile failures; just
+enough that it is likely that someone searching for the patch can find
+it. As in the "summary phrase", it is important to be both succinct as
+well as descriptive.
+
+The "---" marker line serves the essential purpose of marking for patch
+handling tools where the changelog message ends.
+
+One good use for the additional comments after the "---" marker is for
+a diffstat, to show what files have changed, and the number of
+inserted and deleted lines per file. A diffstat is especially useful
+on bigger patches. Other comments relevant only to the moment or the
+maintainer, not suitable for the permanent changelog, should also go
+here. A good example of such comments might be "patch changelogs"
+which describe what has changed between the v1 and v2 version of the
+patch.
+
+If you are going to include a diffstat after the "---" marker, please
+use diffstat options "-p 1 -w 70" so that filenames are listed from
+the top of the kernel source tree and don't use too much horizontal
+space (easily fit in 80 columns, maybe with some indentation).
+
+See more details on the proper patch format in the following
+references.
+
+
+16) Sending "git pull" requests (from Linus emails)
+
+Please write the git repo address and branch name alone on the same line
+so that I can't even by mistake pull from the wrong branch, and so
+that a triple-click just selects the whole thing.
+
+So the proper format is something along the lines of:
+
+ "Please pull from
+
+ git://jdelvare.pck.nerim.net/jdelvare-2.6 i2c-for-linus
+
+ to get these changes:"
+
+so that I don't have to hunt-and-peck for the address and inevitably
+get it wrong (actually, I've only gotten it wrong a few times, and
+checking against the diffstat tells me when I get it wrong, but I'm
+just a lot more comfortable when I don't have to "look for" the right
+thing to pull, and double-check that I have the right branch-name).
+
+
+Please use "git diff -M --stat --summary" to generate the diffstat:
+the -M enables rename detection, and the summary enables a summary of
+new/deleted or renamed files.
+
+With rename detection, the statistics are rather different [...]
+because git will notice that a fair number of the changes are renames.
+
+-----------------------------------
+SECTION 2 - HINTS, TIPS, AND TRICKS
+-----------------------------------
+
+This section lists many of the common "rules" associated with code
+submitted to the kernel. There are always exceptions... but you must
+have a really good reason for doing so. You could probably call this
+section Linus Computer Science 101.
+
+
+
+1) Read Documentation/CodingStyle
+
+Nuff said. If your code deviates too much from this, it is likely
+to be rejected without further review, and without comment.
+
+One significant exception is when moving code from one file to
+another -- in this case you should not modify the moved code at all in
+the same patch which moves it. This clearly delineates the act of
+moving the code and your changes. This greatly aids review of the
+actual differences and allows tools to better track the history of
+the code itself.
+
+Check your patches with the patch style checker prior to submission
+(scripts/checkpatch.pl). The style checker should be viewed as
+a guide not as the final word. If your code looks better with
+a violation then its probably best left alone.
+
+The checker reports at three levels:
+ - ERROR: things that are very likely to be wrong
+ - WARNING: things requiring careful review
+ - CHECK: things requiring thought
+
+You should be able to justify all violations that remain in your
+patch.
+
+
+
+2) #ifdefs are ugly
+
+Code cluttered with ifdefs is difficult to read and maintain. Don't do
+it. Instead, put your ifdefs in a header, and conditionally define
+'static inline' functions, or macros, which are used in the code.
+Let the compiler optimize away the "no-op" case.
+
+Simple example, of poor code:
+
+ dev = alloc_etherdev (sizeof(struct funky_private));
+ if (!dev)
+ return -ENODEV;
+ #ifdef CONFIG_NET_FUNKINESS
+ init_funky_net(dev);
+ #endif
+
+Cleaned-up example:
+
+(in header)
+ #ifndef CONFIG_NET_FUNKINESS
+ static inline void init_funky_net (struct net_device *d) {}
+ #endif
+
+(in the code itself)
+ dev = alloc_etherdev (sizeof(struct funky_private));
+ if (!dev)
+ return -ENODEV;
+ init_funky_net(dev);
+
+
+
+3) 'static inline' is better than a macro
+
+Static inline functions are greatly preferred over macros.
+They provide type safety, have no length limitations, no formatting
+limitations, and under gcc they are as cheap as macros.
+
+Macros should only be used for cases where a static inline is clearly
+suboptimal [there are a few, isolated cases of this in fast paths],
+or where it is impossible to use a static inline function [such as
+string-izing].
+
+'static inline' is preferred over 'static __inline__', 'extern inline',
+and 'extern __inline__'.
+
+
+
+4) Don't over-design.
+
+Don't try to anticipate nebulous future cases which may or may not
+be useful: "Make it as simple as you can, and no simpler."
+
+
+
+----------------------
+SECTION 3 - REFERENCES
+----------------------
+
+Andrew Morton, "The perfect patch" (tpp).
+ Documentation/development-process/patches/The-Perfect-Patch.txt
+
+Jeff Garzik, "Linux kernel patch submission format".
+ Documentation/development-process/patches/Patch-Submission-Format.txt
+
+Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
+ <http://www.kroah.com/log/linux/maintainer.html>
+ <http://www.kroah.com/log/linux/maintainer-02.html>
+ <http://www.kroah.com/log/linux/maintainer-03.html>
+ <http://www.kroah.com/log/linux/maintainer-04.html>
+ <http://www.kroah.com/log/linux/maintainer-05.html>
+
+NO!!!! No more huge patch bombs to linux-kernel@...r.kernel.org people!
+ <http://marc.theaimsgroup.com/?l=linux-kernel&m=112112749912944&w=2>
+
+Kernel Documentation/CodingStyle:
+ <http://users.sosdg.org/~qiyong/lxr/source/Documentation/CodingStyle>
+
+Linus Torvalds's mail on the canonical patch format:
+ <http://lkml.org/lkml/2005/4/7/183>
+
+Andi Kleen, "On submitting kernel patches"
+ Some strategies to get difficult or controversial changes in.
+ http://halobates.de/on-submitting-patches.pdf
+
+--
diff --git a/Documentation/development-process/patches/applying-patches.txt b/Documentation/development-process/patches/applying-patches.txt
new file mode 100644
index 0000000..a083ba3
--- /dev/null
+++ b/Documentation/development-process/patches/applying-patches.txt
@@ -0,0 +1,454 @@
+
+ Applying Patches To The Linux Kernel
+ ------------------------------------
+
+ Original by: Jesper Juhl, August 2005
+ Last update: 2006-01-05
+
+
+A frequently asked question on the Linux Kernel Mailing List is how to apply
+a patch to the kernel or, more specifically, what base kernel a patch for
+one of the many trees/branches should be applied to. Hopefully this document
+will explain this to you.
+
+In addition to explaining how to apply and revert patches, a brief
+description of the different kernel trees (and examples of how to apply
+their specific patches) is also provided.
+
+
+What is a patch?
+---
+ A patch is a small text document containing a delta of changes between two
+different versions of a source tree. Patches are created with the `diff'
+program.
+To correctly apply a patch you need to know what base it was generated from
+and what new version the patch will change the source tree into. These
+should both be present in the patch file metadata or be possible to deduce
+from the filename.
+
+
+How do I apply or revert a patch?
+---
+ You apply a patch with the `patch' program. The patch program reads a diff
+(or patch) file and makes the changes to the source tree described in it.
+
+Patches for the Linux kernel are generated relative to the parent directory
+holding the kernel source dir.
+
+This means that paths to files inside the patch file contain the name of the
+kernel source directories it was generated against (or some other directory
+names like "a/" and "b/").
+Since this is unlikely to match the name of the kernel source dir on your
+local machine (but is often useful info to see what version an otherwise
+unlabeled patch was generated against) you should change into your kernel
+source directory and then strip the first element of the path from filenames
+in the patch file when applying it (the -p1 argument to `patch' does this).
+
+To revert a previously applied patch, use the -R argument to patch.
+So, if you applied a patch like this:
+ patch -p1 < ../patch-x.y.z
+
+You can revert (undo) it like this:
+ patch -R -p1 < ../patch-x.y.z
+
+
+How do I feed a patch/diff file to `patch'?
+---
+ This (as usual with Linux and other UNIX like operating systems) can be
+done in several different ways.
+In all the examples below I feed the file (in uncompressed form) to patch
+via stdin using the following syntax:
+ patch -p1 < path/to/patch-x.y.z
+
+If you just want to be able to follow the examples below and don't want to
+know of more than one way to use patch, then you can stop reading this
+section here.
+
+Patch can also get the name of the file to use via the -i argument, like
+this:
+ patch -p1 -i path/to/patch-x.y.z
+
+If your patch file is compressed with gzip or bzip2 and you don't want to
+uncompress it before applying it, then you can feed it to patch like this
+instead:
+ zcat path/to/patch-x.y.z.gz | patch -p1
+ bzcat path/to/patch-x.y.z.bz2 | patch -p1
+
+If you wish to uncompress the patch file by hand first before applying it
+(what I assume you've done in the examples below), then you simply run
+gunzip or bunzip2 on the file -- like this:
+ gunzip patch-x.y.z.gz
+ bunzip2 patch-x.y.z.bz2
+
+Which will leave you with a plain text patch-x.y.z file that you can feed to
+patch via stdin or the -i argument, as you prefer.
+
+A few other nice arguments for patch are -s which causes patch to be silent
+except for errors which is nice to prevent errors from scrolling out of the
+screen too fast, and --dry-run which causes patch to just print a listing of
+what would happen, but doesn't actually make any changes. Finally --verbose
+tells patch to print more information about the work being done.
+
+
+Common errors when patching
+---
+ When patch applies a patch file it attempts to verify the sanity of the
+file in different ways.
+Checking that the file looks like a valid patch file & checking the code
+around the bits being modified matches the context provided in the patch are
+just two of the basic sanity checks patch does.
+
+If patch encounters something that doesn't look quite right it has two
+options. It can either refuse to apply the changes and abort or it can try
+to find a way to make the patch apply with a few minor changes.
+
+One example of something that's not 'quite right' that patch will attempt to
+fix up is if all the context matches, the lines being changed match, but the
+line numbers are different. This can happen, for example, if the patch makes
+a change in the middle of the file but for some reasons a few lines have
+been added or removed near the beginning of the file. In that case
+everything looks good it has just moved up or down a bit, and patch will
+usually adjust the line numbers and apply the patch.
+
+Whenever patch applies a patch that it had to modify a bit to make it fit
+it'll tell you about it by saying the patch applied with 'fuzz'.
+You should be wary of such changes since even though patch probably got it
+right it doesn't /always/ get it right, and the result will sometimes be
+wrong.
+
+When patch encounters a change that it can't fix up with fuzz it rejects it
+outright and leaves a file with a .rej extension (a reject file). You can
+read this file to see exactly what change couldn't be applied, so you can
+go fix it up by hand if you wish.
+
+If you don't have any third-party patches applied to your kernel source, but
+only patches from kernel.org and you apply the patches in the correct order,
+and have made no modifications yourself to the source files, then you should
+never see a fuzz or reject message from patch. If you do see such messages
+anyway, then there's a high risk that either your local source tree or the
+patch file is corrupted in some way. In that case you should probably try
+re-downloading the patch and if things are still not OK then you'd be advised
+to start with a fresh tree downloaded in full from kernel.org.
+
+Let's look a bit more at some of the messages patch can produce.
+
+If patch stops and presents a "File to patch:" prompt, then patch could not
+find a file to be patched. Most likely you forgot to specify -p1 or you are
+in the wrong directory. Less often, you'll find patches that need to be
+applied with -p0 instead of -p1 (reading the patch file should reveal if
+this is the case -- if so, then this is an error by the person who created
+the patch but is not fatal).
+
+If you get "Hunk #2 succeeded at 1887 with fuzz 2 (offset 7 lines)." or a
+message similar to that, then it means that patch had to adjust the location
+of the change (in this example it needed to move 7 lines from where it
+expected to make the change to make it fit).
+The resulting file may or may not be OK, depending on the reason the file
+was different than expected.
+This often happens if you try to apply a patch that was generated against a
+different kernel version than the one you are trying to patch.
+
+If you get a message like "Hunk #3 FAILED at 2387.", then it means that the
+patch could not be applied correctly and the patch program was unable to
+fuzz its way through. This will generate a .rej file with the change that
+caused the patch to fail and also a .orig file showing you the original
+content that couldn't be changed.
+
+If you get "Reversed (or previously applied) patch detected! Assume -R? [n]"
+then patch detected that the change contained in the patch seems to have
+already been made.
+If you actually did apply this patch previously and you just re-applied it
+in error, then just say [n]o and abort this patch. If you applied this patch
+previously and actually intended to revert it, but forgot to specify -R,
+then you can say [y]es here to make patch revert it for you.
+This can also happen if the creator of the patch reversed the source and
+destination directories when creating the patch, and in that case reverting
+the patch will in fact apply it.
+
+A message similar to "patch: **** unexpected end of file in patch" or "patch
+unexpectedly ends in middle of line" means that patch could make no sense of
+the file you fed to it. Either your download is broken, you tried to feed
+patch a compressed patch file without uncompressing it first, or the patch
+file that you are using has been mangled by a mail client or mail transfer
+agent along the way somewhere, e.g., by splitting a long line into two lines.
