[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <1401354343-5527-2-git-send-email-paolo.valente@unimore.it>
Date: Thu, 29 May 2014 11:05:32 +0200
From: Paolo Valente <paolo.valente@...more.it>
To: Jens Axboe <axboe@...nel.dk>, Tejun Heo <tj@...nel.org>,
Li Zefan <lizefan@...wei.com>
Cc: Fabio Checconi <fchecconi@...il.com>,
Arianna Avanzini <avanzini.arianna@...il.com>,
Paolo Valente <posta_paolo@...oo.it>,
linux-kernel@...r.kernel.org,
containers@...ts.linux-foundation.org, cgroups@...r.kernel.org,
Paolo Valente <paolo.valente@...more.it>
Subject: [PATCH RFC - TAKE TWO - 01/12] block: introduce the BFQ-v0 I/O scheduler
From: Fabio Checconi <fchecconi@...il.com>
BFQ is a proportional-share I/O scheduler, whose general structure,
plus a lot of code, are borrowed from CFQ.
- Each process doing I/O on a device is associated with a weight and a
(bfq_)queue.
- BFQ grants exclusive access to the device, for a while, to one queue
(process) at a time, and implements this service model by
associating every queue with a budget, measured in number of
sectors.
- After a queue is granted access to the device, the budget of the
queue is decremented, on each request dispatch, by the size of the
request.
- The in-service queue is expired, i.e., its service is suspended,
only if one of the following events occurs: 1) the queue finishes
its budget, 2) the queue empties, 3) a "budget timeout" fires.
- The budget timeout prevents processes doing random I/O from
holding the device for too long and dramatically reducing
throughput.
- Actually, as in CFQ, a queue associated with a process issuing
sync requests may not be expired immediately when it empties. In
contrast, BFQ may idle the device for a short time interval,
giving the process the chance to go on being served if it issues
a new request in time. Device idling typically boosts the
throughput on rotational devices, if processes do synchronous
and sequential I/O. Besides, under BFQ, device idling is also
instrumental in guaranteeing the desired throughput fraction to
processes issuing sync requests (see [1] for details).
- Queues are scheduled according to a variant of WF2Q+, named
B-WF2Q+, and implemented using an augmented rb-tree to preserve an
O(log N) overall complexity. See [1] for more details. B-WF2Q+ is
also ready for hierarchical scheduling. However, for a cleaner
logical breakdown, the code that enables and completes
hierarchical support is provided in patch 4, which focuses exactly
on this feature.
- B-WF2Q+ guarantees a tight deviation with respect to an ideal,
perfectly fair, and smooth service. In particular, B-WF2Q+
guarantees that each queue receives a fraction of the device
throughput proportional to its weight, even if the throughput
fluctuates, and regardless of: the device parameters, the current
workload and the budgets assigned to the queue.
- The last, budget-independence, property (although probably
counterintuitive in the first place) is definitely beneficial, for
the following reasons.
- First, with any proportional-share scheduler, the maximum
deviation with respect to an ideal service is proportional to
the maximum budget (slice) assigned to queues. As a consequence,
BFQ can keep this deviation tight not only because of the
accurate service of B-WF2Q+, but also because BFQ *does not*
need to assign a larger budget to a queue to let the queue
receive a higher fraction of the device throughput.
- Second, BFQ is free to choose, for every process (queue), the
budget that best fits the needs of the process, or best
leverages the I/O pattern of the process. In particular, BFQ
updates queue budgets with a simple feedback-loop algorithm that
allows a high throughput to be achieved, while still providing
tight latency guarantees to time-sensitive applications. When
the in-service queue expires, this algorithm computes the next
budget of the queue so as to:
- Let large budgets be eventually assigned to the queues
associated with I/O-bound applications performing sequential
I/O: in fact, the longer these applications are served once
got access to the device, the higher the throughput is.
- Let small budgets be eventually assigned to the queues
associated with time-sensitive applications (which typically
perform sporadic and short I/O), because, the smaller the
budget assigned to a queue waiting for service is, the sooner
B-WF2Q+ will serve that queue (Subsec 3.3 in [1]).
- Weights can be assigned to processes only indirectly, through I/O
priorities, and according to the relation: weight = IOPRIO_BE_NR -
ioprio. The next two patches provide instead a cgroups interface
through which weights can be assigned explicitly.
- ioprio classes are served in strict priority order, i.e.,
lower-priority queues are not served as long as there are
higher-priority queues. Among queues in the same class, the
bandwidth is distributed in proportion to the weight of each
queue. A very thin extra bandwidth is however guaranteed to the Idle
class, to prevent it from starving.
[1] P. Valente and M. Andreolini, "Improving Application
Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of
the 5th Annual International Systems and Storage Conference
(SYSTOR '12), June 2012.
Slightly extended version:
http://www.algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf
Signed-off-by: Fabio Checconi <fchecconi@...il.com>
Signed-off-by: Paolo Valente <paolo.valente@...more.it>
Signed-off-by: Arianna Avanzini <avanzini.arianna@...il.com>
---
block/Kconfig.iosched | 19 +
block/Makefile | 1 +
block/bfq-ioc.c | 34 +
block/bfq-iosched.c | 2297 +++++++++++++++++++++++++++++++++++++++++++++++++
block/bfq-sched.c | 936 ++++++++++++++++++++
block/bfq.h | 467 ++++++++++
6 files changed, 3754 insertions(+)
create mode 100644 block/bfq-ioc.c
create mode 100644 block/bfq-iosched.c
create mode 100644 block/bfq-sched.c
create mode 100644 block/bfq.h
diff --git a/block/Kconfig.iosched b/block/Kconfig.iosched
index 421bef9..8f98cc7 100644
--- a/block/Kconfig.iosched
+++ b/block/Kconfig.iosched
@@ -39,6 +39,15 @@ config CFQ_GROUP_IOSCHED
---help---
Enable group IO scheduling in CFQ.
+config IOSCHED_BFQ
+ tristate "BFQ I/O scheduler"
+ default n
+ ---help---
+ The BFQ I/O scheduler tries to distribute bandwidth among all
+ processes according to their weights.
+ It aims at distributing the bandwidth as desired, regardless
+ of the disk parameters and with any workload.
+
choice
prompt "Default I/O scheduler"
default DEFAULT_CFQ
@@ -52,6 +61,15 @@ choice
config DEFAULT_CFQ
bool "CFQ" if IOSCHED_CFQ=y
+ config DEFAULT_BFQ
+ bool "BFQ" if IOSCHED_BFQ=y
+ help
+ Selects BFQ as the default I/O scheduler which will be
+ used by default for all block devices.
+ The BFQ I/O scheduler aims at distributing the bandwidth
+ as desired, regardless of the disk parameters and with
+ any workload.
+
config DEFAULT_NOOP
bool "No-op"
@@ -61,6 +79,7 @@ config DEFAULT_IOSCHED
string
default "deadline" if DEFAULT_DEADLINE
default "cfq" if DEFAULT_CFQ
+ default "bfq" if DEFAULT_BFQ
default "noop" if DEFAULT_NOOP
endmenu
diff --git a/block/Makefile b/block/Makefile
index 20645e8..cbd83fb 100644
--- a/block/Makefile
+++ b/block/Makefile
@@ -16,6 +16,7 @@ obj-$(CONFIG_BLK_DEV_THROTTLING) += blk-throttle.o
obj-$(CONFIG_IOSCHED_NOOP) += noop-iosched.o
obj-$(CONFIG_IOSCHED_DEADLINE) += deadline-iosched.o
obj-$(CONFIG_IOSCHED_CFQ) += cfq-iosched.o
+obj-$(CONFIG_IOSCHED_BFQ) += bfq-iosched.o
obj-$(CONFIG_BLOCK_COMPAT) += compat_ioctl.o
obj-$(CONFIG_BLK_DEV_INTEGRITY) += blk-integrity.o
diff --git a/block/bfq-ioc.c b/block/bfq-ioc.c
new file mode 100644
index 0000000..adfb5a1
--- /dev/null
+++ b/block/bfq-ioc.c
@@ -0,0 +1,34 @@
+/*
+ * BFQ: I/O context handling.
+ *
+ * Based on ideas and code from CFQ:
+ * Copyright (C) 2003 Jens Axboe <axboe@...nel.dk>
+ *
+ * Copyright (C) 2008 Fabio Checconi <fabio@...dalf.sssup.it>
+ * Paolo Valente <paolo.valente@...more.it>
+ */
+
+/**
+ * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
+ * @icq: the iocontext queue.
+ */
+static inline struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
+{
+ /* bic->icq is the first member, %NULL will convert to %NULL */
+ return container_of(icq, struct bfq_io_cq, icq);
+}
+
+/**
+ * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
+ * @bfqd: the lookup key.
+ * @ioc: the io_context of the process doing I/O.
+ *
+ * Queue lock must be held.
+ */
+static inline struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
+ struct io_context *ioc)
+{
+ if (ioc)
+ return icq_to_bic(ioc_lookup_icq(ioc, bfqd->queue));
+ return NULL;
+}
diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c
new file mode 100644
index 0000000..01a98be
--- /dev/null
+++ b/block/bfq-iosched.c
@@ -0,0 +1,2297 @@
+/*
+ * Budget Fair Queueing (BFQ) disk scheduler.
+ *
+ * Based on ideas and code from CFQ:
+ * Copyright (C) 2003 Jens Axboe <axboe@...nel.dk>
+ *
+ * Copyright (C) 2008 Fabio Checconi <fabio@...dalf.sssup.it>
+ * Paolo Valente <paolo.valente@...more.it>
+ *
+ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
+ * file.
+ *
+ * BFQ is a proportional-share storage-I/O scheduling algorithm based on
+ * the slice-by-slice service scheme of CFQ. But BFQ assigns budgets,
+ * measured in number of sectors, to processes instead of time slices. The
+ * device is not granted to the in-service process for a given time slice,
+ * but until it has exhausted its assigned budget. This change from the time
+ * to the service domain allows BFQ to distribute the device throughput
+ * among processes as desired, without any distortion due to ZBR, workload
+ * fluctuations or other factors. BFQ uses an ad hoc internal scheduler,
+ * called B-WF2Q+, to schedule processes according to their budgets. More
+ * precisely, BFQ schedules queues associated to processes. Thanks to the
+ * accurate policy of B-WF2Q+, BFQ can afford to assign high budgets to
+ * I/O-bound processes issuing sequential requests (to boost the
+ * throughput), and yet guarantee a relatively low latency to interactive
+ * applications.
+ *
+ * BFQ is described in [1], where also a reference to the initial, more
+ * theoretical paper on BFQ can be found. The interested reader can find
+ * in the latter paper full details on the main algorithm, as well as
+ * formulas of the guarantees and formal proofs of all the properties.
+ * With respect to the version of BFQ presented in these papers, this
+ * implementation adds a hierarchical extension based on H-WF2Q+.
+ *
+ * B-WF2Q+ is based on WF2Q+, that is described in [2], together with
+ * H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N)
+ * complexity derives from the one introduced with EEVDF in [3].
+ *
+ * [1] P. Valente and M. Andreolini, ``Improving Application Responsiveness
+ * with the BFQ Disk I/O Scheduler'',
+ * Proceedings of the 5th Annual International Systems and Storage
+ * Conference (SYSTOR '12), June 2012.
+ *
+ * http://algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf
+ *
+ * [2] Jon C.R. Bennett and H. Zhang, ``Hierarchical Packet Fair Queueing
+ * Algorithms,'' IEEE/ACM Transactions on Networking, 5(5):675-689,
+ * Oct 1997.
+ *
+ * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
+ *
+ * [3] I. Stoica and H. Abdel-Wahab, ``Earliest Eligible Virtual Deadline
+ * First: A Flexible and Accurate Mechanism for Proportional Share
+ * Resource Allocation,'' technical report.
+ *
+ * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
+ */
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/blkdev.h>
+#include <linux/cgroup.h>
+#include <linux/elevator.h>
+#include <linux/jiffies.h>
+#include <linux/rbtree.h>
+#include <linux/ioprio.h>
+#include "bfq.h"
+#include "blk.h"
+
+/*
+ * Array of async queues for all the processes, one queue
+ * per ioprio value per ioprio_class.
+ */
+struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
+/* Async queue for the idle class (ioprio is ignored) */
+struct bfq_queue *async_idle_bfqq;
+
+/* Max number of dispatches in one round of service. */
+static const int bfq_quantum = 4;
+
+/* Expiration time of sync (0) and async (1) requests, in jiffies. */
+static const int bfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
+
+/* Maximum backwards seek, in KiB. */
+static const int bfq_back_max = 16 * 1024;
+
+/* Penalty of a backwards seek, in number of sectors. */
+static const int bfq_back_penalty = 2;
+
+/* Idling period duration, in jiffies. */
+static int bfq_slice_idle = HZ / 125;
+
+/* Default maximum budget values, in sectors and number of requests. */
+static const int bfq_default_max_budget = 16 * 1024;
+static const int bfq_max_budget_async_rq = 4;
+
+/* Default timeout values, in jiffies, approximating CFQ defaults. */
+static const int bfq_timeout_sync = HZ / 8;
+static int bfq_timeout_async = HZ / 25;
+
+struct kmem_cache *bfq_pool;
+
+/* Below this threshold (in ms), we consider thinktime immediate. */
+#define BFQ_MIN_TT 2
+
+/* hw_tag detection: parallel requests threshold and min samples needed. */
+#define BFQ_HW_QUEUE_THRESHOLD 4
+#define BFQ_HW_QUEUE_SAMPLES 32
+
+#define BFQQ_SEEK_THR (sector_t)(8 * 1024)
+#define BFQQ_SEEKY(bfqq) ((bfqq)->seek_mean > BFQQ_SEEK_THR)
+
+/* Budget feedback step. */
+#define BFQ_BUDGET_STEP 128
+
+/* Min samples used for peak rate estimation (for autotuning). */
+#define BFQ_PEAK_RATE_SAMPLES 32
+
+/* Shift used for peak rate fixed precision calculations. */
+#define BFQ_RATE_SHIFT 16
+
+#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
+ { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
+
+#define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0])
+#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
+
+static inline void bfq_schedule_dispatch(struct bfq_data *bfqd);
+
+#include "bfq-ioc.c"
+#include "bfq-sched.c"
+
+#define bfq_class_idle(bfqq) ((bfqq)->entity.ioprio_class ==\
+ IOPRIO_CLASS_IDLE)
+#define bfq_class_rt(bfqq) ((bfqq)->entity.ioprio_class ==\
+ IOPRIO_CLASS_RT)
+
+#define bfq_sample_valid(samples) ((samples) > 80)
+
+/*
+ * We regard a request as SYNC, if either it's a read or has the SYNC bit
+ * set (in which case it could also be a direct WRITE).
+ */
+static inline int bfq_bio_sync(struct bio *bio)
+{
+ if (bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC))
+ return 1;
+
+ return 0;
+}
+
+/*
+ * Scheduler run of queue, if there are requests pending and no one in the
+ * driver that will restart queueing.
+ */
+static inline void bfq_schedule_dispatch(struct bfq_data *bfqd)
+{
+ if (bfqd->queued != 0) {
+ bfq_log(bfqd, "schedule dispatch");
+ kblockd_schedule_work(bfqd->queue, &bfqd->unplug_work);
+ }
+}
+
+/*
+ * Lifted from AS - choose which of rq1 and rq2 that is best served now.
+ * We choose the request that is closesr to the head right now. Distance
+ * behind the head is penalized and only allowed to a certain extent.
+ */
+static struct request *bfq_choose_req(struct bfq_data *bfqd,
+ struct request *rq1,
+ struct request *rq2,
+ sector_t last)
+{
+ sector_t s1, s2, d1 = 0, d2 = 0;
+ unsigned long back_max;
+#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
+#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
+ unsigned wrap = 0; /* bit mask: requests behind the disk head? */
+
+ if (rq1 == NULL || rq1 == rq2)
+ return rq2;
+ if (rq2 == NULL)
+ return rq1;
+
+ if (rq_is_sync(rq1) && !rq_is_sync(rq2))
+ return rq1;
+ else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
+ return rq2;
+ if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
+ return rq1;
+ else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
+ return rq2;
+
+ s1 = blk_rq_pos(rq1);
+ s2 = blk_rq_pos(rq2);
+
+ /*
+ * By definition, 1KiB is 2 sectors.
+ */
+ back_max = bfqd->bfq_back_max * 2;
+
+ /*
+ * Strict one way elevator _except_ in the case where we allow
+ * short backward seeks which are biased as twice the cost of a
+ * similar forward seek.
+ */
+ if (s1 >= last)
+ d1 = s1 - last;
+ else if (s1 + back_max >= last)
+ d1 = (last - s1) * bfqd->bfq_back_penalty;
+ else
+ wrap |= BFQ_RQ1_WRAP;
+
+ if (s2 >= last)
+ d2 = s2 - last;
+ else if (s2 + back_max >= last)
+ d2 = (last - s2) * bfqd->bfq_back_penalty;
+ else
+ wrap |= BFQ_RQ2_WRAP;
+
+ /* Found required data */
+
+ /*
+ * By doing switch() on the bit mask "wrap" we avoid having to
+ * check two variables for all permutations: --> faster!
+ */
+ switch (wrap) {
+ case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
+ if (d1 < d2)
+ return rq1;
+ else if (d2 < d1)
+ return rq2;
+ else {
+ if (s1 >= s2)
+ return rq1;
+ else
+ return rq2;
+ }
+
+ case BFQ_RQ2_WRAP:
+ return rq1;
+ case BFQ_RQ1_WRAP:
+ return rq2;
+ case (BFQ_RQ1_WRAP|BFQ_RQ2_WRAP): /* both rqs wrapped */
+ default:
+ /*
+ * Since both rqs are wrapped,
+ * start with the one that's further behind head
+ * (--> only *one* back seek required),
+ * since back seek takes more time than forward.
+ */
+ if (s1 <= s2)
+ return rq1;
+ else
+ return rq2;
+ }
+}
+
+static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq,
+ struct request *last)
+{
+ struct rb_node *rbnext = rb_next(&last->rb_node);
+ struct rb_node *rbprev = rb_prev(&last->rb_node);
+ struct request *next = NULL, *prev = NULL;
+
+ if (rbprev != NULL)
+ prev = rb_entry_rq(rbprev);
+
+ if (rbnext != NULL)
+ next = rb_entry_rq(rbnext);
+ else {
+ rbnext = rb_first(&bfqq->sort_list);
+ if (rbnext && rbnext != &last->rb_node)
+ next = rb_entry_rq(rbnext);
+ }
+
+ return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
+}
+
+static inline unsigned long bfq_serv_to_charge(struct request *rq,
+ struct bfq_queue *bfqq)
+{
+ return blk_rq_sectors(rq);
+}
+
+/**
+ * bfq_updated_next_req - update the queue after a new next_rq selection.
+ * @bfqd: the device data the queue belongs to.
+ * @bfqq: the queue to update.
+ *
+ * If the first request of a queue changes we make sure that the queue
+ * has enough budget to serve at least its first request (if the
+ * request has grown). We do this because if the queue has not enough
+ * budget for its first request, it has to go through two dispatch
+ * rounds to actually get it dispatched.
+ */
+static void bfq_updated_next_req(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq)
+{
+ struct bfq_entity *entity = &bfqq->entity;
+ struct request *next_rq = bfqq->next_rq;
+ unsigned long new_budget;
+
+ if (next_rq == NULL)
+ return;
+
+ if (bfqq == bfqd->in_service_queue)
+ /*
+ * In order not to break guarantees, budgets cannot be
+ * changed after an entity has been selected.
+ */
+ return;
+
+ new_budget = max_t(unsigned long, bfqq->max_budget,
+ bfq_serv_to_charge(next_rq, bfqq));
+ if (entity->budget != new_budget) {
+ entity->budget = new_budget;
+ bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
+ new_budget);
+ bfq_activate_bfqq(bfqd, bfqq);
+ }
+}
+
+static void bfq_add_request(struct request *rq)
+{
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
+ struct bfq_entity *entity = &bfqq->entity;
+ struct bfq_data *bfqd = bfqq->bfqd;
+ struct request *next_rq, *prev;
+
+ bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
+ bfqq->queued[rq_is_sync(rq)]++;
+ bfqd->queued++;
+
+ elv_rb_add(&bfqq->sort_list, rq);
+
+ /*
+ * Check if this request is a better next-serve candidate.
+ */
+ prev = bfqq->next_rq;
+ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
+ bfqq->next_rq = next_rq;
+
+ if (!bfq_bfqq_busy(bfqq)) {
+ entity->budget = max_t(unsigned long, bfqq->max_budget,
+ bfq_serv_to_charge(next_rq, bfqq));
+ bfq_add_bfqq_busy(bfqd, bfqq);
+ } else {
+ if (prev != bfqq->next_rq)
+ bfq_updated_next_req(bfqd, bfqq);
+ }
+}
+
+static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
+ struct bio *bio)
+{
+ struct task_struct *tsk = current;
+ struct bfq_io_cq *bic;
+ struct bfq_queue *bfqq;
+
+ bic = bfq_bic_lookup(bfqd, tsk->io_context);
+ if (bic == NULL)
+ return NULL;
+
+ bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
+ if (bfqq != NULL)
+ return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
+
+ return NULL;
+}
+
+static void bfq_activate_request(struct request_queue *q, struct request *rq)
+{
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+
+ bfqd->rq_in_driver++;
+ bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
+ bfq_log(bfqd, "activate_request: new bfqd->last_position %llu",
+ (long long unsigned)bfqd->last_position);
+}
+
+static inline void bfq_deactivate_request(struct request_queue *q,
+ struct request *rq)
+{
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+
+ bfqd->rq_in_driver--;
+}
+
+static void bfq_remove_request(struct request *rq)
+{
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
+ struct bfq_data *bfqd = bfqq->bfqd;
+ const int sync = rq_is_sync(rq);
+
+ if (bfqq->next_rq == rq) {
+ bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
+ bfq_updated_next_req(bfqd, bfqq);
+ }
+
+ list_del_init(&rq->queuelist);
+ bfqq->queued[sync]--;
+ bfqd->queued--;
+ elv_rb_del(&bfqq->sort_list, rq);
+
+ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
+ if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue)
+ bfq_del_bfqq_busy(bfqd, bfqq, 1);
+ }
+
+ if (rq->cmd_flags & REQ_META)
+ bfqq->meta_pending--;
+}
+
+static int bfq_merge(struct request_queue *q, struct request **req,
+ struct bio *bio)
+{
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+ struct request *__rq;
+
+ __rq = bfq_find_rq_fmerge(bfqd, bio);
+ if (__rq != NULL && elv_rq_merge_ok(__rq, bio)) {
+ *req = __rq;
+ return ELEVATOR_FRONT_MERGE;
+ }
+
+ return ELEVATOR_NO_MERGE;
+}
+
+static void bfq_merged_request(struct request_queue *q, struct request *req,
+ int type)
+{
+ if (type == ELEVATOR_FRONT_MERGE &&
+ rb_prev(&req->rb_node) &&
+ blk_rq_pos(req) <
+ blk_rq_pos(container_of(rb_prev(&req->rb_node),
+ struct request, rb_node))) {
+ struct bfq_queue *bfqq = RQ_BFQQ(req);
+ struct bfq_data *bfqd = bfqq->bfqd;
+ struct request *prev, *next_rq;
+
+ /* Reposition request in its sort_list */
+ elv_rb_del(&bfqq->sort_list, req);
+ elv_rb_add(&bfqq->sort_list, req);
+ /* Choose next request to be served for bfqq */
+ prev = bfqq->next_rq;
+ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
+ bfqd->last_position);
+ bfqq->next_rq = next_rq;
+ /*
+ * If next_rq changes, update the queue's budget to fit
+ * the new request.
+ */
+ if (prev != bfqq->next_rq)
+ bfq_updated_next_req(bfqd, bfqq);
+ }
+}
+
+static void bfq_merged_requests(struct request_queue *q, struct request *rq,
+ struct request *next)
+{
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
+
+ /*
+ * Reposition in fifo if next is older than rq.
+ */
+ if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
+ time_before(next->fifo_time, rq->fifo_time)) {
+ list_move(&rq->queuelist, &next->queuelist);
+ rq->fifo_time = next->fifo_time;
+ }
+
+ if (bfqq->next_rq == next)
+ bfqq->next_rq = rq;
+
+ bfq_remove_request(next);
+}
+
+static int bfq_allow_merge(struct request_queue *q, struct request *rq,
+ struct bio *bio)
+{
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+ struct bfq_io_cq *bic;
+ struct bfq_queue *bfqq;
+
+ /*
+ * Disallow merge of a sync bio into an async request.
+ */
+ if (bfq_bio_sync(bio) && !rq_is_sync(rq))
+ return 0;
+
+ /*
+ * Lookup the bfqq that this bio will be queued with. Allow
+ * merge only if rq is queued there.
+ * Queue lock is held here.
+ */
+ bic = bfq_bic_lookup(bfqd, current->io_context);
+ if (bic == NULL)
+ return 0;
+
+ bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
+ return bfqq == RQ_BFQQ(rq);
+}
+
+static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq)
+{
+ if (bfqq != NULL) {
+ bfq_mark_bfqq_must_alloc(bfqq);
+ bfq_mark_bfqq_budget_new(bfqq);
+ bfq_clear_bfqq_fifo_expire(bfqq);
+
+ bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;
+
+ bfq_log_bfqq(bfqd, bfqq,
+ "set_in_service_queue, cur-budget = %lu",
+ bfqq->entity.budget);
+ }
+
+ bfqd->in_service_queue = bfqq;
+}
+
+/*
+ * Get and set a new queue for service.
+ */
+static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
+{
+ struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
+
+ __bfq_set_in_service_queue(bfqd, bfqq);
+ return bfqq;
+}
+
+/*
+ * If enough samples have been computed, return the current max budget
+ * stored in bfqd, which is dynamically updated according to the
+ * estimated disk peak rate; otherwise return the default max budget
+ */
+static inline unsigned long bfq_max_budget(struct bfq_data *bfqd)
+{
+ if (bfqd->budgets_assigned < 194)
+ return bfq_default_max_budget;
+ else
+ return bfqd->bfq_max_budget;
+}
+
+ /*
+ * bfq_default_budget - return the default budget for @bfqq on @bfqd.
+ * @bfqd: the device descriptor.
+ * @bfqq: the queue to consider.
+ *
+ * We use 3/4 of the @bfqd maximum budget as the default value
+ * for the max_budget field of the queues. This lets the feedback
+ * mechanism to start from some middle ground, then the behavior
+ * of the process will drive the heuristics towards high values, if
+ * it behaves as a greedy sequential reader, or towards small values
+ * if it shows a more intermittent behavior.
+ */
+static unsigned long bfq_default_budget(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq)
+{
+ unsigned long budget;
+
+ /*
+ * When we need an estimate of the peak rate we need to avoid
+ * to give budgets that are too short due to previous measurements.
+ * So, in the first 10 assignments use a ``safe'' budget value.
+ */
+ if (bfqd->budgets_assigned < 194 && bfqd->bfq_user_max_budget == 0)
+ budget = bfq_default_max_budget;
+ else
+ budget = bfqd->bfq_max_budget;
+
+ return budget - budget / 4;
+}
+
+/*
+ * Return min budget, which is a fraction of the current or default
+ * max budget (trying with 1/32)
+ */
+static inline unsigned long bfq_min_budget(struct bfq_data *bfqd)
+{
+ if (bfqd->budgets_assigned < 194)
+ return bfq_default_max_budget / 32;
+ else
+ return bfqd->bfq_max_budget / 32;
+}
+
+static void bfq_arm_slice_timer(struct bfq_data *bfqd)
+{
+ struct bfq_queue *bfqq = bfqd->in_service_queue;
+ struct bfq_io_cq *bic;
+ unsigned long sl;
+
+ /* Processes have exited, don't wait. */
+ bic = bfqd->in_service_bic;
+ if (bic == NULL || atomic_read(&bic->icq.ioc->active_ref) == 0)
+ return;
+
+ bfq_mark_bfqq_wait_request(bfqq);
+
+ /*
+ * We don't want to idle for seeks, but we do want to allow
+ * fair distribution of slice time for a process doing back-to-back
+ * seeks. So allow a little bit of time for him to submit a new rq.
+ */
+ sl = bfqd->bfq_slice_idle;
+ /*
+ * Grant only minimum idle time if the queue has been seeky for long
+ * enough.
+ */
+ if (bfq_sample_valid(bfqq->seek_samples) && BFQQ_SEEKY(bfqq))
+ sl = min(sl, msecs_to_jiffies(BFQ_MIN_TT));
+ bfqd->last_idling_start = ktime_get();
+ mod_timer(&bfqd->idle_slice_timer, jiffies + sl);
+ bfq_log(bfqd, "arm idle: %u/%u ms",
+ jiffies_to_msecs(sl), jiffies_to_msecs(bfqd->bfq_slice_idle));
+}
+
+/*
+ * Set the maximum time for the in-service queue to consume its
+ * budget. This prevents seeky processes from lowering the disk
+ * throughput (always guaranteed with a time slice scheme as in CFQ).
+ */
+static void bfq_set_budget_timeout(struct bfq_data *bfqd)
+{
+ struct bfq_queue *bfqq = bfqd->in_service_queue;
+ unsigned int timeout_coeff = bfqq->entity.weight /
+ bfqq->entity.orig_weight;
+
+ bfqd->last_budget_start = ktime_get();
+
+ bfq_clear_bfqq_budget_new(bfqq);
+ bfqq->budget_timeout = jiffies +
+ bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] * timeout_coeff;
+
+ bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
+ jiffies_to_msecs(bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] *
+ timeout_coeff));
+}
+
+/*
+ * Move request from internal lists to the request queue dispatch list.
+ */
+static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
+{
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
+
+ /*
+ * For consistency, the next instruction should have been executed
+ * after removing the request from the queue and dispatching it.
+ * We execute instead this instruction before bfq_remove_request()
+ * (and hence introduce a temporary inconsistency), for efficiency.
+ * In fact, in a forced_dispatch, this prevents two counters related
+ * to bfqq->dispatched to risk to be uselessly decremented if bfqq
+ * is not in service, and then to be incremented again after
+ * incrementing bfqq->dispatched.
+ */
+ bfqq->dispatched++;
+ bfq_remove_request(rq);
+ elv_dispatch_sort(q, rq);
+
+ if (bfq_bfqq_sync(bfqq))
+ bfqd->sync_flight++;
+}
+
+/*
+ * Return expired entry, or NULL to just start from scratch in rbtree.
+ */
+static struct request *bfq_check_fifo(struct bfq_queue *bfqq)
+{
+ struct request *rq = NULL;
+
+ if (bfq_bfqq_fifo_expire(bfqq))
+ return NULL;
+
+ bfq_mark_bfqq_fifo_expire(bfqq);
+
+ if (list_empty(&bfqq->fifo))
+ return NULL;
+
+ rq = rq_entry_fifo(bfqq->fifo.next);
+
+ if (time_before(jiffies, rq->fifo_time))
+ return NULL;
+
+ return rq;
+}
+
+static inline unsigned long bfq_bfqq_budget_left(struct bfq_queue *bfqq)
+{
+ struct bfq_entity *entity = &bfqq->entity;
+ return entity->budget - entity->service;
+}
+
+static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+{
+ __bfq_bfqd_reset_in_service(bfqd);
+
+ if (RB_EMPTY_ROOT(&bfqq->sort_list))
+ bfq_del_bfqq_busy(bfqd, bfqq, 1);
+ else
+ bfq_activate_bfqq(bfqd, bfqq);
+}
+
+/**
+ * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
+ * @bfqd: device data.
+ * @bfqq: queue to update.
+ * @reason: reason for expiration.
+ *
+ * Handle the feedback on @bfqq budget. See the body for detailed
+ * comments.
+ */
+static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq,
+ enum bfqq_expiration reason)
+{
+ struct request *next_rq;
+ unsigned long budget, min_budget;
+
+ budget = bfqq->max_budget;
+ min_budget = bfq_min_budget(bfqd);
+
+ bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %lu, budg left %lu",
+ bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
+ bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %lu, min budg %lu",
+ budget, bfq_min_budget(bfqd));
+ bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
+ bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
+
+ if (bfq_bfqq_sync(bfqq)) {
+ switch (reason) {
+ /*
+ * Caveat: in all the following cases we trade latency
+ * for throughput.
+ */
+ case BFQ_BFQQ_TOO_IDLE:
+ if (budget > min_budget + BFQ_BUDGET_STEP)
+ budget -= BFQ_BUDGET_STEP;
+ else
+ budget = min_budget;
+ break;
+ case BFQ_BFQQ_BUDGET_TIMEOUT:
+ budget = bfq_default_budget(bfqd, bfqq);
+ break;
+ case BFQ_BFQQ_BUDGET_EXHAUSTED:
+ /*
+ * The process still has backlog, and did not
+ * let either the budget timeout or the disk
+ * idling timeout expire. Hence it is not
+ * seeky, has a short thinktime and may be
+ * happy with a higher budget too. So
+ * definitely increase the budget of this good
+ * candidate to boost the disk throughput.
+ */
+ budget = min(budget + 8 * BFQ_BUDGET_STEP,
+ bfqd->bfq_max_budget);
+ break;
+ case BFQ_BFQQ_NO_MORE_REQUESTS:
+ /*
+ * Leave the budget unchanged.
+ */
+ default:
+ return;
+ }
+ } else /* async queue */
+ /* async queues get always the maximum possible budget
+ * (their ability to dispatch is limited by
+ * @bfqd->bfq_max_budget_async_rq).
+ */
+ budget = bfqd->bfq_max_budget;
+
+ bfqq->max_budget = budget;
+
+ if (bfqd->budgets_assigned >= 194 && bfqd->bfq_user_max_budget == 0 &&
+ bfqq->max_budget > bfqd->bfq_max_budget)
+ bfqq->max_budget = bfqd->bfq_max_budget;
+
+ /*
+ * Make sure that we have enough budget for the next request.
+ * Since the finish time of the bfqq must be kept in sync with
+ * the budget, be sure to call __bfq_bfqq_expire() after the
+ * update.
+ */
+ next_rq = bfqq->next_rq;
+ if (next_rq != NULL)
+ bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
+ bfq_serv_to_charge(next_rq, bfqq));
+ else
+ bfqq->entity.budget = bfqq->max_budget;
+
+ bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %lu",
+ next_rq != NULL ? blk_rq_sectors(next_rq) : 0,
+ bfqq->entity.budget);
+}
+
+static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout)
+{
+ unsigned long max_budget;
+
+ /*
+ * The max_budget calculated when autotuning is equal to the
+ * amount of sectors transfered in timeout_sync at the
+ * estimated peak rate.
+ */
+ max_budget = (unsigned long)(peak_rate * 1000 *
+ timeout >> BFQ_RATE_SHIFT);
+
+ return max_budget;
+}
+
+/*
+ * In addition to updating the peak rate, checks whether the process
+ * is "slow", and returns 1 if so. This slow flag is used, in addition
+ * to the budget timeout, to reduce the amount of service provided to
+ * seeky processes, and hence reduce their chances to lower the
+ * throughput. See the code for more details.
+ */
+static int bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ int compensate)
+{
+ u64 bw, usecs, expected, timeout;
+ ktime_t delta;
+ int update = 0;
+
+ if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq))
+ return 0;
+
+ if (compensate)
+ delta = bfqd->last_idling_start;
+ else
+ delta = ktime_get();
+ delta = ktime_sub(delta, bfqd->last_budget_start);
+ usecs = ktime_to_us(delta);
+
+ /* Don't trust short/unrealistic values. */
+ if (usecs < 100 || usecs >= LONG_MAX)
+ return 0;
+
+ /*
+ * Calculate the bandwidth for the last slice. We use a 64 bit
+ * value to store the peak rate, in sectors per usec in fixed
+ * point math. We do so to have enough precision in the estimate
+ * and to avoid overflows.
+ */
+ bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT;
+ do_div(bw, (unsigned long)usecs);
+
+ timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
+
+ /*
+ * Use only long (> 20ms) intervals to filter out spikes for
+ * the peak rate estimation.
+ */
+ if (usecs > 20000) {
+ if (bw > bfqd->peak_rate) {
+ bfqd->peak_rate = bw;
+ update = 1;
+ bfq_log(bfqd, "new peak_rate=%llu", bw);
+ }
+
+ update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1;
+
+ if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES)
+ bfqd->peak_rate_samples++;
+
+ if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES &&
+ update && bfqd->bfq_user_max_budget == 0) {
+ bfqd->bfq_max_budget =
+ bfq_calc_max_budget(bfqd->peak_rate,
+ timeout);
+ bfq_log(bfqd, "new max_budget=%lu",
+ bfqd->bfq_max_budget);
+ }
+ }
+
+ /*
+ * A process is considered ``slow'' (i.e., seeky, so that we
+ * cannot treat it fairly in the service domain, as it would
+ * slow down too much the other processes) if, when a slice
+ * ends for whatever reason, it has received service at a
+ * rate that would not be high enough to complete the budget
+ * before the budget timeout expiration.
+ */
+ expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT;
+
+ /*
+ * Caveat: processes doing IO in the slower disk zones will
+ * tend to be slow(er) even if not seeky. And the estimated
+ * peak rate will actually be an average over the disk
+ * surface. Hence, to not be too harsh with unlucky processes,
+ * we keep a budget/3 margin of safety before declaring a
+ * process slow.
+ */
+ return expected > (4 * bfqq->entity.budget) / 3;
+}
+
+/**
+ * bfq_bfqq_expire - expire a queue.
+ * @bfqd: device owning the queue.
+ * @bfqq: the queue to expire.
+ * @compensate: if true, compensate for the time spent idling.
+ * @reason: the reason causing the expiration.
+ *
+ *
+ * If the process associated to the queue is slow (i.e., seeky), or in
+ * case of budget timeout, or, finally, if it is async, we
+ * artificially charge it an entire budget (independently of the
+ * actual service it received). As a consequence, the queue will get
+ * higher timestamps than the correct ones upon reactivation, and
+ * hence it will be rescheduled as if it had received more service
+ * than what it actually received. In the end, this class of processes
+ * will receive less service in proportion to how slowly they consume
+ * their budgets (and hence how seriously they tend to lower the
+ * throughput).
+ *
+ * In contrast, when a queue expires because it has been idling for
+ * too much or because it exhausted its budget, we do not touch the
+ * amount of service it has received. Hence when the queue will be
+ * reactivated and its timestamps updated, the latter will be in sync
+ * with the actual service received by the queue until expiration.
+ *
+ * Charging a full budget to the first type of queues and the exact
+ * service to the others has the effect of using the WF2Q+ policy to
+ * schedule the former on a timeslice basis, without violating the
+ * service domain guarantees of the latter.
+ */
+static void bfq_bfqq_expire(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq,
+ int compensate,
+ enum bfqq_expiration reason)
+{
+ int slow;
+
+ /* Update disk peak rate for autotuning and check whether the
+ * process is slow (see bfq_update_peak_rate).
+ */
+ slow = bfq_update_peak_rate(bfqd, bfqq, compensate);
+
+ /*
+ * As above explained, 'punish' slow (i.e., seeky), timed-out
+ * and async queues, to favor sequential sync workloads.
+ */
+ if (slow || reason == BFQ_BFQQ_BUDGET_TIMEOUT)
+ bfq_bfqq_charge_full_budget(bfqq);
+
+ bfq_log_bfqq(bfqd, bfqq,
+ "expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
+ slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
+
+ /*
+ * Increase, decrease or leave budget unchanged according to
+ * reason.
+ */
+ __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
+ __bfq_bfqq_expire(bfqd, bfqq);
+}
+
+/*
+ * Budget timeout is not implemented through a dedicated timer, but
+ * just checked on request arrivals and completions, as well as on
+ * idle timer expirations.
+ */
+static int bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
+{
+ if (bfq_bfqq_budget_new(bfqq) ||
+ time_before(jiffies, bfqq->budget_timeout))
+ return 0;
+ return 1;
+}
+
+/*
+ * If we expire a queue that is waiting for the arrival of a new
+ * request, we may prevent the fictitious timestamp back-shifting that
+ * allows the guarantees of the queue to be preserved (see [1] for
+ * this tricky aspect). Hence we return true only if this condition
+ * does not hold, or if the queue is slow enough to deserve only to be
+ * kicked off for preserving a high throughput.
+*/
+static inline int bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
+{
+ bfq_log_bfqq(bfqq->bfqd, bfqq,
+ "may_budget_timeout: wait_request %d left %d timeout %d",
+ bfq_bfqq_wait_request(bfqq),
+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
+ bfq_bfqq_budget_timeout(bfqq));
+
+ return (!bfq_bfqq_wait_request(bfqq) ||
+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
+ &&
+ bfq_bfqq_budget_timeout(bfqq);
+}
+
+/*
+ * Device idling is allowed only for sync queues that have a non-null
+ * idle window.
+ */
+static inline bool bfq_bfqq_must_not_expire(struct bfq_queue *bfqq)
+{
+ return bfq_bfqq_sync(bfqq) && bfq_bfqq_idle_window(bfqq);
+}
+
+/*
+ * If the in-service queue is empty, but it is sync and the queue has its
+ * idle window set (in this case, waiting for a new request for the queue
+ * is likely to boost the throughput), then:
+ * 1) the queue must remain in service and cannot be expired, and
+ * 2) the disk must be idled to wait for the possible arrival of a new
+ * request for the queue.
+ */
+static inline bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
+{
+ struct bfq_data *bfqd = bfqq->bfqd;
+
+ return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 &&
+ bfq_bfqq_must_not_expire(bfqq);
+}
+
+/*
+ * Select a queue for service. If we have a current queue in service,
+ * check whether to continue servicing it, or retrieve and set a new one.
+ */
+static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
+{
+ struct bfq_queue *bfqq;
+ struct request *next_rq;
+ enum bfqq_expiration reason = BFQ_BFQQ_BUDGET_TIMEOUT;
+
+ bfqq = bfqd->in_service_queue;
+ if (bfqq == NULL)
+ goto new_queue;
+
+ bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
+
+ if (bfq_may_expire_for_budg_timeout(bfqq) &&
+ !timer_pending(&bfqd->idle_slice_timer) &&
+ !bfq_bfqq_must_idle(bfqq))
+ goto expire;
+
+ next_rq = bfqq->next_rq;
+ /*
+ * If bfqq has requests queued and it has enough budget left to
+ * serve them, keep the queue, otherwise expire it.
+ */
+ if (next_rq != NULL) {
+ if (bfq_serv_to_charge(next_rq, bfqq) >
+ bfq_bfqq_budget_left(bfqq)) {
+ reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
+ goto expire;
+ } else {
+ /*
+ * The idle timer may be pending because we may
+ * not disable disk idling even when a new request
+ * arrives.
+ */
+ if (timer_pending(&bfqd->idle_slice_timer)) {
+ /*
+ * If we get here: 1) at least a new request
+ * has arrived but we have not disabled the
+ * timer because the request was too small,
+ * 2) then the block layer has unplugged
+ * the device, causing the dispatch to be
+ * invoked.
+ *
+ * Since the device is unplugged, now the
+ * requests are probably large enough to
+ * provide a reasonable throughput.
+ * So we disable idling.
+ */
+ bfq_clear_bfqq_wait_request(bfqq);
+ del_timer(&bfqd->idle_slice_timer);
+ }
+ goto keep_queue;
+ }
+ }
+
+ /*
+ * No requests pending. If the in-service queue still has requests
+ * in flight (possibly waiting for a completion) or is idling for a
+ * new request, then keep it.
+ */
+ if (timer_pending(&bfqd->idle_slice_timer) ||
+ (bfqq->dispatched != 0 && bfq_bfqq_must_not_expire(bfqq))) {
+ bfqq = NULL;
+ goto keep_queue;
+ }
+
+ reason = BFQ_BFQQ_NO_MORE_REQUESTS;
+expire:
+ bfq_bfqq_expire(bfqd, bfqq, 0, reason);
+new_queue:
+ bfqq = bfq_set_in_service_queue(bfqd);
+ bfq_log(bfqd, "select_queue: new queue %d returned",
+ bfqq != NULL ? bfqq->pid : 0);
+keep_queue:
+ return bfqq;
+}
+
+/*
+ * Dispatch one request from bfqq, moving it to the request queue
+ * dispatch list.
+ */
+static int bfq_dispatch_request(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq)
+{
+ int dispatched = 0;
+ struct request *rq;
+ unsigned long service_to_charge;
+
+ /* Follow expired path, else get first next available. */
+ rq = bfq_check_fifo(bfqq);
+ if (rq == NULL)
+ rq = bfqq->next_rq;
+ service_to_charge = bfq_serv_to_charge(rq, bfqq);
+
+ if (service_to_charge > bfq_bfqq_budget_left(bfqq)) {
+ /*
+ * This may happen if the next rq is chosen in fifo order
+ * instead of sector order. The budget is properly
+ * dimensioned to be always sufficient to serve the next
+ * request only if it is chosen in sector order. The reason
+ * is that it would be quite inefficient and little useful
+ * to always make sure that the budget is large enough to
+ * serve even the possible next rq in fifo order.
+ * In fact, requests are seldom served in fifo order.
+ *
+ * Expire the queue for budget exhaustion, and make sure
+ * that the next act_budget is enough to serve the next
+ * request, even if it comes from the fifo expired path.
+ */
+ bfqq->next_rq = rq;
+ /*
+ * Since this dispatch is failed, make sure that
+ * a new one will be performed
+ */
+ if (!bfqd->rq_in_driver)
+ bfq_schedule_dispatch(bfqd);
+ goto expire;
+ }
+
+ /* Finally, insert request into driver dispatch list. */
+ bfq_bfqq_served(bfqq, service_to_charge);
+ bfq_dispatch_insert(bfqd->queue, rq);
+
+ bfq_log_bfqq(bfqd, bfqq,
+ "dispatched %u sec req (%llu), budg left %lu",
+ blk_rq_sectors(rq),
+ (long long unsigned)blk_rq_pos(rq),
+ bfq_bfqq_budget_left(bfqq));
+
+ dispatched++;
+
+ if (bfqd->in_service_bic == NULL) {
+ atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount);
+ bfqd->in_service_bic = RQ_BIC(rq);
+ }
+
+ if (bfqd->busy_queues > 1 && ((!bfq_bfqq_sync(bfqq) &&
+ dispatched >= bfqd->bfq_max_budget_async_rq) ||
+ bfq_class_idle(bfqq)))
+ goto expire;
+
+ return dispatched;
+
+expire:
+ bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_EXHAUSTED);
+ return dispatched;
+}
+
+static int __bfq_forced_dispatch_bfqq(struct bfq_queue *bfqq)
+{
+ int dispatched = 0;
+
+ while (bfqq->next_rq != NULL) {
+ bfq_dispatch_insert(bfqq->bfqd->queue, bfqq->next_rq);
+ dispatched++;
+ }
+
+ return dispatched;
+}
+
+/*
+ * Drain our current requests.
+ * Used for barriers and when switching io schedulers on-the-fly.
+ */
+static int bfq_forced_dispatch(struct bfq_data *bfqd)
+{
+ struct bfq_queue *bfqq, *n;
+ struct bfq_service_tree *st;
+ int dispatched = 0;
+
+ bfqq = bfqd->in_service_queue;
+ if (bfqq != NULL)
+ __bfq_bfqq_expire(bfqd, bfqq);
+
+ /*
+ * Loop through classes, and be careful to leave the scheduler
+ * in a consistent state, as feedback mechanisms and vtime
+ * updates cannot be disabled during the process.
+ */
+ list_for_each_entry_safe(bfqq, n, &bfqd->active_list, bfqq_list) {
+ st = bfq_entity_service_tree(&bfqq->entity);
+
+ dispatched += __bfq_forced_dispatch_bfqq(bfqq);
+ bfqq->max_budget = bfq_max_budget(bfqd);
+
+ bfq_forget_idle(st);
+ }
+
+ return dispatched;
+}
+
+static int bfq_dispatch_requests(struct request_queue *q, int force)
+{
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+ struct bfq_queue *bfqq;
+ int max_dispatch;
+
+ bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
+ if (bfqd->busy_queues == 0)
+ return 0;
+
+ if (unlikely(force))
+ return bfq_forced_dispatch(bfqd);
+
+ bfqq = bfq_select_queue(bfqd);
+ if (bfqq == NULL)
+ return 0;
+
+ max_dispatch = bfqd->bfq_quantum;
+ if (bfq_class_idle(bfqq))
+ max_dispatch = 1;
+
+ if (!bfq_bfqq_sync(bfqq))
+ max_dispatch = bfqd->bfq_max_budget_async_rq;
+
+ if (bfqq->dispatched >= max_dispatch) {
+ if (bfqd->busy_queues > 1)
+ return 0;
+ if (bfqq->dispatched >= 4 * max_dispatch)
+ return 0;
+ }
+
+ if (bfqd->sync_flight != 0 && !bfq_bfqq_sync(bfqq))
+ return 0;
+
+ bfq_clear_bfqq_wait_request(bfqq);
+
+ if (!bfq_dispatch_request(bfqd, bfqq))
+ return 0;
+
+ bfq_log_bfqq(bfqd, bfqq, "dispatched one request of %d (max_disp %d)",
+ bfqq->pid, max_dispatch);
+
+ return 1;
+}
+
+/*
+ * Task holds one reference to the queue, dropped when task exits. Each rq
+ * in-flight on this queue also holds a reference, dropped when rq is freed.
+ *
+ * Queue lock must be held here.
+ */
+static void bfq_put_queue(struct bfq_queue *bfqq)
+{
+ struct bfq_data *bfqd = bfqq->bfqd;
+
+ bfq_log_bfqq(bfqd, bfqq, "put_queue: %p %d", bfqq,
+ atomic_read(&bfqq->ref));
+ if (!atomic_dec_and_test(&bfqq->ref))
+ return;
+
+ bfq_log_bfqq(bfqd, bfqq, "put_queue: %p freed", bfqq);
+
+ kmem_cache_free(bfq_pool, bfqq);
+}
+
+static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+{
+ if (bfqq == bfqd->in_service_queue) {
+ __bfq_bfqq_expire(bfqd, bfqq);
+ bfq_schedule_dispatch(bfqd);
+ }
+
+ bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq,
+ atomic_read(&bfqq->ref));
+
+ bfq_put_queue(bfqq);
+}
+
+static inline void bfq_init_icq(struct io_cq *icq)
+{
+ icq_to_bic(icq)->ttime.last_end_request = jiffies;
+}
+
+static void bfq_exit_icq(struct io_cq *icq)
+{
+ struct bfq_io_cq *bic = icq_to_bic(icq);
+ struct bfq_data *bfqd = bic_to_bfqd(bic);
+
+ if (bic->bfqq[BLK_RW_ASYNC]) {
+ bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_ASYNC]);
+ bic->bfqq[BLK_RW_ASYNC] = NULL;
+ }
+
+ if (bic->bfqq[BLK_RW_SYNC]) {
+ bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_SYNC]);
+ bic->bfqq[BLK_RW_SYNC] = NULL;
+ }
+}
+
+/*
+ * Update the entity prio values; note that the new values will not
+ * be used until the next (re)activation.
+ */
+static void bfq_init_prio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
+{
+ struct task_struct *tsk = current;
+ int ioprio_class;
+
+ if (!bfq_bfqq_prio_changed(bfqq))
+ return;
+
+ ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
+ switch (ioprio_class) {
+ default:
+ dev_err(bfqq->bfqd->queue->backing_dev_info.dev,
+ "bfq: bad prio %x\n", ioprio_class);
+ case IOPRIO_CLASS_NONE:
+ /*
+ * No prio set, inherit CPU scheduling settings.
+ */
+ bfqq->entity.new_ioprio = task_nice_ioprio(tsk);
+ bfqq->entity.new_ioprio_class = task_nice_ioclass(tsk);
+ break;
+ case IOPRIO_CLASS_RT:
+ bfqq->entity.new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
+ bfqq->entity.new_ioprio_class = IOPRIO_CLASS_RT;
+ break;
+ case IOPRIO_CLASS_BE:
+ bfqq->entity.new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
+ bfqq->entity.new_ioprio_class = IOPRIO_CLASS_BE;
+ break;
+ case IOPRIO_CLASS_IDLE:
+ bfqq->entity.new_ioprio_class = IOPRIO_CLASS_IDLE;
+ bfqq->entity.new_ioprio = 7;
+ bfq_clear_bfqq_idle_window(bfqq);
+ break;
+ }
+
+ bfqq->entity.ioprio_changed = 1;
+
+ bfq_clear_bfqq_prio_changed(bfqq);
+}
+
+static void bfq_changed_ioprio(struct bfq_io_cq *bic)
+{
+ struct bfq_data *bfqd;
+ struct bfq_queue *bfqq, *new_bfqq;
+ unsigned long uninitialized_var(flags);
+ int ioprio = bic->icq.ioc->ioprio;
+
+ bfqd = bfq_get_bfqd_locked(&(bic->icq.q->elevator->elevator_data),
+ &flags);
+ /*
+ * This condition may trigger on a newly created bic, be sure to
+ * drop the lock before returning.
+ */
+ if (unlikely(bfqd == NULL) || likely(bic->ioprio == ioprio))
+ goto out;
+
+ bfqq = bic->bfqq[BLK_RW_ASYNC];
+ if (bfqq != NULL) {
+ new_bfqq = bfq_get_queue(bfqd, BLK_RW_ASYNC, bic,
+ GFP_ATOMIC);
+ if (new_bfqq != NULL) {
+ bic->bfqq[BLK_RW_ASYNC] = new_bfqq;
+ bfq_log_bfqq(bfqd, bfqq,
+ "changed_ioprio: bfqq %p %d",
+ bfqq, atomic_read(&bfqq->ref));
+ bfq_put_queue(bfqq);
+ }
+ }
+
+ bfqq = bic->bfqq[BLK_RW_SYNC];
+ if (bfqq != NULL)
+ bfq_mark_bfqq_prio_changed(bfqq);
+
+ bic->ioprio = ioprio;
+
+out:
+ bfq_put_bfqd_unlock(bfqd, &flags);
+}
+
+static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ pid_t pid, int is_sync)
+{
+ RB_CLEAR_NODE(&bfqq->entity.rb_node);
+ INIT_LIST_HEAD(&bfqq->fifo);
+
+ atomic_set(&bfqq->ref, 0);
+ bfqq->bfqd = bfqd;
+
+ bfq_mark_bfqq_prio_changed(bfqq);
+
+ if (is_sync) {
+ if (!bfq_class_idle(bfqq))
+ bfq_mark_bfqq_idle_window(bfqq);
+ bfq_mark_bfqq_sync(bfqq);
+ }
+
+ /* Tentative initial value to trade off between thr and lat */
+ bfqq->max_budget = bfq_default_budget(bfqd, bfqq);
+ bfqq->pid = pid;
+}
+
+static struct bfq_queue *bfq_find_alloc_queue(struct bfq_data *bfqd,
+ int is_sync,
+ struct bfq_io_cq *bic,
+ gfp_t gfp_mask)
+{
+ struct bfq_queue *bfqq, *new_bfqq = NULL;
+
+retry:
+ /* bic always exists here */
+ bfqq = bic_to_bfqq(bic, is_sync);
+
+ /*
+ * Always try a new alloc if we fall back to the OOM bfqq
+ * originally, since it should just be a temporary situation.
+ */
+ if (bfqq == NULL || bfqq == &bfqd->oom_bfqq) {
+ bfqq = NULL;
+ if (new_bfqq != NULL) {
+ bfqq = new_bfqq;
+ new_bfqq = NULL;
+ } else if (gfp_mask & __GFP_WAIT) {
+ spin_unlock_irq(bfqd->queue->queue_lock);
+ new_bfqq = kmem_cache_alloc_node(bfq_pool,
+ gfp_mask | __GFP_ZERO,
+ bfqd->queue->node);
+ spin_lock_irq(bfqd->queue->queue_lock);
+ if (new_bfqq != NULL)
+ goto retry;
+ } else {
+ bfqq = kmem_cache_alloc_node(bfq_pool,
+ gfp_mask | __GFP_ZERO,
+ bfqd->queue->node);
+ }
+
+ if (bfqq != NULL) {
+ bfq_init_bfqq(bfqd, bfqq, current->pid, is_sync);
+ bfq_log_bfqq(bfqd, bfqq, "allocated");
+ } else {
+ bfqq = &bfqd->oom_bfqq;
+ bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
+ }
+
+ bfq_init_prio_data(bfqq, bic);
+ }
+
+ if (new_bfqq != NULL)
+ kmem_cache_free(bfq_pool, new_bfqq);
+
+ return bfqq;
+}
+
+static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
+ int ioprio_class, int ioprio)
+{
+ switch (ioprio_class) {
+ case IOPRIO_CLASS_RT:
+ return &async_bfqq[0][ioprio];
+ case IOPRIO_CLASS_NONE:
+ ioprio = IOPRIO_NORM;
+ /* fall through */
+ case IOPRIO_CLASS_BE:
+ return &async_bfqq[1][ioprio];
+ case IOPRIO_CLASS_IDLE:
+ return &async_idle_bfqq;
+ default:
+ BUG();
+ }
+}
+
+static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
+ int is_sync, struct bfq_io_cq *bic,
+ gfp_t gfp_mask)
+{
+ const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
+ const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
+ struct bfq_queue **async_bfqq = NULL;
+ struct bfq_queue *bfqq = NULL;
+
+ if (!is_sync) {
+ async_bfqq = bfq_async_queue_prio(bfqd, ioprio_class, ioprio);
+ bfqq = *async_bfqq;
+ }
+
+ if (bfqq == NULL)
+ bfqq = bfq_find_alloc_queue(bfqd, is_sync, bic, gfp_mask);
+
+ /*
+ * Pin the queue now that it's allocated, scheduler exit will
+ * prune it.
+ */
+ if (!is_sync && *async_bfqq == NULL) {
+ atomic_inc(&bfqq->ref);
+ bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
+ bfqq, atomic_read(&bfqq->ref));
+ *async_bfqq = bfqq;
+ }
+
+ atomic_inc(&bfqq->ref);
+ bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq,
+ atomic_read(&bfqq->ref));
+ return bfqq;
+}
+
+static void bfq_update_io_thinktime(struct bfq_data *bfqd,
+ struct bfq_io_cq *bic)
+{
+ unsigned long elapsed = jiffies - bic->ttime.last_end_request;
+ unsigned long ttime = min(elapsed, 2UL * bfqd->bfq_slice_idle);
+
+ bic->ttime.ttime_samples = (7*bic->ttime.ttime_samples + 256) / 8;
+ bic->ttime.ttime_total = (7*bic->ttime.ttime_total + 256*ttime) / 8;
+ bic->ttime.ttime_mean = (bic->ttime.ttime_total + 128) /
+ bic->ttime.ttime_samples;
+}
+
+static void bfq_update_io_seektime(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq,
+ struct request *rq)
+{
+ sector_t sdist;
+ u64 total;
+
+ if (bfqq->last_request_pos < blk_rq_pos(rq))
+ sdist = blk_rq_pos(rq) - bfqq->last_request_pos;
+ else
+ sdist = bfqq->last_request_pos - blk_rq_pos(rq);
+
+ /*
+ * Don't allow the seek distance to get too large from the
+ * odd fragment, pagein, etc.
+ */
+ if (bfqq->seek_samples == 0) /* first request, not really a seek */
+ sdist = 0;
+ else if (bfqq->seek_samples <= 60) /* second & third seek */
+ sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*1024);
+ else
+ sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*64);
+
+ bfqq->seek_samples = (7*bfqq->seek_samples + 256) / 8;
+ bfqq->seek_total = (7*bfqq->seek_total + (u64)256*sdist) / 8;
+ total = bfqq->seek_total + (bfqq->seek_samples/2);
+ do_div(total, bfqq->seek_samples);
+ bfqq->seek_mean = (sector_t)total;
+
+ bfq_log_bfqq(bfqd, bfqq, "dist=%llu mean=%llu", (u64)sdist,
+ (u64)bfqq->seek_mean);
+}
+
+/*
+ * Disable idle window if the process thinks too long or seeks so much that
+ * it doesn't matter.
+ */
+static void bfq_update_idle_window(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq,
+ struct bfq_io_cq *bic)
+{
+ int enable_idle;
+
+ /* Don't idle for async or idle io prio class. */
+ if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
+ return;
+
+ enable_idle = bfq_bfqq_idle_window(bfqq);
+
+ if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
+ bfqd->bfq_slice_idle == 0 ||
+ (bfqd->hw_tag && BFQQ_SEEKY(bfqq)))
+ enable_idle = 0;
+ else if (bfq_sample_valid(bic->ttime.ttime_samples)) {
+ if (bic->ttime.ttime_mean > bfqd->bfq_slice_idle)
+ enable_idle = 0;
+ else
+ enable_idle = 1;
+ }
+ bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
+ enable_idle);
+
+ if (enable_idle)
+ bfq_mark_bfqq_idle_window(bfqq);
+ else
+ bfq_clear_bfqq_idle_window(bfqq);
+}
+
+/*
+ * Called when a new fs request (rq) is added to bfqq. Check if there's
+ * something we should do about it.
+ */
+static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ struct request *rq)
+{
+ struct bfq_io_cq *bic = RQ_BIC(rq);
+
+ if (rq->cmd_flags & REQ_META)
+ bfqq->meta_pending++;
+
+ bfq_update_io_thinktime(bfqd, bic);
+ bfq_update_io_seektime(bfqd, bfqq, rq);
+ if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
+ !BFQQ_SEEKY(bfqq))
+ bfq_update_idle_window(bfqd, bfqq, bic);
+
+ bfq_log_bfqq(bfqd, bfqq,
+ "rq_enqueued: idle_window=%d (seeky %d, mean %llu)",
+ bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq),
+ (long long unsigned)bfqq->seek_mean);
+
+ bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
+
+ if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
+ int small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
+ blk_rq_sectors(rq) < 32;
+ int budget_timeout = bfq_bfqq_budget_timeout(bfqq);
+
+ /*
+ * There is just this request queued: if the request
+ * is small and the queue is not to be expired, then
+ * just exit.
+ *
+ * In this way, if the disk is being idled to wait for
+ * a new request from the in-service queue, we avoid
+ * unplugging the device and committing the disk to serve
+ * just a small request. On the contrary, we wait for
+ * the block layer to decide when to unplug the device:
+ * hopefully, new requests will be merged to this one
+ * quickly, then the device will be unplugged and
+ * larger requests will be dispatched.
+ */
+ if (small_req && !budget_timeout)
+ return;
+
+ /*
+ * A large enough request arrived, or the queue is to
+ * be expired: in both cases disk idling is to be
+ * stopped, so clear wait_request flag and reset
+ * timer.
+ */
+ bfq_clear_bfqq_wait_request(bfqq);
+ del_timer(&bfqd->idle_slice_timer);
+
+ /*
+ * The queue is not empty, because a new request just
+ * arrived. Hence we can safely expire the queue, in
+ * case of budget timeout, without risking that the
+ * timestamps of the queue are not updated correctly.
+ * See [1] for more details.
+ */
+ if (budget_timeout)
+ bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_TIMEOUT);
+
+ /*
+ * Let the request rip immediately, or let a new queue be
+ * selected if bfqq has just been expired.
+ */
+ __blk_run_queue(bfqd->queue);
+ }
+}
+
+static void bfq_insert_request(struct request_queue *q, struct request *rq)
+{
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
+
+ assert_spin_locked(bfqd->queue->queue_lock);
+
+ bfq_init_prio_data(bfqq, RQ_BIC(rq));
+
+ bfq_add_request(rq);
+
+ rq->fifo_time = jiffies + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
+ list_add_tail(&rq->queuelist, &bfqq->fifo);
+
+ bfq_rq_enqueued(bfqd, bfqq, rq);
+}
+
+static void bfq_update_hw_tag(struct bfq_data *bfqd)
+{
+ bfqd->max_rq_in_driver = max(bfqd->max_rq_in_driver,
+ bfqd->rq_in_driver);
+
+ if (bfqd->hw_tag == 1)
+ return;
+
+ /*
+ * This sample is valid if the number of outstanding requests
+ * is large enough to allow a queueing behavior. Note that the
+ * sum is not exact, as it's not taking into account deactivated
+ * requests.
+ */
+ if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
+ return;
+
+ if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
+ return;
+
+ bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
+ bfqd->max_rq_in_driver = 0;
+ bfqd->hw_tag_samples = 0;
+}
+
+static void bfq_completed_request(struct request_queue *q, struct request *rq)
+{
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
+ struct bfq_data *bfqd = bfqq->bfqd;
+ bool sync = bfq_bfqq_sync(bfqq);
+
+ bfq_log_bfqq(bfqd, bfqq, "completed one req with %u sects left (%d)",
+ blk_rq_sectors(rq), sync);
+
+ bfq_update_hw_tag(bfqd);
+
+ bfqd->rq_in_driver--;
+ bfqq->dispatched--;
+
+ if (sync) {
+ bfqd->sync_flight--;
+ RQ_BIC(rq)->ttime.last_end_request = jiffies;
+ }
+
+ /*
+ * If this is the in-service queue, check if it needs to be expired,
+ * or if we want to idle in case it has no pending requests.
+ */
+ if (bfqd->in_service_queue == bfqq) {
+ if (bfq_bfqq_budget_new(bfqq))
+ bfq_set_budget_timeout(bfqd);
+
+ if (bfq_bfqq_must_idle(bfqq)) {
+ bfq_arm_slice_timer(bfqd);
+ goto out;
+ } else if (bfq_may_expire_for_budg_timeout(bfqq))
+ bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_TIMEOUT);
+ else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
+ (bfqq->dispatched == 0 ||
+ !bfq_bfqq_must_not_expire(bfqq)))
+ bfq_bfqq_expire(bfqd, bfqq, 0,
+ BFQ_BFQQ_NO_MORE_REQUESTS);
+ }
+
+ if (!bfqd->rq_in_driver)
+ bfq_schedule_dispatch(bfqd);
+
+out:
+ return;
+}
+
+static inline int __bfq_may_queue(struct bfq_queue *bfqq)
+{
+ if (bfq_bfqq_wait_request(bfqq) && bfq_bfqq_must_alloc(bfqq)) {
+ bfq_clear_bfqq_must_alloc(bfqq);
+ return ELV_MQUEUE_MUST;
+ }
+
+ return ELV_MQUEUE_MAY;
+}
+
+static int bfq_may_queue(struct request_queue *q, int rw)
+{
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+ struct task_struct *tsk = current;
+ struct bfq_io_cq *bic;
+ struct bfq_queue *bfqq;
+
+ /*
+ * Don't force setup of a queue from here, as a call to may_queue
+ * does not necessarily imply that a request actually will be
+ * queued. So just lookup a possibly existing queue, or return
+ * 'may queue' if that fails.
+ */
+ bic = bfq_bic_lookup(bfqd, tsk->io_context);
+ if (bic == NULL)
+ return ELV_MQUEUE_MAY;
+
+ bfqq = bic_to_bfqq(bic, rw_is_sync(rw));
+ if (bfqq != NULL) {
+ bfq_init_prio_data(bfqq, bic);
+
+ return __bfq_may_queue(bfqq);
+ }
+
+ return ELV_MQUEUE_MAY;
+}
+
+/*
+ * Queue lock held here.
+ */
+static void bfq_put_request(struct request *rq)
+{
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
+
+ if (bfqq != NULL) {
+ const int rw = rq_data_dir(rq);
+
+ bfqq->allocated[rw]--;
+
+ rq->elv.priv[0] = NULL;
+ rq->elv.priv[1] = NULL;
+
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "put_request %p, %d",
+ bfqq, atomic_read(&bfqq->ref));
+ bfq_put_queue(bfqq);
+ }
+}
+
+/*
+ * Allocate bfq data structures associated with this request.
+ */
+static int bfq_set_request(struct request_queue *q, struct request *rq,
+ struct bio *bio, gfp_t gfp_mask)
+{
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+ struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
+ const int rw = rq_data_dir(rq);
+ const int is_sync = rq_is_sync(rq);
+ struct bfq_queue *bfqq;
+ unsigned long flags;
+
+ might_sleep_if(gfp_mask & __GFP_WAIT);
+
+ bfq_changed_ioprio(bic);
+
+ spin_lock_irqsave(q->queue_lock, flags);
+
+ if (bic == NULL)
+ goto queue_fail;
+
+ bfqq = bic_to_bfqq(bic, is_sync);
+ if (bfqq == NULL || bfqq == &bfqd->oom_bfqq) {
+ bfqq = bfq_get_queue(bfqd, is_sync, bic, gfp_mask);
+ bic_set_bfqq(bic, bfqq, is_sync);
+ }
+
+ bfqq->allocated[rw]++;
+ atomic_inc(&bfqq->ref);
+ bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq,
+ atomic_read(&bfqq->ref));
+
+ rq->elv.priv[0] = bic;
+ rq->elv.priv[1] = bfqq;
+
+ spin_unlock_irqrestore(q->queue_lock, flags);
+
+ return 0;
+
+queue_fail:
+ bfq_schedule_dispatch(bfqd);
+ spin_unlock_irqrestore(q->queue_lock, flags);
+
+ return 1;
+}
+
+static void bfq_kick_queue(struct work_struct *work)
+{
+ struct bfq_data *bfqd =
+ container_of(work, struct bfq_data, unplug_work);
+ struct request_queue *q = bfqd->queue;
+
+ spin_lock_irq(q->queue_lock);
+ __blk_run_queue(q);
+ spin_unlock_irq(q->queue_lock);
+}
+
+/*
+ * Handler of the expiration of the timer running if the in-service queue
+ * is idling inside its time slice.
+ */
+static void bfq_idle_slice_timer(unsigned long data)
+{
+ struct bfq_data *bfqd = (struct bfq_data *)data;
+ struct bfq_queue *bfqq;
+ unsigned long flags;
+ enum bfqq_expiration reason;
+
+ spin_lock_irqsave(bfqd->queue->queue_lock, flags);
+
+ bfqq = bfqd->in_service_queue;
+ /*
+ * Theoretical race here: the in-service queue can be NULL or
+ * different from the queue that was idling if the timer handler
+ * spins on the queue_lock and a new request arrives for the
+ * current queue and there is a full dispatch cycle that changes
+ * the in-service queue. This can hardly happen, but in the worst
+ * case we just expire a queue too early.
+ */
+ if (bfqq != NULL) {
+ bfq_log_bfqq(bfqd, bfqq, "slice_timer expired");
+ if (bfq_bfqq_budget_timeout(bfqq))
+ /*
+ * Also here the queue can be safely expired
+ * for budget timeout without wasting
+ * guarantees
+ */
+ reason = BFQ_BFQQ_BUDGET_TIMEOUT;
+ else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
+ /*
+ * The queue may not be empty upon timer expiration,
+ * because we may not disable the timer when the
+ * first request of the in-service queue arrives
+ * during disk idling.
+ */
+ reason = BFQ_BFQQ_TOO_IDLE;
+ else
+ goto schedule_dispatch;
+
+ bfq_bfqq_expire(bfqd, bfqq, 1, reason);
+ }
+
+schedule_dispatch:
+ bfq_schedule_dispatch(bfqd);
+
+ spin_unlock_irqrestore(bfqd->queue->queue_lock, flags);
+}
+
+static void bfq_shutdown_timer_wq(struct bfq_data *bfqd)
+{
+ del_timer_sync(&bfqd->idle_slice_timer);
+ cancel_work_sync(&bfqd->unplug_work);
+}
+
+static inline void __bfq_put_async_bfqq(struct bfq_data *bfqd,
+ struct bfq_queue **bfqq_ptr)
+{
+ struct bfq_queue *bfqq = *bfqq_ptr;
+
+ bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
+ if (bfqq != NULL) {
+ bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
+ bfqq, atomic_read(&bfqq->ref));
+ bfq_put_queue(bfqq);
+ *bfqq_ptr = NULL;
+ }
+}
+
+/*
+ * Release the extra reference of the async queues as the device
+ * goes away.
+ */
+static void bfq_put_async_queues(struct bfq_data *bfqd)
+{
+ int i, j;
+
+ for (i = 0; i < 2; i++)
+ for (j = 0; j < IOPRIO_BE_NR; j++)
+ __bfq_put_async_bfqq(bfqd, &async_bfqq[i][j]);
+
+ __bfq_put_async_bfqq(bfqd, &async_idle_bfqq);
+}
+
+static void bfq_exit_queue(struct elevator_queue *e)
+{
+ struct bfq_data *bfqd = e->elevator_data;
+ struct request_queue *q = bfqd->queue;
+ struct bfq_queue *bfqq, *n;
+
+ bfq_shutdown_timer_wq(bfqd);
+
+ spin_lock_irq(q->queue_lock);
+
+ list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
+ bfq_deactivate_bfqq(bfqd, bfqq, 0);
+
+ bfq_put_async_queues(bfqd);
+ spin_unlock_irq(q->queue_lock);
+
+ bfq_shutdown_timer_wq(bfqd);
+
+ synchronize_rcu();
+
+ kfree(bfqd);
+}
+
+static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
+{
+ struct bfq_data *bfqd;
+ struct elevator_queue *eq;
+
+ eq = elevator_alloc(q, e);
+ if (eq == NULL)
+ return -ENOMEM;
+
+ bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
+ if (bfqd == NULL) {
+ kobject_put(&eq->kobj);
+ return -ENOMEM;
+ }
+ eq->elevator_data = bfqd;
+
+ /*
+ * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
+ * Grab a permanent reference to it, so that the normal code flow
+ * will not attempt to free it.
+ */
+ bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, 1, 0);
+ atomic_inc(&bfqd->oom_bfqq.ref);
+
+ bfqd->queue = q;
+
+ spin_lock_irq(q->queue_lock);
+ q->elevator = eq;
+ spin_unlock_irq(q->queue_lock);
+
+ init_timer(&bfqd->idle_slice_timer);
+ bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
+ bfqd->idle_slice_timer.data = (unsigned long)bfqd;
+
+ INIT_WORK(&bfqd->unplug_work, bfq_kick_queue);
+
+ INIT_LIST_HEAD(&bfqd->active_list);
+ INIT_LIST_HEAD(&bfqd->idle_list);
+
+ bfqd->hw_tag = -1;
+
+ bfqd->bfq_max_budget = bfq_default_max_budget;
+
+ bfqd->bfq_quantum = bfq_quantum;
+ bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
+ bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
+ bfqd->bfq_back_max = bfq_back_max;
+ bfqd->bfq_back_penalty = bfq_back_penalty;
+ bfqd->bfq_slice_idle = bfq_slice_idle;
+ bfqd->bfq_class_idle_last_service = 0;
+ bfqd->bfq_max_budget_async_rq = bfq_max_budget_async_rq;
+ bfqd->bfq_timeout[BLK_RW_ASYNC] = bfq_timeout_async;
+ bfqd->bfq_timeout[BLK_RW_SYNC] = bfq_timeout_sync;
+
+ return 0;
+}
+
+static void bfq_slab_kill(void)
+{
+ if (bfq_pool != NULL)
+ kmem_cache_destroy(bfq_pool);
+}
+
+static int __init bfq_slab_setup(void)
+{
+ bfq_pool = KMEM_CACHE(bfq_queue, 0);
+ if (bfq_pool == NULL)
+ return -ENOMEM;
+ return 0;
+}
+
+static ssize_t bfq_var_show(unsigned int var, char *page)
+{
+ return sprintf(page, "%d\n", var);
+}
+
+static ssize_t bfq_var_store(unsigned long *var, const char *page,
+ size_t count)
+{
+ unsigned long new_val;
+ int ret = kstrtoul(page, 10, &new_val);
+
+ if (ret == 0)
+ *var = new_val;
+
+ return count;
+}
+
+static ssize_t bfq_weights_show(struct elevator_queue *e, char *page)
+{
+ struct bfq_queue *bfqq;
+ struct bfq_data *bfqd = e->elevator_data;
+ ssize_t num_char = 0;
+
+ num_char += sprintf(page + num_char, "Tot reqs queued %d\n\n",
+ bfqd->queued);
+
+ spin_lock_irq(bfqd->queue->queue_lock);
+
+ num_char += sprintf(page + num_char, "Active:\n");
+ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) {
+ num_char += sprintf(page + num_char,
+ "pid%d: weight %hu, nr_queued %d %d\n",
+ bfqq->pid,
+ bfqq->entity.weight,
+ bfqq->queued[0],
+ bfqq->queued[1]);
+ }
+
+ num_char += sprintf(page + num_char, "Idle:\n");
+ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) {
+ num_char += sprintf(page + num_char,
+ "pid%d: weight %hu\n",
+ bfqq->pid,
+ bfqq->entity.weight);
+ }
+
+ spin_unlock_irq(bfqd->queue->queue_lock);
+
+ return num_char;
+}
+
+#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
+static ssize_t __FUNC(struct elevator_queue *e, char *page) \
+{ \
+ struct bfq_data *bfqd = e->elevator_data; \
+ unsigned int __data = __VAR; \
+ if (__CONV) \
+ __data = jiffies_to_msecs(__data); \
+ return bfq_var_show(__data, (page)); \
+}
+SHOW_FUNCTION(bfq_quantum_show, bfqd->bfq_quantum, 0);
+SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 1);
+SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 1);
+SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
+SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
+SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 1);
+SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
+SHOW_FUNCTION(bfq_max_budget_async_rq_show,
+ bfqd->bfq_max_budget_async_rq, 0);
+SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout[BLK_RW_SYNC], 1);
+SHOW_FUNCTION(bfq_timeout_async_show, bfqd->bfq_timeout[BLK_RW_ASYNC], 1);
+#undef SHOW_FUNCTION
+
+#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
+static ssize_t \
+__FUNC(struct elevator_queue *e, const char *page, size_t count) \
+{ \
+ struct bfq_data *bfqd = e->elevator_data; \
+ unsigned long uninitialized_var(__data); \
+ int ret = bfq_var_store(&__data, (page), count); \
+ if (__data < (MIN)) \
+ __data = (MIN); \
+ else if (__data > (MAX)) \
+ __data = (MAX); \
+ if (__CONV) \
+ *(__PTR) = msecs_to_jiffies(__data); \
+ else \
+ *(__PTR) = __data; \
+ return ret; \
+}
+STORE_FUNCTION(bfq_quantum_store, &bfqd->bfq_quantum, 1, INT_MAX, 0);
+STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
+ INT_MAX, 1);
+STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
+ INT_MAX, 1);
+STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
+STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
+ INT_MAX, 0);
+STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 1);
+STORE_FUNCTION(bfq_max_budget_async_rq_store, &bfqd->bfq_max_budget_async_rq,
+ 1, INT_MAX, 0);
+STORE_FUNCTION(bfq_timeout_async_store, &bfqd->bfq_timeout[BLK_RW_ASYNC], 0,
+ INT_MAX, 1);
+#undef STORE_FUNCTION
+
+/* do nothing for the moment */
+static ssize_t bfq_weights_store(struct elevator_queue *e,
+ const char *page, size_t count)
+{
+ return count;
+}
+
+static inline unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd)
+{
+ u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
+
+ if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES)
+ return bfq_calc_max_budget(bfqd->peak_rate, timeout);
+ else
+ return bfq_default_max_budget;
+}
+
+static ssize_t bfq_max_budget_store(struct elevator_queue *e,
+ const char *page, size_t count)
+{
+ struct bfq_data *bfqd = e->elevator_data;
+ unsigned long uninitialized_var(__data);
+ int ret = bfq_var_store(&__data, (page), count);
+
+ if (__data == 0)
+ bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
+ else {
+ if (__data > INT_MAX)
+ __data = INT_MAX;
+ bfqd->bfq_max_budget = __data;
+ }
+
+ bfqd->bfq_user_max_budget = __data;
+
+ return ret;
+}
+
+static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
+ const char *page, size_t count)
+{
+ struct bfq_data *bfqd = e->elevator_data;
+ unsigned long uninitialized_var(__data);
+ int ret = bfq_var_store(&__data, (page), count);
+
+ if (__data < 1)
+ __data = 1;
+ else if (__data > INT_MAX)
+ __data = INT_MAX;
+
+ bfqd->bfq_timeout[BLK_RW_SYNC] = msecs_to_jiffies(__data);
+ if (bfqd->bfq_user_max_budget == 0)
+ bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
+
+ return ret;
+}
+
+#define BFQ_ATTR(name) \
+ __ATTR(name, S_IRUGO|S_IWUSR, bfq_##name##_show, bfq_##name##_store)
+
+static struct elv_fs_entry bfq_attrs[] = {
+ BFQ_ATTR(quantum),
+ BFQ_ATTR(fifo_expire_sync),
+ BFQ_ATTR(fifo_expire_async),
+ BFQ_ATTR(back_seek_max),
+ BFQ_ATTR(back_seek_penalty),
+ BFQ_ATTR(slice_idle),
+ BFQ_ATTR(max_budget),
+ BFQ_ATTR(max_budget_async_rq),
+ BFQ_ATTR(timeout_sync),
+ BFQ_ATTR(timeout_async),
+ BFQ_ATTR(weights),
+ __ATTR_NULL
+};
+
+static struct elevator_type iosched_bfq = {
+ .ops = {
+ .elevator_merge_fn = bfq_merge,
+ .elevator_merged_fn = bfq_merged_request,
+ .elevator_merge_req_fn = bfq_merged_requests,
+ .elevator_allow_merge_fn = bfq_allow_merge,
+ .elevator_dispatch_fn = bfq_dispatch_requests,
+ .elevator_add_req_fn = bfq_insert_request,
+ .elevator_activate_req_fn = bfq_activate_request,
+ .elevator_deactivate_req_fn = bfq_deactivate_request,
+ .elevator_completed_req_fn = bfq_completed_request,
+ .elevator_former_req_fn = elv_rb_former_request,
+ .elevator_latter_req_fn = elv_rb_latter_request,
+ .elevator_init_icq_fn = bfq_init_icq,
+ .elevator_exit_icq_fn = bfq_exit_icq,
+ .elevator_set_req_fn = bfq_set_request,
+ .elevator_put_req_fn = bfq_put_request,
+ .elevator_may_queue_fn = bfq_may_queue,
+ .elevator_init_fn = bfq_init_queue,
+ .elevator_exit_fn = bfq_exit_queue,
+ },
+ .icq_size = sizeof(struct bfq_io_cq),
+ .icq_align = __alignof__(struct bfq_io_cq),
+ .elevator_attrs = bfq_attrs,
+ .elevator_name = "bfq",
+ .elevator_owner = THIS_MODULE,
+};
+
+static int __init bfq_init(void)
+{
+ /*
+ * Can be 0 on HZ < 1000 setups.
+ */
+ if (bfq_slice_idle == 0)
+ bfq_slice_idle = 1;
+
+ if (bfq_timeout_async == 0)
+ bfq_timeout_async = 1;
+
+ if (bfq_slab_setup())
+ return -ENOMEM;
+
+ elv_register(&iosched_bfq);
+ pr_info("BFQ I/O-scheduler version: v0");
+
+ return 0;
+}
+
+static void __exit bfq_exit(void)
+{
+ elv_unregister(&iosched_bfq);
+ bfq_slab_kill();
+}
+
+module_init(bfq_init);
+module_exit(bfq_exit);
+
+MODULE_AUTHOR("Fabio Checconi, Paolo Valente");
+MODULE_LICENSE("GPL");
diff --git a/block/bfq-sched.c b/block/bfq-sched.c
new file mode 100644
index 0000000..a9142f5
--- /dev/null
+++ b/block/bfq-sched.c
@@ -0,0 +1,936 @@
+/*
+ * BFQ: Hierarchical B-WF2Q+ scheduler.
+ *
+ * Based on ideas and code from CFQ:
+ * Copyright (C) 2003 Jens Axboe <axboe@...nel.dk>
+ *
+ * Copyright (C) 2008 Fabio Checconi <fabio@...dalf.sssup.it>
+ * Paolo Valente <paolo.valente@...more.it>
+ */
+
+#define for_each_entity(entity) \
+ for (; entity != NULL; entity = NULL)
+
+#define for_each_entity_safe(entity, parent) \
+ for (parent = NULL; entity != NULL; entity = parent)
+
+static inline int bfq_update_next_in_service(struct bfq_sched_data *sd)
+{
+ return 0;
+}
+
+static inline void bfq_check_next_in_service(struct bfq_sched_data *sd,
+ struct bfq_entity *entity)
+{
+}
+
+static inline void bfq_update_budget(struct bfq_entity *next_in_service)
+{
+}
+
+/*
+ * Shift for timestamp calculations. This actually limits the maximum
+ * service allowed in one timestamp delta (small shift values increase it),
+ * the maximum total weight that can be used for the queues in the system
+ * (big shift values increase it), and the period of virtual time
+ * wraparounds.
+ */
+#define WFQ_SERVICE_SHIFT 22
+
+/**
+ * bfq_gt - compare two timestamps.
+ * @a: first ts.
+ * @b: second ts.
+ *
+ * Return @a > @b, dealing with wrapping correctly.
+ */
+static inline int bfq_gt(u64 a, u64 b)
+{
+ return (s64)(a - b) > 0;
+}
+
+static inline struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
+{
+ struct bfq_queue *bfqq = NULL;
+
+ if (entity->my_sched_data == NULL)
+ bfqq = container_of(entity, struct bfq_queue, entity);
+
+ return bfqq;
+}
+
+
+/**
+ * bfq_delta - map service into the virtual time domain.
+ * @service: amount of service.
+ * @weight: scale factor (weight of an entity or weight sum).
+ */
+static inline u64 bfq_delta(unsigned long service,
+ unsigned long weight)
+{
+ u64 d = (u64)service << WFQ_SERVICE_SHIFT;
+
+ do_div(d, weight);
+ return d;
+}
+
+/**
+ * bfq_calc_finish - assign the finish time to an entity.
+ * @entity: the entity to act upon.
+ * @service: the service to be charged to the entity.
+ */
+static inline void bfq_calc_finish(struct bfq_entity *entity,
+ unsigned long service)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+
+ entity->finish = entity->start +
+ bfq_delta(service, entity->weight);
+
+ if (bfqq != NULL) {
+ bfq_log_bfqq(bfqq->bfqd, bfqq,
+ "calc_finish: serv %lu, w %d",
+ service, entity->weight);
+ bfq_log_bfqq(bfqq->bfqd, bfqq,
+ "calc_finish: start %llu, finish %llu, delta %llu",
+ entity->start, entity->finish,
+ bfq_delta(service, entity->weight));
+ }
+}
+
+/**
+ * bfq_entity_of - get an entity from a node.
+ * @node: the node field of the entity.
+ *
+ * Convert a node pointer to the relative entity. This is used only
+ * to simplify the logic of some functions and not as the generic
+ * conversion mechanism because, e.g., in the tree walking functions,
+ * the check for a %NULL value would be redundant.
+ */
+static inline struct bfq_entity *bfq_entity_of(struct rb_node *node)
+{
+ struct bfq_entity *entity = NULL;
+
+ if (node != NULL)
+ entity = rb_entry(node, struct bfq_entity, rb_node);
+
+ return entity;
+}
+
+/**
+ * bfq_extract - remove an entity from a tree.
+ * @root: the tree root.
+ * @entity: the entity to remove.
+ */
+static inline void bfq_extract(struct rb_root *root,
+ struct bfq_entity *entity)
+{
+ entity->tree = NULL;
+ rb_erase(&entity->rb_node, root);
+}
+
+/**
+ * bfq_idle_extract - extract an entity from the idle tree.
+ * @st: the service tree of the owning @entity.
+ * @entity: the entity being removed.
+ */
+static void bfq_idle_extract(struct bfq_service_tree *st,
+ struct bfq_entity *entity)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+ struct rb_node *next;
+
+ if (entity == st->first_idle) {
+ next = rb_next(&entity->rb_node);
+ st->first_idle = bfq_entity_of(next);
+ }
+
+ if (entity == st->last_idle) {
+ next = rb_prev(&entity->rb_node);
+ st->last_idle = bfq_entity_of(next);
+ }
+
+ bfq_extract(&st->idle, entity);
+
+ if (bfqq != NULL)
+ list_del(&bfqq->bfqq_list);
+}
+
+/**
+ * bfq_insert - generic tree insertion.
+ * @root: tree root.
+ * @entity: entity to insert.
+ *
+ * This is used for the idle and the active tree, since they are both
+ * ordered by finish time.
+ */
+static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
+{
+ struct bfq_entity *entry;
+ struct rb_node **node = &root->rb_node;
+ struct rb_node *parent = NULL;
+
+ while (*node != NULL) {
+ parent = *node;
+ entry = rb_entry(parent, struct bfq_entity, rb_node);
+
+ if (bfq_gt(entry->finish, entity->finish))
+ node = &parent->rb_left;
+ else
+ node = &parent->rb_right;
+ }
+
+ rb_link_node(&entity->rb_node, parent, node);
+ rb_insert_color(&entity->rb_node, root);
+
+ entity->tree = root;
+}
+
+/**
+ * bfq_update_min - update the min_start field of a entity.
+ * @entity: the entity to update.
+ * @node: one of its children.
+ *
+ * This function is called when @entity may store an invalid value for
+ * min_start due to updates to the active tree. The function assumes
+ * that the subtree rooted at @node (which may be its left or its right
+ * child) has a valid min_start value.
+ */
+static inline void bfq_update_min(struct bfq_entity *entity,
+ struct rb_node *node)
+{
+ struct bfq_entity *child;
+
+ if (node != NULL) {
+ child = rb_entry(node, struct bfq_entity, rb_node);
+ if (bfq_gt(entity->min_start, child->min_start))
+ entity->min_start = child->min_start;
+ }
+}
+
+/**
+ * bfq_update_active_node - recalculate min_start.
+ * @node: the node to update.
+ *
+ * @node may have changed position or one of its children may have moved,
+ * this function updates its min_start value. The left and right subtrees
+ * are assumed to hold a correct min_start value.
+ */
+static inline void bfq_update_active_node(struct rb_node *node)
+{
+ struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
+
+ entity->min_start = entity->start;
+ bfq_update_min(entity, node->rb_right);
+ bfq_update_min(entity, node->rb_left);
+}
+
+/**
+ * bfq_update_active_tree - update min_start for the whole active tree.
+ * @node: the starting node.
+ *
+ * @node must be the deepest modified node after an update. This function
+ * updates its min_start using the values held by its children, assuming
+ * that they did not change, and then updates all the nodes that may have
+ * changed in the path to the root. The only nodes that may have changed
+ * are the ones in the path or their siblings.
+ */
+static void bfq_update_active_tree(struct rb_node *node)
+{
+ struct rb_node *parent;
+
+up:
+ bfq_update_active_node(node);
+
+ parent = rb_parent(node);
+ if (parent == NULL)
+ return;
+
+ if (node == parent->rb_left && parent->rb_right != NULL)
+ bfq_update_active_node(parent->rb_right);
+ else if (parent->rb_left != NULL)
+ bfq_update_active_node(parent->rb_left);
+
+ node = parent;
+ goto up;
+}
+
+/**
+ * bfq_active_insert - insert an entity in the active tree of its
+ * group/device.
+ * @st: the service tree of the entity.
+ * @entity: the entity being inserted.
+ *
+ * The active tree is ordered by finish time, but an extra key is kept
+ * per each node, containing the minimum value for the start times of
+ * its children (and the node itself), so it's possible to search for
+ * the eligible node with the lowest finish time in logarithmic time.
+ */
+static void bfq_active_insert(struct bfq_service_tree *st,
+ struct bfq_entity *entity)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+ struct rb_node *node = &entity->rb_node;
+
+ bfq_insert(&st->active, entity);
+
+ if (node->rb_left != NULL)
+ node = node->rb_left;
+ else if (node->rb_right != NULL)
+ node = node->rb_right;
+
+ bfq_update_active_tree(node);
+
+ if (bfqq != NULL)
+ list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
+}
+
+/**
+ * bfq_ioprio_to_weight - calc a weight from an ioprio.
+ * @ioprio: the ioprio value to convert.
+ */
+static inline unsigned short bfq_ioprio_to_weight(int ioprio)
+{
+ return IOPRIO_BE_NR - ioprio;
+}
+
+/**
+ * bfq_weight_to_ioprio - calc an ioprio from a weight.
+ * @weight: the weight value to convert.
+ *
+ * To preserve as mush as possible the old only-ioprio user interface,
+ * 0 is used as an escape ioprio value for weights (numerically) equal or
+ * larger than IOPRIO_BE_NR
+ */
+static inline unsigned short bfq_weight_to_ioprio(int weight)
+{
+ return IOPRIO_BE_NR - weight < 0 ? 0 : IOPRIO_BE_NR - weight;
+}
+
+static inline void bfq_get_entity(struct bfq_entity *entity)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+
+ if (bfqq != NULL) {
+ atomic_inc(&bfqq->ref);
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
+ bfqq, atomic_read(&bfqq->ref));
+ }
+}
+
+/**
+ * bfq_find_deepest - find the deepest node that an extraction can modify.
+ * @node: the node being removed.
+ *
+ * Do the first step of an extraction in an rb tree, looking for the
+ * node that will replace @node, and returning the deepest node that
+ * the following modifications to the tree can touch. If @node is the
+ * last node in the tree return %NULL.
+ */
+static struct rb_node *bfq_find_deepest(struct rb_node *node)
+{
+ struct rb_node *deepest;
+
+ if (node->rb_right == NULL && node->rb_left == NULL)
+ deepest = rb_parent(node);
+ else if (node->rb_right == NULL)
+ deepest = node->rb_left;
+ else if (node->rb_left == NULL)
+ deepest = node->rb_right;
+ else {
+ deepest = rb_next(node);
+ if (deepest->rb_right != NULL)
+ deepest = deepest->rb_right;
+ else if (rb_parent(deepest) != node)
+ deepest = rb_parent(deepest);
+ }
+
+ return deepest;
+}
+
+/**
+ * bfq_active_extract - remove an entity from the active tree.
+ * @st: the service_tree containing the tree.
+ * @entity: the entity being removed.
+ */
+static void bfq_active_extract(struct bfq_service_tree *st,
+ struct bfq_entity *entity)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+ struct rb_node *node;
+
+ node = bfq_find_deepest(&entity->rb_node);
+ bfq_extract(&st->active, entity);
+
+ if (node != NULL)
+ bfq_update_active_tree(node);
+
+ if (bfqq != NULL)
+ list_del(&bfqq->bfqq_list);
+}
+
+/**
+ * bfq_idle_insert - insert an entity into the idle tree.
+ * @st: the service tree containing the tree.
+ * @entity: the entity to insert.
+ */
+static void bfq_idle_insert(struct bfq_service_tree *st,
+ struct bfq_entity *entity)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+ struct bfq_entity *first_idle = st->first_idle;
+ struct bfq_entity *last_idle = st->last_idle;
+
+ if (first_idle == NULL || bfq_gt(first_idle->finish, entity->finish))
+ st->first_idle = entity;
+ if (last_idle == NULL || bfq_gt(entity->finish, last_idle->finish))
+ st->last_idle = entity;
+
+ bfq_insert(&st->idle, entity);
+
+ if (bfqq != NULL)
+ list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
+}
+
+/**
+ * bfq_forget_entity - remove an entity from the wfq trees.
+ * @st: the service tree.
+ * @entity: the entity being removed.
+ *
+ * Update the device status and forget everything about @entity, putting
+ * the device reference to it, if it is a queue. Entities belonging to
+ * groups are not refcounted.
+ */
+static void bfq_forget_entity(struct bfq_service_tree *st,
+ struct bfq_entity *entity)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+ struct bfq_sched_data *sd;
+
+ entity->on_st = 0;
+ st->wsum -= entity->weight;
+ if (bfqq != NULL) {
+ sd = entity->sched_data;
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "forget_entity: %p %d",
+ bfqq, atomic_read(&bfqq->ref));
+ bfq_put_queue(bfqq);
+ }
+}
+
+/**
+ * bfq_put_idle_entity - release the idle tree ref of an entity.
+ * @st: service tree for the entity.
+ * @entity: the entity being released.
+ */
+static void bfq_put_idle_entity(struct bfq_service_tree *st,
+ struct bfq_entity *entity)
+{
+ bfq_idle_extract(st, entity);
+ bfq_forget_entity(st, entity);
+}
+
+/**
+ * bfq_forget_idle - update the idle tree if necessary.
+ * @st: the service tree to act upon.
+ *
+ * To preserve the global O(log N) complexity we only remove one entry here;
+ * as the idle tree will not grow indefinitely this can be done safely.
+ */
+static void bfq_forget_idle(struct bfq_service_tree *st)
+{
+ struct bfq_entity *first_idle = st->first_idle;
+ struct bfq_entity *last_idle = st->last_idle;
+
+ if (RB_EMPTY_ROOT(&st->active) && last_idle != NULL &&
+ !bfq_gt(last_idle->finish, st->vtime)) {
+ /*
+ * Forget the whole idle tree, increasing the vtime past
+ * the last finish time of idle entities.
+ */
+ st->vtime = last_idle->finish;
+ }
+
+ if (first_idle != NULL && !bfq_gt(first_idle->finish, st->vtime))
+ bfq_put_idle_entity(st, first_idle);
+}
+
+static struct bfq_service_tree *
+__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
+ struct bfq_entity *entity)
+{
+ struct bfq_service_tree *new_st = old_st;
+
+ if (entity->ioprio_changed) {
+ old_st->wsum -= entity->weight;
+
+ if (entity->new_weight != entity->orig_weight) {
+ entity->orig_weight = entity->new_weight;
+ entity->ioprio =
+ bfq_weight_to_ioprio(entity->orig_weight);
+ } else if (entity->new_ioprio != entity->ioprio) {
+ entity->ioprio = entity->new_ioprio;
+ entity->orig_weight =
+ bfq_ioprio_to_weight(entity->ioprio);
+ } else
+ entity->new_weight = entity->orig_weight =
+ bfq_ioprio_to_weight(entity->ioprio);
+
+ entity->ioprio_class = entity->new_ioprio_class;
+ entity->ioprio_changed = 0;
+
+ /*
+ * NOTE: here we may be changing the weight too early,
+ * this will cause unfairness. The correct approach
+ * would have required additional complexity to defer
+ * weight changes to the proper time instants (i.e.,
+ * when entity->finish <= old_st->vtime).
+ */
+ new_st = bfq_entity_service_tree(entity);
+ entity->weight = entity->orig_weight;
+ new_st->wsum += entity->weight;
+
+ if (new_st != old_st)
+ entity->start = new_st->vtime;
+ }
+
+ return new_st;
+}
+
+/**
+ * bfq_bfqq_served - update the scheduler status after selection for
+ * service.
+ * @bfqq: the queue being served.
+ * @served: bytes to transfer.
+ *
+ * NOTE: this can be optimized, as the timestamps of upper level entities
+ * are synchronized every time a new bfqq is selected for service. By now,
+ * we keep it to better check consistency.
+ */
+static void bfq_bfqq_served(struct bfq_queue *bfqq, unsigned long served)
+{
+ struct bfq_entity *entity = &bfqq->entity;
+ struct bfq_service_tree *st;
+
+ for_each_entity(entity) {
+ st = bfq_entity_service_tree(entity);
+
+ entity->service += served;
+
+ st->vtime += bfq_delta(served, st->wsum);
+ bfq_forget_idle(st);
+ }
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %lu secs", served);
+}
+
+/**
+ * bfq_bfqq_charge_full_budget - set the service to the entity budget.
+ * @bfqq: the queue that needs a service update.
+ *
+ * When it's not possible to be fair in the service domain, because
+ * a queue is not consuming its budget fast enough (the meaning of
+ * fast depends on the timeout parameter), we charge it a full
+ * budget. In this way we should obtain a sort of time-domain
+ * fairness among all the seeky/slow queues.
+ */
+static inline void bfq_bfqq_charge_full_budget(struct bfq_queue *bfqq)
+{
+ struct bfq_entity *entity = &bfqq->entity;
+
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_full_budget");
+
+ bfq_bfqq_served(bfqq, entity->budget - entity->service);
+}
+
+/**
+ * __bfq_activate_entity - activate an entity.
+ * @entity: the entity being activated.
+ *
+ * Called whenever an entity is activated, i.e., it is not active and one
+ * of its children receives a new request, or has to be reactivated due to
+ * budget exhaustion. It uses the current budget of the entity (and the
+ * service received if @entity is active) of the queue to calculate its
+ * timestamps.
+ */
+static void __bfq_activate_entity(struct bfq_entity *entity)
+{
+ struct bfq_sched_data *sd = entity->sched_data;
+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
+
+ if (entity == sd->in_service_entity) {
+ /*
+ * If we are requeueing the current entity we have
+ * to take care of not charging to it service it has
+ * not received.
+ */
+ bfq_calc_finish(entity, entity->service);
+ entity->start = entity->finish;
+ sd->in_service_entity = NULL;
+ } else if (entity->tree == &st->active) {
+ /*
+ * Requeueing an entity due to a change of some
+ * next_in_service entity below it. We reuse the
+ * old start time.
+ */
+ bfq_active_extract(st, entity);
+ } else if (entity->tree == &st->idle) {
+ /*
+ * Must be on the idle tree, bfq_idle_extract() will
+ * check for that.
+ */
+ bfq_idle_extract(st, entity);
+ entity->start = bfq_gt(st->vtime, entity->finish) ?
+ st->vtime : entity->finish;
+ } else {
+ /*
+ * The finish time of the entity may be invalid, and
+ * it is in the past for sure, otherwise the queue
+ * would have been on the idle tree.
+ */
+ entity->start = st->vtime;
+ st->wsum += entity->weight;
+ bfq_get_entity(entity);
+
+ entity->on_st = 1;
+ }
+
+ st = __bfq_entity_update_weight_prio(st, entity);
+ bfq_calc_finish(entity, entity->budget);
+ bfq_active_insert(st, entity);
+}
+
+/**
+ * bfq_activate_entity - activate an entity and its ancestors if necessary.
+ * @entity: the entity to activate.
+ *
+ * Activate @entity and all the entities on the path from it to the root.
+ */
+static void bfq_activate_entity(struct bfq_entity *entity)
+{
+ struct bfq_sched_data *sd;
+
+ for_each_entity(entity) {
+ __bfq_activate_entity(entity);
+
+ sd = entity->sched_data;
+ if (!bfq_update_next_in_service(sd))
+ /*
+ * No need to propagate the activation to the
+ * upper entities, as they will be updated when
+ * the in-service entity is rescheduled.
+ */
+ break;
+ }
+}
+
+/**
+ * __bfq_deactivate_entity - deactivate an entity from its service tree.
+ * @entity: the entity to deactivate.
+ * @requeue: if false, the entity will not be put into the idle tree.
+ *
+ * Deactivate an entity, independently from its previous state. If the
+ * entity was not on a service tree just return, otherwise if it is on
+ * any scheduler tree, extract it from that tree, and if necessary
+ * and if the caller did not specify @requeue, put it on the idle tree.
+ *
+ * Return %1 if the caller should update the entity hierarchy, i.e.,
+ * if the entity was in service or if it was the next_in_service for
+ * its sched_data; return %0 otherwise.
+ */
+static int __bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
+{
+ struct bfq_sched_data *sd = entity->sched_data;
+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
+ int was_in_service = entity == sd->in_service_entity;
+ int ret = 0;
+
+ if (!entity->on_st)
+ return 0;
+
+ if (was_in_service) {
+ bfq_calc_finish(entity, entity->service);
+ sd->in_service_entity = NULL;
+ } else if (entity->tree == &st->active)
+ bfq_active_extract(st, entity);
+ else if (entity->tree == &st->idle)
+ bfq_idle_extract(st, entity);
+
+ if (was_in_service || sd->next_in_service == entity)
+ ret = bfq_update_next_in_service(sd);
+
+ if (!requeue || !bfq_gt(entity->finish, st->vtime))
+ bfq_forget_entity(st, entity);
+ else
+ bfq_idle_insert(st, entity);
+
+ return ret;
+}
+
+/**
+ * bfq_deactivate_entity - deactivate an entity.
+ * @entity: the entity to deactivate.
+ * @requeue: true if the entity can be put on the idle tree
+ */
+static void bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
+{
+ struct bfq_sched_data *sd;
+ struct bfq_entity *parent;
+
+ for_each_entity_safe(entity, parent) {
+ sd = entity->sched_data;
+
+ if (!__bfq_deactivate_entity(entity, requeue))
+ /*
+ * The parent entity is still backlogged, and
+ * we don't need to update it as it is still
+ * in service.
+ */
+ break;
+
+ if (sd->next_in_service != NULL)
+ /*
+ * The parent entity is still backlogged and
+ * the budgets on the path towards the root
+ * need to be updated.
+ */
+ goto update;
+
+ /*
+ * If we reach there the parent is no more backlogged and
+ * we want to propagate the dequeue upwards.
+ */
+ requeue = 1;
+ }
+
+ return;
+
+update:
+ entity = parent;
+ for_each_entity(entity) {
+ __bfq_activate_entity(entity);
+
+ sd = entity->sched_data;
+ if (!bfq_update_next_in_service(sd))
+ break;
+ }
+}
+
+/**
+ * bfq_update_vtime - update vtime if necessary.
+ * @st: the service tree to act upon.
+ *
+ * If necessary update the service tree vtime to have at least one
+ * eligible entity, skipping to its start time. Assumes that the
+ * active tree of the device is not empty.
+ *
+ * NOTE: this hierarchical implementation updates vtimes quite often,
+ * we may end up with reactivated processes getting timestamps after a
+ * vtime skip done because we needed a ->first_active entity on some
+ * intermediate node.
+ */
+static void bfq_update_vtime(struct bfq_service_tree *st)
+{
+ struct bfq_entity *entry;
+ struct rb_node *node = st->active.rb_node;
+
+ entry = rb_entry(node, struct bfq_entity, rb_node);
+ if (bfq_gt(entry->min_start, st->vtime)) {
+ st->vtime = entry->min_start;
+ bfq_forget_idle(st);
+ }
+}
+
+/**
+ * bfq_first_active_entity - find the eligible entity with
+ * the smallest finish time
+ * @st: the service tree to select from.
+ *
+ * This function searches the first schedulable entity, starting from the
+ * root of the tree and going on the left every time on this side there is
+ * a subtree with at least one eligible (start >= vtime) entity. The path on
+ * the right is followed only if a) the left subtree contains no eligible
+ * entities and b) no eligible entity has been found yet.
+ */
+static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st)
+{
+ struct bfq_entity *entry, *first = NULL;
+ struct rb_node *node = st->active.rb_node;
+
+ while (node != NULL) {
+ entry = rb_entry(node, struct bfq_entity, rb_node);
+left:
+ if (!bfq_gt(entry->start, st->vtime))
+ first = entry;
+
+ if (node->rb_left != NULL) {
+ entry = rb_entry(node->rb_left,
+ struct bfq_entity, rb_node);
+ if (!bfq_gt(entry->min_start, st->vtime)) {
+ node = node->rb_left;
+ goto left;
+ }
+ }
+ if (first != NULL)
+ break;
+ node = node->rb_right;
+ }
+
+ return first;
+}
+
+/**
+ * __bfq_lookup_next_entity - return the first eligible entity in @st.
+ * @st: the service tree.
+ *
+ * Update the virtual time in @st and return the first eligible entity
+ * it contains.
+ */
+static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st,
+ bool force)
+{
+ struct bfq_entity *entity, *new_next_in_service = NULL;
+
+ if (RB_EMPTY_ROOT(&st->active))
+ return NULL;
+
+ bfq_update_vtime(st);
+ entity = bfq_first_active_entity(st);
+
+ /*
+ * If the chosen entity does not match with the sched_data's
+ * next_in_service and we are forcedly serving the IDLE priority
+ * class tree, bubble up budget update.
+ */
+ if (unlikely(force && entity != entity->sched_data->next_in_service)) {
+ new_next_in_service = entity;
+ for_each_entity(new_next_in_service)
+ bfq_update_budget(new_next_in_service);
+ }
+
+ return entity;
+}
+
+/**
+ * bfq_lookup_next_entity - return the first eligible entity in @sd.
+ * @sd: the sched_data.
+ * @extract: if true the returned entity will be also extracted from @sd.
+ *
+ * NOTE: since we cache the next_in_service entity at each level of the
+ * hierarchy, the complexity of the lookup can be decreased with
+ * absolutely no effort just returning the cached next_in_service value;
+ * we prefer to do full lookups to test the consistency of * the data
+ * structures.
+ */
+static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
+ int extract,
+ struct bfq_data *bfqd)
+{
+ struct bfq_service_tree *st = sd->service_tree;
+ struct bfq_entity *entity;
+ int i = 0;
+
+ if (bfqd != NULL &&
+ jiffies - bfqd->bfq_class_idle_last_service > BFQ_CL_IDLE_TIMEOUT) {
+ entity = __bfq_lookup_next_entity(st + BFQ_IOPRIO_CLASSES - 1,
+ true);
+ if (entity != NULL) {
+ i = BFQ_IOPRIO_CLASSES - 1;
+ bfqd->bfq_class_idle_last_service = jiffies;
+ sd->next_in_service = entity;
+ }
+ }
+ for (; i < BFQ_IOPRIO_CLASSES; i++) {
+ entity = __bfq_lookup_next_entity(st + i, false);
+ if (entity != NULL) {
+ if (extract) {
+ bfq_check_next_in_service(sd, entity);
+ bfq_active_extract(st + i, entity);
+ sd->in_service_entity = entity;
+ sd->next_in_service = NULL;
+ }
+ break;
+ }
+ }
+
+ return entity;
+}
+
+/*
+ * Get next queue for service.
+ */
+static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
+{
+ struct bfq_entity *entity = NULL;
+ struct bfq_sched_data *sd;
+ struct bfq_queue *bfqq;
+
+ if (bfqd->busy_queues == 0)
+ return NULL;
+
+ sd = &bfqd->sched_data;
+ for (; sd != NULL; sd = entity->my_sched_data) {
+ entity = bfq_lookup_next_entity(sd, 1, bfqd);
+ entity->service = 0;
+ }
+
+ bfqq = bfq_entity_to_bfqq(entity);
+
+ return bfqq;
+}
+
+static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
+{
+ if (bfqd->in_service_bic != NULL) {
+ put_io_context(bfqd->in_service_bic->icq.ioc);
+ bfqd->in_service_bic = NULL;
+ }
+
+ bfqd->in_service_queue = NULL;
+ del_timer(&bfqd->idle_slice_timer);
+}
+
+static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ int requeue)
+{
+ struct bfq_entity *entity = &bfqq->entity;
+
+ if (bfqq == bfqd->in_service_queue)
+ __bfq_bfqd_reset_in_service(bfqd);
+
+ bfq_deactivate_entity(entity, requeue);
+}
+
+static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+{
+ struct bfq_entity *entity = &bfqq->entity;
+
+ bfq_activate_entity(entity);
+}
+
+/*
+ * Called when the bfqq no longer has requests pending, remove it from
+ * the service tree.
+ */
+static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ int requeue)
+{
+ bfq_log_bfqq(bfqd, bfqq, "del from busy");
+
+ bfq_clear_bfqq_busy(bfqq);
+
+ bfqd->busy_queues--;
+
+ bfq_deactivate_bfqq(bfqd, bfqq, requeue);
+}
+
+/*
+ * Called when an inactive queue receives a new request.
+ */
+static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+{
+ bfq_log_bfqq(bfqd, bfqq, "add to busy");
+
+ bfq_activate_bfqq(bfqd, bfqq);
+
+ bfq_mark_bfqq_busy(bfqq);
+ bfqd->busy_queues++;
+}
diff --git a/block/bfq.h b/block/bfq.h
new file mode 100644
index 0000000..bd146b6
--- /dev/null
+++ b/block/bfq.h
@@ -0,0 +1,467 @@
+/*
+ * BFQ-v0 for 3.15.0: data structures and common functions prototypes.
+ *
+ * Based on ideas and code from CFQ:
+ * Copyright (C) 2003 Jens Axboe <axboe@...nel.dk>
+ *
+ * Copyright (C) 2008 Fabio Checconi <fabio@...dalf.sssup.it>
+ * Paolo Valente <paolo.valente@...more.it>
+ */
+
+#ifndef _BFQ_H
+#define _BFQ_H
+
+#include <linux/blktrace_api.h>
+#include <linux/hrtimer.h>
+#include <linux/ioprio.h>
+#include <linux/rbtree.h>
+
+#define BFQ_IOPRIO_CLASSES 3
+#define BFQ_CL_IDLE_TIMEOUT (HZ/5)
+
+#define BFQ_MIN_WEIGHT 1
+#define BFQ_MAX_WEIGHT 1000
+
+#define BFQ_DEFAULT_GRP_WEIGHT 10
+#define BFQ_DEFAULT_GRP_IOPRIO 0
+#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
+
+struct bfq_entity;
+
+/**
+ * struct bfq_service_tree - per ioprio_class service tree.
+ * @active: tree for active entities (i.e., those backlogged).
+ * @idle: tree for idle entities (i.e., those not backlogged, with V <= F_i).
+ * @first_idle: idle entity with minimum F_i.
+ * @last_idle: idle entity with maximum F_i.
+ * @vtime: scheduler virtual time.
+ * @wsum: scheduler weight sum; active and idle entities contribute to it.
+ *
+ * Each service tree represents a B-WF2Q+ scheduler on its own. Each
+ * ioprio_class has its own independent scheduler, and so its own
+ * bfq_service_tree. All the fields are protected by the queue lock
+ * of the containing bfqd.
+ */
+struct bfq_service_tree {
+ struct rb_root active;
+ struct rb_root idle;
+
+ struct bfq_entity *first_idle;
+ struct bfq_entity *last_idle;
+
+ u64 vtime;
+ unsigned long wsum;
+};
+
+/**
+ * struct bfq_sched_data - multi-class scheduler.
+ * @in_service_entity: entity in service.
+ * @next_in_service: head-of-the-line entity in the scheduler.
+ * @service_tree: array of service trees, one per ioprio_class.
+ *
+ * bfq_sched_data is the basic scheduler queue. It supports three
+ * ioprio_classes, and can be used either as a toplevel queue or as
+ * an intermediate queue on a hierarchical setup.
+ * @next_in_service points to the active entity of the sched_data
+ * service trees that will be scheduled next.
+ *
+ * The supported ioprio_classes are the same as in CFQ, in descending
+ * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
+ * Requests from higher priority queues are served before all the
+ * requests from lower priority queues; among requests of the same
+ * queue requests are served according to B-WF2Q+.
+ * All the fields are protected by the queue lock of the containing bfqd.
+ */
+struct bfq_sched_data {
+ struct bfq_entity *in_service_entity;
+ struct bfq_entity *next_in_service;
+ struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
+};
+
+/**
+ * struct bfq_entity - schedulable entity.
+ * @rb_node: service_tree member.
+ * @on_st: flag, true if the entity is on a tree (either the active or
+ * the idle one of its service_tree).
+ * @finish: B-WF2Q+ finish timestamp (aka F_i).
+ * @start: B-WF2Q+ start timestamp (aka S_i).
+ * @tree: tree the entity is enqueued into; %NULL if not on a tree.
+ * @min_start: minimum start time of the (active) subtree rooted at
+ * this entity; used for O(log N) lookups into active trees.
+ * @service: service received during the last round of service.
+ * @budget: budget used to calculate F_i; F_i = S_i + @budget / @weight.
+ * @weight: weight of the queue
+ * @parent: parent entity, for hierarchical scheduling.
+ * @my_sched_data: for non-leaf nodes in the hierarchy, the
+ * associated scheduler queue, %NULL on leaf nodes.
+ * @sched_data: the scheduler queue this entity belongs to.
+ * @ioprio: the ioprio in use.
+ * @new_weight: when a weight change is requested, the new weight value.
+ * @orig_weight: original weight, used to implement weight boosting
+ * @new_ioprio: when an ioprio change is requested, the new ioprio value.
+ * @ioprio_class: the ioprio_class in use.
+ * @new_ioprio_class: when an ioprio_class change is requested, the new
+ * ioprio_class value.
+ * @ioprio_changed: flag, true when the user requested a weight, ioprio or
+ * ioprio_class change.
+ *
+ * A bfq_entity is used to represent a bfq_queue (leaf node in the upper
+ * level scheduler). Each entity belongs to the sched_data of the parent
+ * group hierarchy. Non-leaf entities have also their own sched_data,
+ * stored in @my_sched_data.
+ *
+ * Each entity stores independently its priority values; this would
+ * allow different weights on different devices, but this
+ * functionality is not exported to userspace by now. Priorities and
+ * weights are updated lazily, first storing the new values into the
+ * new_* fields, then setting the @ioprio_changed flag. As soon as
+ * there is a transition in the entity state that allows the priority
+ * update to take place the effective and the requested priority
+ * values are synchronized.
+ *
+ * The weight value is calculated from the ioprio to export the same
+ * interface as CFQ. When dealing with ``well-behaved'' queues (i.e.,
+ * queues that do not spend too much time to consume their budget
+ * and have true sequential behavior, and when there are no external
+ * factors breaking anticipation) the relative weights at each level
+ * of the hierarchy should be guaranteed. All the fields are
+ * protected by the queue lock of the containing bfqd.
+ */
+struct bfq_entity {
+ struct rb_node rb_node;
+
+ int on_st;
+
+ u64 finish;
+ u64 start;
+
+ struct rb_root *tree;
+
+ u64 min_start;
+
+ unsigned long service, budget;
+ unsigned short weight, new_weight;
+ unsigned short orig_weight;
+
+ struct bfq_entity *parent;
+
+ struct bfq_sched_data *my_sched_data;
+ struct bfq_sched_data *sched_data;
+
+ unsigned short ioprio, new_ioprio;
+ unsigned short ioprio_class, new_ioprio_class;
+
+ int ioprio_changed;
+};
+
+/**
+ * struct bfq_queue - leaf schedulable entity.
+ * @ref: reference counter.
+ * @bfqd: parent bfq_data.
+ * @sort_list: sorted list of pending requests.
+ * @next_rq: if fifo isn't expired, next request to serve.
+ * @queued: nr of requests queued in @sort_list.
+ * @allocated: currently allocated requests.
+ * @meta_pending: pending metadata requests.
+ * @fifo: fifo list of requests in sort_list.
+ * @entity: entity representing this queue in the scheduler.
+ * @max_budget: maximum budget allowed from the feedback mechanism.
+ * @budget_timeout: budget expiration (in jiffies).
+ * @dispatched: number of requests on the dispatch list or inside driver.
+ * @flags: status flags.
+ * @bfqq_list: node for active/idle bfqq list inside our bfqd.
+ * @seek_samples: number of seeks sampled
+ * @seek_total: sum of the distances of the seeks sampled
+ * @seek_mean: mean seek distance
+ * @last_request_pos: position of the last request enqueued
+ * @pid: pid of the process owning the queue, used for logging purposes.
+ *
+ * A bfq_queue is a leaf request queue; it can be associated with an
+ * io_context or more, if it is async.
+ */
+struct bfq_queue {
+ atomic_t ref;
+ struct bfq_data *bfqd;
+
+ struct rb_root sort_list;
+ struct request *next_rq;
+ int queued[2];
+ int allocated[2];
+ int meta_pending;
+ struct list_head fifo;
+
+ struct bfq_entity entity;
+
+ unsigned long max_budget;
+ unsigned long budget_timeout;
+
+ int dispatched;
+
+ unsigned int flags;
+
+ struct list_head bfqq_list;
+
+ unsigned int seek_samples;
+ u64 seek_total;
+ sector_t seek_mean;
+ sector_t last_request_pos;
+
+ pid_t pid;
+};
+
+/**
+ * struct bfq_ttime - per process thinktime stats.
+ * @ttime_total: total process thinktime
+ * @ttime_samples: number of thinktime samples
+ * @ttime_mean: average process thinktime
+ */
+struct bfq_ttime {
+ unsigned long last_end_request;
+
+ unsigned long ttime_total;
+ unsigned long ttime_samples;
+ unsigned long ttime_mean;
+};
+
+/**
+ * struct bfq_io_cq - per (request_queue, io_context) structure.
+ * @icq: associated io_cq structure
+ * @bfqq: array of two process queues, the sync and the async
+ * @ttime: associated @bfq_ttime struct
+ */
+struct bfq_io_cq {
+ struct io_cq icq; /* must be the first member */
+ struct bfq_queue *bfqq[2];
+ struct bfq_ttime ttime;
+ int ioprio;
+};
+
+enum bfq_device_speed {
+ BFQ_BFQD_FAST,
+ BFQ_BFQD_SLOW,
+};
+
+/**
+ * struct bfq_data - per device data structure.
+ * @queue: request queue for the managed device.
+ * @sched_data: root @bfq_sched_data for the device.
+ * @busy_queues: number of bfq_queues containing requests (including the
+ * queue in service, even if it is idling).
+ * @queued: number of queued requests.
+ * @rq_in_driver: number of requests dispatched and waiting for completion.
+ * @sync_flight: number of sync requests in the driver.
+ * @max_rq_in_driver: max number of reqs in driver in the last
+ * @hw_tag_samples completed requests.
+ * @hw_tag_samples: nr of samples used to calculate hw_tag.
+ * @hw_tag: flag set to one if the driver is showing a queueing behavior.
+ * @budgets_assigned: number of budgets assigned.
+ * @idle_slice_timer: timer set when idling for the next sequential request
+ * from the queue in service.
+ * @unplug_work: delayed work to restart dispatching on the request queue.
+ * @in_service_queue: bfq_queue in service.
+ * @in_service_bic: bfq_io_cq (bic) associated with the @in_service_queue.
+ * @last_position: on-disk position of the last served request.
+ * @last_budget_start: beginning of the last budget.
+ * @last_idling_start: beginning of the last idle slice.
+ * @peak_rate: peak transfer rate observed for a budget.
+ * @peak_rate_samples: number of samples used to calculate @peak_rate.
+ * @bfq_max_budget: maximum budget allotted to a bfq_queue before
+ * rescheduling.
+ * @active_list: list of all the bfq_queues active on the device.
+ * @idle_list: list of all the bfq_queues idle on the device.
+ * @bfq_quantum: max number of requests dispatched per dispatch round.
+ * @bfq_fifo_expire: timeout for async/sync requests; when it expires
+ * requests are served in fifo order.
+ * @bfq_back_penalty: weight of backward seeks wrt forward ones.
+ * @bfq_back_max: maximum allowed backward seek.
+ * @bfq_slice_idle: maximum idling time.
+ * @bfq_user_max_budget: user-configured max budget value
+ * (0 for auto-tuning).
+ * @bfq_max_budget_async_rq: maximum budget (in nr of requests) allotted to
+ * async queues.
+ * @bfq_timeout: timeout for bfq_queues to consume their budget; used to
+ * to prevent seeky queues to impose long latencies to well
+ * behaved ones (this also implies that seeky queues cannot
+ * receive guarantees in the service domain; after a timeout
+ * they are charged for the whole allocated budget, to try
+ * to preserve a behavior reasonably fair among them, but
+ * without service-domain guarantees).
+ * @oom_bfqq: fallback dummy bfqq for extreme OOM conditions
+ *
+ * All the fields are protected by the @queue lock.
+ */
+struct bfq_data {
+ struct request_queue *queue;
+
+ struct bfq_sched_data sched_data;
+
+ int busy_queues;
+ int queued;
+ int rq_in_driver;
+ int sync_flight;
+
+ int max_rq_in_driver;
+ int hw_tag_samples;
+ int hw_tag;
+
+ int budgets_assigned;
+
+ struct timer_list idle_slice_timer;
+ struct work_struct unplug_work;
+
+ struct bfq_queue *in_service_queue;
+ struct bfq_io_cq *in_service_bic;
+
+ sector_t last_position;
+
+ ktime_t last_budget_start;
+ ktime_t last_idling_start;
+ int peak_rate_samples;
+ u64 peak_rate;
+ unsigned long bfq_max_budget;
+
+ struct list_head active_list;
+ struct list_head idle_list;
+
+ unsigned int bfq_quantum;
+ unsigned int bfq_fifo_expire[2];
+ unsigned int bfq_back_penalty;
+ unsigned int bfq_back_max;
+ unsigned int bfq_slice_idle;
+ u64 bfq_class_idle_last_service;
+
+ unsigned int bfq_user_max_budget;
+ unsigned int bfq_max_budget_async_rq;
+ unsigned int bfq_timeout[2];
+
+ struct bfq_queue oom_bfqq;
+};
+
+enum bfqq_state_flags {
+ BFQ_BFQQ_FLAG_busy = 0, /* has requests or is in service */
+ BFQ_BFQQ_FLAG_wait_request, /* waiting for a request */
+ BFQ_BFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
+ BFQ_BFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
+ BFQ_BFQQ_FLAG_idle_window, /* slice idling enabled */
+ BFQ_BFQQ_FLAG_prio_changed, /* task priority has changed */
+ BFQ_BFQQ_FLAG_sync, /* synchronous queue */
+ BFQ_BFQQ_FLAG_budget_new, /* no completion with this budget */
+};
+
+#define BFQ_BFQQ_FNS(name) \
+static inline void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
+{ \
+ (bfqq)->flags |= (1 << BFQ_BFQQ_FLAG_##name); \
+} \
+static inline void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
+{ \
+ (bfqq)->flags &= ~(1 << BFQ_BFQQ_FLAG_##name); \
+} \
+static inline int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
+{ \
+ return ((bfqq)->flags & (1 << BFQ_BFQQ_FLAG_##name)) != 0; \
+}
+
+BFQ_BFQQ_FNS(busy);
+BFQ_BFQQ_FNS(wait_request);
+BFQ_BFQQ_FNS(must_alloc);
+BFQ_BFQQ_FNS(fifo_expire);
+BFQ_BFQQ_FNS(idle_window);
+BFQ_BFQQ_FNS(prio_changed);
+BFQ_BFQQ_FNS(sync);
+BFQ_BFQQ_FNS(budget_new);
+#undef BFQ_BFQQ_FNS
+
+/* Logging facilities. */
+#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
+ blk_add_trace_msg((bfqd)->queue, "bfq%d " fmt, (bfqq)->pid, ##args)
+
+#define bfq_log(bfqd, fmt, args...) \
+ blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
+
+/* Expiration reasons. */
+enum bfqq_expiration {
+ BFQ_BFQQ_TOO_IDLE = 0, /*
+ * queue has been idling for
+ * too long
+ */
+ BFQ_BFQQ_BUDGET_TIMEOUT, /* budget took too long to be used */
+ BFQ_BFQQ_BUDGET_EXHAUSTED, /* budget consumed */
+ BFQ_BFQQ_NO_MORE_REQUESTS, /* the queue has no more requests */
+};
+
+static inline struct bfq_service_tree *
+bfq_entity_service_tree(struct bfq_entity *entity)
+{
+ struct bfq_sched_data *sched_data = entity->sched_data;
+ unsigned int idx = entity->ioprio_class - 1;
+
+ return sched_data->service_tree + idx;
+}
+
+static inline struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic,
+ int is_sync)
+{
+ return bic->bfqq[!!is_sync];
+}
+
+static inline void bic_set_bfqq(struct bfq_io_cq *bic,
+ struct bfq_queue *bfqq, int is_sync)
+{
+ bic->bfqq[!!is_sync] = bfqq;
+}
+
+static inline struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
+{
+ return bic->icq.q->elevator->elevator_data;
+}
+
+/**
+ * bfq_get_bfqd_locked - get a lock to a bfqd using a RCU protected pointer.
+ * @ptr: a pointer to a bfqd.
+ * @flags: storage for the flags to be saved.
+ *
+ * This function allows bfqg->bfqd to be protected by the
+ * queue lock of the bfqd they reference; the pointer is dereferenced
+ * under RCU, so the storage for bfqd is assured to be safe as long
+ * as the RCU read side critical section does not end. After the
+ * bfqd->queue->queue_lock is taken the pointer is rechecked, to be
+ * sure that no other writer accessed it. If we raced with a writer,
+ * the function returns NULL, with the queue unlocked, otherwise it
+ * returns the dereferenced pointer, with the queue locked.
+ */
+static inline struct bfq_data *bfq_get_bfqd_locked(void **ptr,
+ unsigned long *flags)
+{
+ struct bfq_data *bfqd;
+
+ rcu_read_lock();
+ bfqd = rcu_dereference(*(struct bfq_data **)ptr);
+
+ if (bfqd != NULL) {
+ spin_lock_irqsave(bfqd->queue->queue_lock, *flags);
+ if (*ptr == bfqd)
+ goto out;
+ spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
+ }
+
+ bfqd = NULL;
+out:
+ rcu_read_unlock();
+ return bfqd;
+}
+
+static inline void bfq_put_bfqd_unlock(struct bfq_data *bfqd,
+ unsigned long *flags)
+{
+ spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
+}
+
+static void bfq_changed_ioprio(struct bfq_io_cq *bic);
+static void bfq_put_queue(struct bfq_queue *bfqq);
+static void bfq_dispatch_insert(struct request_queue *q, struct request *rq);
+static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, int is_sync,
+ struct bfq_io_cq *bic, gfp_t gfp_mask);
+static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
+
+#endif /* _BFQ_H */
--
1.9.2
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists