
KVM and CPU feature
enablement

Eduardo Habkost <ehabkost@redhat.com>
Developer Conference 2014

mailto:ehabkost@redhat.com

Agenda

• Basic concepts

• Existing mechanisms and current challenges

• Current work and future plans

!2

Basics

Introduction: Basics

!4

Host CPU

(management)

Kernel

QEMU

KVM

VM

Guest OS

libvirt

Introduction: Basics

!4

command-line, monitor (QMP)

Host CPU

(management)

Kernel

QEMU

KVM

VM

Guest OS

libvirt

Introduction:  
Stable guest ABI

• Guest OS should see the “same” machine, even if
the host system has changed

• Hard requirement for live migration

• Soft requirement for non-live migration

• Host system may change a lot, but VM should
look the same

!5

Michael Müller
That’s the same in the s390x case, source cpu model is identical target cpu model.

Michael Müller
The same in s390x case.

Michael Müller
The same for s390x, except that I assume the host system changes less
frequently.

x86 CPUID instruction
• Returns information about the running CPU

• Most information shown on /proc/cpuinfo

• Feature flags indicating a feature is present

• Other more complex data

• e.g.: cache and topology information

• CPUID data is part of guest ABI

!6

Michael Müller
x86 specific interface, not used in s390x case

Existing Mechanisms

CPUID handling

!8

HOST CPU

QEMU Guest OS

Kernel

CPUID handling

!8

HOST CPU

QEMU Guest OS

Kernel

GET_SUPPORTED_CPUID

Host
CPUID

instruction

CPUID handling

!8

HOST CPU

QEMU Guest OS

CPUID table

SET_CPUID

Kernel

GET_SUPPORTED_CPUID

Host
CPUID

instruction

CPUID handling

!8

HOST CPU

QEMU Guest OS

CPUID table

SET_CPUID

Kernel

GET_SUPPORTED_CPUID

Host
CPUID

instruction emulate
CPUID

Guest
CPUID

instruction

Host CPU

(management)

Kernel

QEMU

KVM

VM

Guest OS

libvirt

The Stack

!9

Decision to enable a
feature (should be) taken

in the upper layers

Lower layers affect the
ability to enable a feature

Michael Müller
In s390x case, the cpu related facilities are tied together with respective model names like 2827-ga1 which represent real machine types. For s390x there is a natural combination of a facility set and its cpu model. Model names make sense to users and administrators. Qemu requests a certain facility set being used based on a model name given by -cpu.

Michael Müller
In KVM/kernel only the s390x cpuid, the vm facility set and the IBC value are known to define the vm model view.

Enabling new features

• We can't silently enable or disable a feature:

• It breaks guest ABI

• May unexpectedly prevent migration to other
(less powerful) hosts

!10

CPU models
• CPU model table, different CPUID data on each entry

• qemu-system-x86_64 -cpu SandyBridge

• qemu-system-x86_64 -cpu Haswell

• Controlling individual features. e.g.: -cpu Nehalem,+aes

• CPU model entries may change, machine-types keep compatibility

• qemu-system-x86_64 -machine pc-1.6 -cpu SandyBridge

• qemu-system-x86_64 -machine pc-1.7 -cpu SandyBridge

• enforce flag. e.g.: -cpu SandyBridge,enforce

• Required to ensure predictable results

!11

Michael Müller
The models are implemented in CPU model classes.

qemu-system-s390x -cpu 2827-ga1

Michael Müller
Obsolete for s390x case because the model name defines the max facility set.
+sofl evtl. if we additionally allow to implement facilities in software/KVM

Michael Müller
Only one machine type in s390 case which is -machine s390-virtio-ccw

Michael Müller
No enforce option, could be implemented without action associated.

CPU models

• Special CPU model: -cpu host

• Will enable everything that’s supported by the
host

• No stable guest ABI

!12

Michael Müller
Also available in the s390x case. It will be computed based on the host cpu by Qemu. Will requests to most latest cpu model supported by the host. Is typically the Host itself, e.g 2827-ga2

Michael Müller
Is a stable guest ABI in s390x case because the full facility bitmap is copied between Qemu and KVM.

Management requirements

• Ensuring that the resulting CPUID data is what was
asked for

• Knowing which CPU models can be enabled in a
host

• Knowing which features are available in a host

• Knowing to which hosts a VM can be migrated

!13

Michael Müller
Performed by s390_kvm_set_processor_props()
which sets the cpuid, the facility set and the IBC value upon the requested model for all vcpus.

Michael Müller
Provided in s390x case by QMP command query-cpu-models. Eventually the command has to be extended by an option asking for the enabled list and not the full list of defined cpu classes.

Michael Müller
Happens implicitly by means of cpu model numbers in s390x case

Michael Müller
Again the QMP command query-cpu-definitions delivers the required information in s390x case.

Issues

Host CPU

(management)

Kernel

QEMU

KVM

VM

Guest OS

libvirt

Problem: querying CPU
model information

• libvirt has its own list of CPU
models

• libvirt doesn't know QEMU
CPU models can change over
time

• QEMU's fault, there's no good
API for that (yet!)

!15

CPU model list

QEMU
CPU model list

Michael Müller
For s390x, libvirt shall not have a cpu model list defined statically. It is retrievable from the qemuCaps which get filled by query-cpu-interfaces during libvirtd startup time.

Michael Müller
Well, in s390x case, libvirt gets aware of a changed cpu model list as soon libvirtd revalidates its qemuCaps cache.

Michael Müller
Well, there is for the s390x case because cpu models are defined on qemu side. query-cpu-definitions

Host CPU

(management)

Kernel

QEMU

KVM

VM

Guest OS

libvirt

Problem: no “enforce” mode

• libvirt doesn’t use the
enforce flag

• Error reporting not machine-
friendly

• Most serious issue so far

• Fix involves implementing
CPU model and host
capability APIs

!16

X, Z

-cpu …,+X,+Y,+Z

X!
(no Y)!
(no Z)X, Y

Michael Müller
No issue for s390x case.

Michael Müller
Both are available for the s390x case

Host CPU

(management)

Kernel

QEMU

KVM

VM

Guest OS

libvirt

Problem: querying host
capabilities

• libvirt queries host CPU
features directly using CPUID
instruction

• Ignores KVM capabilities

• Ignores QEMU capabilities

• Ignores features that require
extra CPU capabilities

• QEMU’s fault, there’s no good
API for that (yet!)

!17

Michael Müller
Not in the S390x case, the admin defines the cpu model by means of the domain xml and libvirt uses the QMP command query-cpu-model to learn about the model Qemu actually is using. The returned model name is normalized, i.e. it is no alias. The same model name will be used for the target domain xml in the migration case.

Michael Müller
Not in the s390x case, because the KVM facility mask limits the cpu model specific facilities.

Michael Müller
For s390x, libvirt shall use the cpu model definition related capabilities.

Michael Müller
s390x does not emulate facilities, the currently invented interface will switch off migration capability if used.

Solutions

Solutions

• Existing interfaces: CPU-specific options and
commands

• -cpu, cpu-add, query-cpu-definitions

• New interfaces: based on common infrastructure
(QDev, QOM)

!19

QDev
• QDev = QEMU Device Model

• QOM = QEMU Object Model

• QDev devices are QOM objects

• -device command-line option

• QMP commands:

• Adding devices/objects (device_add, object-add)

• Removing devices/objects (device_del, object-del)

• Getting/setting devices properties (qom-get, qom-set)

• Listing objects and object classes (qom-list, qom-list-types)

!20

QDev-based solution
• CPUs are QDev devices (done)

• CPU devices and its properties visible through QMP

• feature-words property (done)

• Query CPU model info

• Query host capabilities (“host” CPU model)

• Incomplete: no machine-type-specific data

• filtered-features property (done)

• Used to emulate “enforce" mode with better error reporting

• Not used by libvirt yet

!21

What’s missing (1/2)
• Querying CPU model information without re-running

QEMU

• Solution: separate QOM types for each CPU model

• Exposing machine-type-specific data

• No defined solution yet

• Use QOM properties to control all feature flags

• Changing libvirt to use the new stuff
!22

What’s missing (2/2)

• Long term plans:

• Deprecate -cpu, cpu-add and use only QDev
commands 
(-device, device_add)

• Better interfaces to specify CPU topology (NUMA
nodes, sockets, cores, threads)

!23

Future

• Reporting capabilities reliably ⇒ smarter
management systems

• Usability (automatically choosing good defaults)

• Smarter VM scheduling

• May require extending libvirt API

!24

Thanks
Feedback:

http://devconf.cz/f/34

!

Additional info / pointers:

http://wiki.qemu.org/Features/
CPUModels

ehabkost@redhat.com

!

Questions?

!25

http://devconf.cz/f/34
http://wiki.qemu.org/Features/CPUModels