+Often these warnings can easily be fixed by joining (concatenating) the
+two lines that had been split.
+
+As I already mentioned above, these errors should never happen if you apply
+a patch from kernel.org to the correct version of an unmodified source tree.
+So if you get these errors with kernel.org patches then you should probably
+assume that either your patch file or your tree is broken and I'd advise you
+to start over with a fresh download of a full kernel tree and the patch you
+wish to apply.
+
+
+Are there any alternatives to `patch'?
+---
+ Yes there are alternatives.
+
+ You can use the `interdiff' program (http://cyberelk.net/tim/patchutils/) to
+generate a patch representing the differences between two patches and then
+apply the result.
+This will let you move from something like 2.6.12.2 to 2.6.12.3 in a single
+step. The -z flag to interdiff will even let you feed it patches in gzip or
+bzip2 compressed form directly without the use of zcat or bzcat or manual
+decompression.
+
+Here's how you'd go from 2.6.12.2 to 2.6.12.3 in a single step:
+ interdiff -z ../patch-2.6.12.2.bz2 ../patch-2.6.12.3.gz | patch -p1
+
+Although interdiff may save you a step or two you are generally advised to
+do the additional steps since interdiff can get things wrong in some cases.
+
+ Another alternative is `ketchup', which is a python script for automatic
+downloading and applying of patches (http://www.selenic.com/ketchup/).
+
+ Other nice tools are diffstat, which shows a summary of changes made by a
+patch; lsdiff, which displays a short listing of affected files in a patch
+file, along with (optionally) the line numbers of the start of each patch;
+and grepdiff, which displays a list of the files modified by a patch where
+the patch contains a given regular expression.
+
+
+Where can I download the patches?
+---
+ The patches are available at http://kernel.org/
+Most recent patches are linked from the front page, but they also have
+specific homes.
+
+The 2.6.x.y (-stable) and 2.6.x patches live at
+ ftp://ftp.kernel.org/pub/linux/kernel/v2.6/
+
+The -rc patches live at
+ ftp://ftp.kernel.org/pub/linux/kernel/v2.6/testing/
+
+The -git patches live at
+ ftp://ftp.kernel.org/pub/linux/kernel/v2.6/snapshots/
+
+The -mm kernels live at
+ ftp://ftp.kernel.org/pub/linux/kernel/people/akpm/patches/2.6/
+
+In place of ftp.kernel.org you can use ftp.cc.kernel.org, where cc is a
+country code. This way you'll be downloading from a mirror site that's most
+likely geographically closer to you, resulting in faster downloads for you,
+less bandwidth used globally and less load on the main kernel.org servers --
+these are good things, so do use mirrors when possible.
+
+
+The 2.6.x kernels
+---
+ These are the base stable releases released by Linus. The highest numbered
+release is the most recent.
+
+If regressions or other serious flaws are found, then a -stable fix patch
+will be released (see below) on top of this base. Once a new 2.6.x base
+kernel is released, a patch is made available that is a delta between the
+previous 2.6.x kernel and the new one.
+
+To apply a patch moving from 2.6.11 to 2.6.12, you'd do the following (note
+that such patches do *NOT* apply on top of 2.6.x.y kernels but on top of the
+base 2.6.x kernel -- if you need to move from 2.6.x.y to 2.6.x+1 you need to
+first revert the 2.6.x.y patch).
+
+Here are some examples:
+
+# moving from 2.6.11 to 2.6.12
+$ cd ~/linux-2.6.11 # change to kernel source dir
+$ patch -p1 < ../patch-2.6.12 # apply the 2.6.12 patch
+$ cd ..
+$ mv linux-2.6.11 linux-2.6.12 # rename source dir
+
+# moving from 2.6.11.1 to 2.6.12
+$ cd ~/linux-2.6.11.1 # change to kernel source dir
+$ patch -p1 -R < ../patch-2.6.11.1 # revert the 2.6.11.1 patch
+ # source dir is now 2.6.11
+$ patch -p1 < ../patch-2.6.12 # apply new 2.6.12 patch
+$ cd ..
+$ mv linux-2.6.11.1 linux-2.6.12 # rename source dir
+
+
+The 2.6.x.y kernels
+---
+ Kernels with 4-digit versions are -stable kernels. They contain small(ish)
+critical fixes for security problems or significant regressions discovered
+in a given 2.6.x kernel.
+
+This is the recommended branch for users who want the most recent stable
+kernel and are not interested in helping test development/experimental
+versions.
+
+If no 2.6.x.y kernel is available, then the highest numbered 2.6.x kernel is
+the current stable kernel.
+
+ note: the -stable team usually do make incremental patches available as well
+ as patches against the latest mainline release, but I only cover the
+ non-incremental ones below. The incremental ones can be found at
+ ftp://ftp.kernel.org/pub/linux/kernel/v2.6/incr/
+
+These patches are not incremental, meaning that for example the 2.6.12.3
+patch does not apply on top of the 2.6.12.2 kernel source, but rather on top
+of the base 2.6.12 kernel source .
+So, in order to apply the 2.6.12.3 patch to your existing 2.6.12.2 kernel
+source you have to first back out the 2.6.12.2 patch (so you are left with a
+base 2.6.12 kernel source) and then apply the new 2.6.12.3 patch.
+
+Here's a small example:
+
+$ cd ~/linux-2.6.12.2 # change into the kernel source dir
+$ patch -p1 -R < ../patch-2.6.12.2 # revert the 2.6.12.2 patch
+$ patch -p1 < ../patch-2.6.12.3 # apply the new 2.6.12.3 patch
+$ cd ..
+$ mv linux-2.6.12.2 linux-2.6.12.3 # rename the kernel source dir
+
+
+The -rc kernels
+---
+ These are release-candidate kernels. These are development kernels released
+by Linus whenever he deems the current git (the kernel's source management
+tool) tree to be in a reasonably sane state adequate for testing.
+
+These kernels are not stable and you should expect occasional breakage if
+you intend to run them. This is however the most stable of the main
+development branches and is also what will eventually turn into the next
+stable kernel, so it is important that it be tested by as many people as
+possible.
+
+This is a good branch to run for people who want to help out testing
+development kernels but do not want to run some of the really experimental
+stuff (such people should see the sections about -git and -mm kernels below).
+
+The -rc patches are not incremental, they apply to a base 2.6.x kernel, just
+like the 2.6.x.y patches described above. The kernel version before the -rcN
+suffix denotes the version of the kernel that this -rc kernel will eventually
+turn into.
+So, 2.6.13-rc5 means that this is the fifth release candidate for the 2.6.13
+kernel and the patch should be applied on top of the 2.6.12 kernel source.
+
+Here are 3 examples of how to apply these patches:
+
+# first an example of moving from 2.6.12 to 2.6.13-rc3
+$ cd ~/linux-2.6.12 # change into the 2.6.12 source dir
+$ patch -p1 < ../patch-2.6.13-rc3 # apply the 2.6.13-rc3 patch
+$ cd ..
+$ mv linux-2.6.12 linux-2.6.13-rc3 # rename the source dir
+
+# now let's move from 2.6.13-rc3 to 2.6.13-rc5
+$ cd ~/linux-2.6.13-rc3 # change into the 2.6.13-rc3 dir
+$ patch -p1 -R < ../patch-2.6.13-rc3 # revert the 2.6.13-rc3 patch
+$ patch -p1 < ../patch-2.6.13-rc5 # apply the new 2.6.13-rc5 patch
+$ cd ..
+$ mv linux-2.6.13-rc3 linux-2.6.13-rc5 # rename the source dir
+
+# finally let's try and move from 2.6.12.3 to 2.6.13-rc5
+$ cd ~/linux-2.6.12.3 # change to the kernel source dir
+$ patch -p1 -R < ../patch-2.6.12.3 # revert the 2.6.12.3 patch
+$ patch -p1 < ../patch-2.6.13-rc5 # apply new 2.6.13-rc5 patch
+$ cd ..
+$ mv linux-2.6.12.3 linux-2.6.13-rc5 # rename the kernel source dir
+
+
+The -git kernels
+---
+ These are daily snapshots of Linus' kernel tree (managed in a git
+repository, hence the name).
+
+These patches are usually released daily and represent the current state of
+Linus's tree. They are more experimental than -rc kernels since they are
+generated automatically without even a cursory glance to see if they are
+sane.
+
+-git patches are not incremental and apply either to a base 2.6.x kernel or
+a base 2.6.x-rc kernel -- you can see which from their name.
+A patch named 2.6.12-git1 applies to the 2.6.12 kernel source and a patch
+named 2.6.13-rc3-git2 applies to the source of the 2.6.13-rc3 kernel.
+
+Here are some examples of how to apply these patches:
+
+# moving from 2.6.12 to 2.6.12-git1
+$ cd ~/linux-2.6.12 # change to the kernel source dir
+$ patch -p1 < ../patch-2.6.12-git1 # apply the 2.6.12-git1 patch
+$ cd ..
+$ mv linux-2.6.12 linux-2.6.12-git1 # rename the kernel source dir
+
+# moving from 2.6.12-git1 to 2.6.13-rc2-git3
+$ cd ~/linux-2.6.12-git1 # change to the kernel source dir
+$ patch -p1 -R < ../patch-2.6.12-git1 # revert the 2.6.12-git1 patch
+ # we now have a 2.6.12 kernel
+$ patch -p1 < ../patch-2.6.13-rc2 # apply the 2.6.13-rc2 patch
+ # the kernel is now 2.6.13-rc2
+$ patch -p1 < ../patch-2.6.13-rc2-git3 # apply the 2.6.13-rc2-git3 patch
+ # the kernel is now 2.6.13-rc2-git3
+$ cd ..
+$ mv linux-2.6.12-git1 linux-2.6.13-rc2-git3 # rename source dir
+
+
+The -mm kernels
+---
+ These are experimental kernels released by Andrew Morton.
+
+The -mm tree serves as a sort of proving ground for new features and other
+experimental patches.
+Once a patch has proved its worth in -mm for a while Andrew pushes it on to
+Linus for inclusion in mainline.
+
+Although it's encouraged that patches flow to Linus via the -mm tree, this
+is not always enforced.
+Subsystem maintainers (or individuals) sometimes push their patches directly
+to Linus, even though (or after) they have been merged and tested in -mm (or
+sometimes even without prior testing in -mm).
+
+You should generally strive to get your patches into mainline via -mm to
+ensure maximum testing.
+
+This branch is in constant flux and contains many experimental features, a
+lot of debugging patches not appropriate for mainline etc., and is the most
+experimental of the branches described in this document.
+
+These kernels are not appropriate for use on systems that are supposed to be
+stable and they are more risky to run than any of the other branches (make
+sure you have up-to-date backups -- that goes for any experimental kernel but
+even more so for -mm kernels).
+
+These kernels in addition to all the other experimental patches they contain
+usually also contain any changes in the mainline -git kernels available at
+the time of release.
+
+Testing of -mm kernels is greatly appreciated since the whole point of the
+tree is to weed out regressions, crashes, data corruption bugs, build
+breakage (and any other bug in general) before changes are merged into the
+more stable mainline Linus tree.
+But testers of -mm should be aware that breakage in this tree is more common
+than in any other tree.
+
+The -mm kernels are not released on a fixed schedule, but usually a few -mm
+kernels are released in between each -rc kernel (1 to 3 is common).
+The -mm kernels apply to either a base 2.6.x kernel (when no -rc kernels
+have been released yet) or to a Linus -rc kernel.
+
+Here are some examples of applying the -mm patches:
+
+# moving from 2.6.12 to 2.6.12-mm1
+$ cd ~/linux-2.6.12 # change to the 2.6.12 source dir
+$ patch -p1 < ../2.6.12-mm1 # apply the 2.6.12-mm1 patch
+$ cd ..
+$ mv linux-2.6.12 linux-2.6.12-mm1 # rename the source appropriately
+
+# moving from 2.6.12-mm1 to 2.6.13-rc3-mm3
+$ cd ~/linux-2.6.12-mm1
+$ patch -p1 -R < ../2.6.12-mm1 # revert the 2.6.12-mm1 patch
+ # we now have a 2.6.12 source
+$ patch -p1 < ../patch-2.6.13-rc3 # apply the 2.6.13-rc3 patch
+ # we now have a 2.6.13-rc3 source
+$ patch -p1 < ../2.6.13-rc3-mm3 # apply the 2.6.13-rc3-mm3 patch
+$ cd ..
+$ mv linux-2.6.12-mm1 linux-2.6.13-rc3-mm3 # rename the source dir
+
+
+This concludes this list of explanations of the various kernel trees.
+I hope you are now clear on how to apply the various patches and help testing
+the kernel.
+
+Thank you's to Randy Dunlap, Rolf Eike Beer, Linus Torvalds, Bodo Eggert,
+Johannes Stezenbach, Grant Coady, Pavel Machek and others that I may have
+forgotten for their reviews and contributions to this document.
+
--
1.8.1.2
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists