lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  PHC 
Open Source and information security mailing list archives
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [day] [month] [year] [list]
Date:	Tue, 11 Mar 2014 12:36:28 -0700
From:	tip-bot for Suresh Siddha <>
Subject: [tip:x86/urgent] x86, fpu: Check tsk_used_math()
  in kernel_fpu_end() for eager FPU

Commit-ID:  731bd6a93a6e9172094a2322bd0ee964bb1f4d63
Author:     Suresh Siddha <>
AuthorDate: Sun, 2 Feb 2014 22:56:23 -0800
Committer:  H. Peter Anvin <>
CommitDate: Tue, 11 Mar 2014 12:32:52 -0700

x86, fpu: Check tsk_used_math() in kernel_fpu_end() for eager FPU

For non-eager fpu mode, thread's fpu state is allocated during the first
fpu usage (in the context of device not available exception). This
(math_state_restore()) can be a blocking call and hence we enable
interrupts (which were originally disabled when the exception happened),
allocate memory and disable interrupts etc.

But the eager-fpu mode, call's the same math_state_restore() from
kernel_fpu_end(). The assumption being that tsk_used_math() is always
set for the eager-fpu mode and thus avoid the code path of enabling
interrupts, allocating fpu state using blocking call and disable
interrupts etc.

But the below issue was noticed by Maarten Baert, Nate Eldredge and
few others:

If a user process dumps core on an ecrypt fs while aesni-intel is loaded,
we get a BUG() in __find_get_block() complaining that it was called with
interrupts disabled; then all further accesses to our ecrypt fs hang
and we have to reboot.

The aesni-intel code (encrypting the core file that we are writing) needs
the FPU and quite properly wraps its code in kernel_fpu_{begin,end}(),
the latter of which calls math_state_restore(). So after kernel_fpu_end(),
interrupts may be disabled, which nobody seems to expect, and they stay
that way until we eventually get to __find_get_block() which barfs.

For eager fpu, most the time, tsk_used_math() is true. At few instances
during thread exit, signal return handling etc, tsk_used_math() might
be false.

In kernel_fpu_end(), for eager-fpu, call math_state_restore()
only if tsk_used_math() is set. Otherwise, don't bother. Kernel code
path which cleared tsk_used_math() knows what needs to be done
with the fpu state.

Reported-by: Maarten Baert <>
Reported-by: Nate Eldredge <>
Suggested-by: Linus Torvalds <>
Signed-off-by: Suresh Siddha <>
Cc: George Spelvin <>
Signed-off-by: H. Peter Anvin <>
 arch/x86/kernel/i387.c | 15 ++++++++++++---
 1 file changed, 12 insertions(+), 3 deletions(-)

diff --git a/arch/x86/kernel/i387.c b/arch/x86/kernel/i387.c
index e8368c6..d5dd808 100644
--- a/arch/x86/kernel/i387.c
+++ b/arch/x86/kernel/i387.c
@@ -86,10 +86,19 @@ EXPORT_SYMBOL(__kernel_fpu_begin);
 void __kernel_fpu_end(void)
-	if (use_eager_fpu())
-		math_state_restore();
-	else
+	if (use_eager_fpu()) {
+		/*
+		 * For eager fpu, most the time, tsk_used_math() is true.
+		 * Restore the user math as we are done with the kernel usage.
+		 * At few instances during thread exit, signal handling etc,
+		 * tsk_used_math() is false. Those few places will take proper
+		 * actions, so we don't need to restore the math here.
+		 */
+		if (likely(tsk_used_math(current)))
+			math_state_restore();
+	} else {
+	}
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to
More majordomo info at
Please read the FAQ at

Powered by blists - more mailing lists