[<prev] [next>] [<thread-prev] [day] [month] [year] [list]
Message-ID: <20131204004759.GA15111@linux.vnet.ibm.com>
Date: Tue, 3 Dec 2013 16:47:59 -0800
From: "Paul E. McKenney" <paulmck@...ux.vnet.ibm.com>
To: Peter Zijlstra <peterz@...radead.org>
Cc: linux-kernel@...r.kernel.org, mingo@...nel.org,
laijs@...fujitsu.com, dipankar@...ibm.com,
akpm@...ux-foundation.org, mathieu.desnoyers@...icios.com,
josh@...htriplett.org, niv@...ibm.com, tglx@...utronix.de,
rostedt@...dmis.org, dhowells@...hat.com, edumazet@...gle.com,
darren@...art.com, fweisbec@...il.com, sbw@....edu
Subject: Re: [PATCH v2 RFC 1/3] documentation: Add needed ACCESS_ONCE() calls
to memory-barriers.txt
On Sat, Nov 23, 2013 at 09:17:19AM -0800, Paul E. McKenney wrote:
> On Sat, Nov 23, 2013 at 10:04:06AM +0100, Peter Zijlstra wrote:
> > On Fri, Nov 22, 2013 at 10:13:13AM -0800, Paul E. McKenney wrote:
> > > How about the following?
> > >
> > > Thanx, Paul
> > >
> > > ------------------------------------------------------------------------
> > >
> > > COMPILER BARRIER
> > > ----------------
> > >
> > > The Linux kernel has an explicit compiler barrier function that prevents the
> > > compiler from moving the memory accesses either side of it to the other side:
> > >
> > > barrier();
> > >
> > > This is a general barrier -- there are no read-read or write-write variants
> > > of barrier(). Howevever, ACCESS_ONCE() can be thought of as a weak form
> > > for barrier() that affects only the specific accesses flagged by the
> > > ACCESS_ONCE().
> > >
> > > The compiler barrier has no direct effect on the CPU, which may then reorder
> > > things however it wishes.
> > >
> >
> > Seems ok, however this also seems like the natural spot to put that
> > chunk about how a compiler can mis-transform stuff without either
> > barrier or ACCESS_ONC(); that currently seems spread out over the
> > document in some notes.
> >
> > The biggest of which seems to have ended up in the GUARANTEES chapter.
>
> Good point! I believe that the spread-out stuff is still needed, so I
> will add a summary of that information here, perhaps based in part on
> Jon Corbet's ACCESS_ONCE() article (http://lwn.net/Articles/508991/).
>
> Seem reasonable?
For example, how about the following?
Thanx, Paul
------------------------------------------------------------------------
b/Documentation/memory-barriers.txt | 253 +++++++++++++++++++++++++++++++-----
1 file changed, 219 insertions(+), 34 deletions(-)
Documentation/memory-barriers.txt: Document ACCESS_ONCE()
The situations in which ACCESS_ONCE() is required are not well documented,
so this commit adds some verbiage to memory-barriers.txt.
Reported-by: Peter Zijlstra <peterz@...radead.org>
Signed-off-by: Paul E. McKenney <paulmck@...ux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@...hat.com>
Cc: Jonathan Corbet <corbet@....net>
Cc: Rusty Russell <rusty@...tcorp.com.au>
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index 1a2e5079b7f8..27ad05f47d83 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -231,37 +231,8 @@ And there are a number of things that _must_ or _must_not_ be assumed:
(*) It _must_not_ be assumed that the compiler will do what you want with
memory references that are not protected by ACCESS_ONCE(). Without
ACCESS_ONCE(), the compiler is within its rights to do all sorts
- of "creative" transformations:
-
- (-) Repeat the load, possibly getting a different value on the second
- and subsequent loads. This is especially prone to happen when
- register pressure is high.
-
- (-) Merge adjacent loads and stores to the same location. The most
- familiar example is the transformation from:
-
- while (a)
- do_something();
-
- to something like:
-
- if (a)
- for (;;)
- do_something();
-
- Using ACCESS_ONCE() as follows prevents this sort of optimization:
-
- while (ACCESS_ONCE(a))
- do_something();
-
- (-) "Store tearing", where a single store in the source code is split
- into smaller stores in the object code. Note that gcc really
- will do this on some architectures when storing certain constants.
- It can be cheaper to do a series of immediate stores than to
- form the constant in a register and then to store that register.
-
- (-) "Load tearing", which splits loads in a manner analogous to
- store tearing.
+ of "creative" transformations, which are covered in the Compiler
+ Barrier section.
(*) It _must_not_ be assumed that independent loads and stores will be issued
in the order given. This means that for:
@@ -748,7 +719,8 @@ In summary:
(*) Control dependencies require that the compiler avoid reordering the
dependency into nonexistence. Careful use of ACCESS_ONCE() or
- barrier() can help to preserve your control dependency.
+ barrier() can help to preserve your control dependency. Please
+ see the Compiler Barrier section for more information.
(*) Control dependencies do -not- provide transitivity. If you
need transitivity, use smp_mb().
@@ -1251,8 +1223,221 @@ of barrier(). Howevever, ACCESS_ONCE() can be thought of as a weak form
for barrier() that affects only the specific accesses flagged by the
ACCESS_ONCE().
-The compiler barrier has no direct effect on the CPU, which may then reorder
-things however it wishes.
+The barrier() function has the following effects:
+
+ (*) Prevents the compiler from reordering accesses following the
+ barrier() to precede any accesses preceding the barrier().
+ One example use for this property is to ease communication between
+ interrupt-handler code and the code that was interrupted.
+
+ (*) Within a loop, forces the compiler to load the variables used
+ in that loop's conditional on each pass through that loop.
+
+The ACCESS_ONCE() function can prevent any number of optimizations that,
+while perfectly safe in single-threaded code, can be fatal in concurrent
+code. Here are some examples of these sorts of optimizations:
+
+ (*) The compiler is within its rights to merge successive loads from
+ the same variable. Such merging can cause the compiler to "optimize"
+ the following code:
+
+ while (tmp = a)
+ do_something_with(tmp);
+
+ into the following code, which, although in some sense legitimate
+ for single-threaded code, is almost certainly not what the developer
+ intended:
+
+ if (tmp = a)
+ for (;;)
+ do_something_with(tmp);
+
+ Use ACCESS_ONCE() to prevent the compiler from doing this to you:
+
+ while (tmp = ACCESS_ONCE(a))
+ do_something_with(tmp);
+
+ (*) The compiler is within its rights to reload a variable, for example,
+ in cases where high register pressure prevents the compiler from
+ keeping all data of interest in registers. The compiler might
+ therefore optimize the variable tmp out of our previous example:
+
+ while (tmp = a)
+ do_something_with(tmp);
+
+ This could result in the following code, which is perfectly safe in
+ single-threaded code, but can be fatal in concurrent code:
+
+ while (a)
+ do_something_with(a);
+
+ For example, the optimized version of this code could result in
+ passing a zero to do_something_with() in the case where the variable
+ a was modified by some other CPU between the "while" statement and
+ the call to do_something_with().
+
+ Again, use ACCESS_ONCE() to prevent the compiler from doing this:
+
+ while (tmp = ACCESS_ONCE(a))
+ do_something_with(tmp);
+
+ Note that if the compiler runs short of registers, it might save
+ tmp onto the stack. The overhead of this saving and later restoring
+ is why compilers reload variables. Doing so is perfectly safe for
+ single-threaded code, so you need to tell the compiler about cases
+ where it is not safe.
+
+ (*) The compiler is within its rights to omit a load entirely if it knows
+ what the value will be. For example, if the compiler can prove that
+ the value of variable a is always zero, it can optimize this code:
+
+ while (tmp = a)
+ do_something_with(tmp);
+
+ Into this:
+
+ do { } while (0);
+
+ This transformation is a win for single-threaded code because it gets
+ rid of a load and a branch. The problem is that the compiler will
+ carry out its proof assuming that the current CPU is the only one
+ updating variable a. If variable a is shared, then the compiler's
+ proof will be erroneous. Use ACCESS_ONCE() to tell the compiler
+ that it doesn't know as much as it thinks it does:
+
+ while (tmp = ACCESS_ONCE(a))
+ do_something_with(tmp);
+
+ But please note that the compiler is also closely watching what you
+ do with the value after the ACCESS_ONCE(). For example, suppose you
+ do the following and MAX is a preprocessor macro with the value 1:
+
+ for ((tmp = ACCESS_ONCE(a)) % MAX)
+ do_something_with(tmp);
+
+ Then the compiler knows that the result of the "%" operator applied
+ to MAX will always be zero, again allowing the compiler to optimize
+ the code into near-nonexistence. (It will still load from the
+ variable a.)
+
+ (*) Similarly, the compiler is within its rights to omit a store entirely
+ if it knows that the variable already has the value being stored.
+ Again, the compiler assumes that the current CPU is the only one
+ storing into the variable, which can cause the compiler to do the
+ wrong thing for shared variables. For example, suppose you have
+ the following:
+
+ a = 0;
+ /* Code that does not store to variable a. */
+ a = 0;
+
+ The compiler sees that the value of variable a is already zero, so
+ it might well omit the second store. This would come as a fatal
+ surprise if some other CPU might have stored to variable a in the
+ meantime.
+
+ Use ACCESS_ONCE() to prevent the compiler from making this sort of
+ wrong guess:
+
+ ACCESS_ONCE(a) = 0;
+ /* Code that does not store to variable a. */
+ ACCESS_ONCE(a) = 0;
+
+ (*) The compiler is within its rights to reorder memory accesses unless
+ you tell it not to. For example, consider the following interaction
+ between process-level code and an interrupt handler:
+
+ void process_level(void)
+ {
+ msg = get_message();
+ flag = true;
+ }
+
+ void interrupt_handler(void)
+ {
+ if (flag)
+ process_message(msg);
+ }
+
+ There is nothing to prevent the the compiler from transforming
+ process_level() to the following, in fact, this might well be a
+ win for single-threaded code:
+
+ void process_level(void)
+ {
+ flag = true;
+ msg = get_message();
+ }
+
+ If the interrupt occurs between these two statement, then
+ interrupt_handler() might be passed a garbled msg. Use ACCESS_ONCE()
+ to prevent this as follows:
+
+ void process_level(void)
+ {
+ ACCESS_ONCE(msg) = get_message();
+ ACCESS_ONCE(flag) = true;
+ }
+
+ void interrupt_handler(void)
+ {
+ if (ACCESS_ONCE(flag))
+ process_message(ACCESS_ONCE(msg));
+ }
+
+ (*) The compiler is within its rights to invent stores to a variable,
+ as in the following example:
+
+ if (a)
+ b = a;
+ else
+ b = 42;
+
+ The compiler might save a branch by optimizing this as follows:
+
+ b = 42;
+ if (a)
+ b = a;
+
+ In single-threaded code, this is not only safe, but also saves
+ a branch. Unfortunately, in concurrent code, this optimization
+ could cause some other CPU to see a spurious value of 42 -- even
+ if variable a was never zero -- when loading variable b.
+ Use ACCESS_ONCE() to prevent this as follows:
+
+ if (a)
+ ACCESS_ONCE(b) = a;
+ else
+ ACCESS_ONCE(b) = 42;
+
+ The compiler can also invent loads. These are usually less
+ damaging, but they can result in cache-line bouncing and thus in
+ poor performance and scalability. Use ACCESS_ONCE() to prevent
+ invented loads.
+
+ (*) For aligned memory locations whose size allows them to be accessed
+ with a single memory-reference instruction, prevents "load tearing"
+ and "store tearing," in which a single large access is replaced by
+ multiple smaller accesses. For example, given an architecture having
+ 16-bit store instructions with 7-bit immediate fields, the compiler
+ might be tempted to use two 16-bit store-immediate instructions to
+ implement the following 32-bit store:
+
+ p = 0x00010002;
+
+ Please note that GCC really does use this sort of optimization,
+ which is not surprising given that it would likely take more
+ than two instructions to build the constant and then store it.
+ This optimization can therefore be a win in single-threaded code.
+ In fact, a recent bug (since fixed) caused GCC to incorrectly use
+ this optimization in a volatile store. In the absence of such bugs,
+ use of ACCESS_ONCE() prevents store tearing:
+
+ ACCESS_ONCE(p) = 0x00010002;
+
+
+Please note that these compiler barriers have no direct effect on the CPU,
+which may then reorder things however it wishes.
CPU MEMORY BARRIERS
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists