[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <1403279383-5862-2-git-send-email-vbabka@suse.cz>
Date: Fri, 20 Jun 2014 17:49:31 +0200
From: Vlastimil Babka <vbabka@...e.cz>
To: linux-mm@...ck.org, Andrew Morton <akpm@...ux-foundation.org>,
David Rientjes <rientjes@...gle.com>
Cc: Minchan Kim <minchan@...nel.org>, Mel Gorman <mgorman@...e.de>,
Joonsoo Kim <iamjoonsoo.kim@....com>,
Michal Nazarewicz <mina86@...a86.com>,
Naoya Horiguchi <n-horiguchi@...jp.nec.com>,
Christoph Lameter <cl@...ux.com>,
Rik van Riel <riel@...hat.com>,
Zhang Yanfei <zhangyanfei@...fujitsu.com>,
linux-kernel@...r.kernel.org, Vlastimil Babka <vbabka@...e.cz>
Subject: [PATCH v3 01/13] mm, THP: don't hold mmap_sem in khugepaged when allocating THP
When allocating huge page for collapsing, khugepaged currently holds mmap_sem
for reading on the mm where collapsing occurs. Afterwards the read lock is
dropped before write lock is taken on the same mmap_sem.
Holding mmap_sem during whole huge page allocation is therefore useless, the
vma needs to be rechecked after taking the write lock anyway. Furthemore, huge
page allocation might involve a rather long sync compaction, and thus block
any mmap_sem writers and i.e. affect workloads that perform frequent m(un)map
or mprotect oterations.
This patch simply releases the read lock before allocating a huge page. It
also deletes an outdated comment that assumed vma must be stable, as it was
using alloc_hugepage_vma(). This is no longer true since commit 9f1b868a13
("mm: thp: khugepaged: add policy for finding target node").
Signed-off-by: Vlastimil Babka <vbabka@...e.cz>
Cc: Minchan Kim <minchan@...nel.org>
Cc: Mel Gorman <mgorman@...e.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@....com>
Cc: Michal Nazarewicz <mina86@...a86.com>
Cc: Naoya Horiguchi <n-horiguchi@...jp.nec.com>
Cc: Christoph Lameter <cl@...ux.com>
Cc: Rik van Riel <riel@...hat.com>
Cc: David Rientjes <rientjes@...gle.com>
---
mm/huge_memory.c | 20 +++++++-------------
1 file changed, 7 insertions(+), 13 deletions(-)
diff --git a/mm/huge_memory.c b/mm/huge_memory.c
index 5d562a9..59ddc61 100644
--- a/mm/huge_memory.c
+++ b/mm/huge_memory.c
@@ -2295,23 +2295,17 @@ static struct page
int node)
{
VM_BUG_ON_PAGE(*hpage, *hpage);
+
/*
- * Allocate the page while the vma is still valid and under
- * the mmap_sem read mode so there is no memory allocation
- * later when we take the mmap_sem in write mode. This is more
- * friendly behavior (OTOH it may actually hide bugs) to
- * filesystems in userland with daemons allocating memory in
- * the userland I/O paths. Allocating memory with the
- * mmap_sem in read mode is good idea also to allow greater
- * scalability.
+ * Before allocating the hugepage, release the mmap_sem read lock.
+ * The allocation can take potentially a long time if it involves
+ * sync compaction, and we do not need to hold the mmap_sem during
+ * that. We will recheck the vma after taking it again in write mode.
*/
+ up_read(&mm->mmap_sem);
+
*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
- /*
- * After allocating the hugepage, release the mmap_sem read lock in
- * preparation for taking it in write mode.
- */
- up_read(&mm->mmap_sem);
if (unlikely(!*hpage)) {
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
*hpage = ERR_PTR(-ENOMEM);
--
1.8.4.5
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists