[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <CAKfTPtAoer-c7Hynr-VhvF112MaoUybM8zhaQKrc+n0CJ3Z47g@mail.gmail.com>
Date: Fri, 18 Jul 2014 11:43:00 +0200
From: Vincent Guittot <vincent.guittot@...aro.org>
To: Yuyang Du <yuyang.du@...el.com>
Cc: "mingo@...hat.com" <mingo@...hat.com>,
Peter Zijlstra <peterz@...radead.org>,
linux-kernel <linux-kernel@...r.kernel.org>,
Paul Turner <pjt@...gle.com>,
Benjamin Segall <bsegall@...gle.com>,
arjan.van.de.ven@...el.com, Len Brown <len.brown@...el.com>,
rafael.j.wysocki@...el.com, alan.cox@...el.com,
"Gross, Mark" <mark.gross@...el.com>,
"fengguang.wu@...el.com" <fengguang.wu@...el.com>
Subject: Re: [PATCH 2/2 v4] sched: Rewrite per entity runnable load average tracking
On 18 July 2014 01:26, Yuyang Du <yuyang.du@...el.com> wrote:
> The idea of per entity runnable load average (let runnable time contribute to load
> weight) was proposed by Paul Turner, and it is still followed by this rewrite. This
> rewrite is done due to the following ends:
>
> 1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is updated
> at the granularity of one entity at one time, which results in the cfs_rq load
> average is partially updated or asynchronous across its entities: at any time,
> only one entity is up to date and contributes to the cfs_rq, all other entities
> are effectively lagging behind.
>
> 2. cfs_rq load average is different between top rq->cfs_rq and other task_group's
> per CPU cfs_rqs in whether or not blocked_load_average contributes to the load.
>
> 3. How task_group's load is calculated is complex.
>
> This rewrite tackles these by:
>
> 1. Combine runnable and blocked load averages for cfs_rq. And track cfs_rq's load
> average as a whole and is used as such.
>
> 2. Track task entity load average for carrying it between CPUs in migration, group
> cfs_rq and its own entity load averages are tracked for update_cfs_shares and
> task_h_load calc. task_group's load_avg is aggregated from its per CPU cfs_rq's
> load_avg, which is aggregated from its sched_entities (both task and group entity).
> Group entity's weight is proportional to its own cfs_rq's load_avg / task_group's
> load_avg.
>
> 3. All task, cfs_rq/group_entity, and task_group have simple, consistent, up-to-date,
> and synchronized load_avg.
>
> This rewrite in principle is equivalent to the previous in functionality, but
> significantly reduces code coplexity and hence increases efficiency and clarity.
> In addition, the new load_avg is much more smooth/continuous (no abrupt jumping ups
> and downs) and decayed/updated more quickly and synchronously to reflect the load
> dynamic. As a result, we have less load tracking overhead and better performance.
>
> Signed-off-by: Yuyang Du <yuyang.du@...el.com>
> ---
> include/linux/sched.h | 21 +-
> kernel/sched/debug.c | 22 +-
> kernel/sched/fair.c | 542 ++++++++++++++++---------------------------------
> kernel/sched/proc.c | 2 +-
> kernel/sched/sched.h | 20 +-
> 5 files changed, 203 insertions(+), 404 deletions(-)
>
> diff --git a/include/linux/sched.h b/include/linux/sched.h
> index 306f4f0..c981f26 100644
> --- a/include/linux/sched.h
> +++ b/include/linux/sched.h
> @@ -1067,16 +1067,21 @@ struct load_weight {
> u32 inv_weight;
> };
>
> +/*
> + * The load_avg represents an infinite geometric series. The 64 bit
> + * load_sum can:
> + * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
> + * the highest weight (=88761) always runnable, we should not overflow
> + * 2) for entity, support any load.weight always runnable
> + */
> struct sched_avg {
> /*
> - * These sums represent an infinite geometric series and so are bound
> - * above by 1024/(1-y). Thus we only need a u32 to store them for all
> - * choices of y < 1-2^(-32)*1024.
> + * The load_avg represents an infinite geometric series.
> */
> - u32 runnable_avg_sum, runnable_avg_period;
> - u64 last_runnable_update;
> - s64 decay_count;
> - unsigned long load_avg_contrib;
> + u64 last_update_time;
> + u64 load_sum;
> + unsigned long load_avg;
> + u32 period_contrib;
> };
>
> #ifdef CONFIG_SCHEDSTATS
> @@ -1142,7 +1147,7 @@ struct sched_entity {
> #endif
>
> #ifdef CONFIG_SMP
> - /* Per-entity load-tracking */
> + /* Per entity load average tracking */
> struct sched_avg avg;
> #endif
> };
> diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
> index 4b864c7..34a3f26 100644
> --- a/kernel/sched/debug.c
> +++ b/kernel/sched/debug.c
> @@ -85,10 +85,7 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
> #endif
> P(se->load.weight);
> #ifdef CONFIG_SMP
> - P(se->avg.runnable_avg_sum);
> - P(se->avg.runnable_avg_period);
> - P(se->avg.load_avg_contrib);
> - P(se->avg.decay_count);
> + P(se->my_q->avg.load_avg);
> #endif
> #undef PN
> #undef P
> @@ -205,19 +202,11 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
> SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
> SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
> #ifdef CONFIG_SMP
> - SEQ_printf(m, " .%-30s: %ld\n", "runnable_load_avg",
> - cfs_rq->runnable_load_avg);
> - SEQ_printf(m, " .%-30s: %ld\n", "blocked_load_avg",
> - cfs_rq->blocked_load_avg);
> + SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
> + cfs_rq->avg.load_avg);
> #ifdef CONFIG_FAIR_GROUP_SCHED
> - SEQ_printf(m, " .%-30s: %ld\n", "tg_load_contrib",
> - cfs_rq->tg_load_contrib);
> - SEQ_printf(m, " .%-30s: %d\n", "tg_runnable_contrib",
> - cfs_rq->tg_runnable_contrib);
> SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
> atomic_long_read(&cfs_rq->tg->load_avg));
> - SEQ_printf(m, " .%-30s: %d\n", "tg->runnable_avg",
> - atomic_read(&cfs_rq->tg->runnable_avg));
> #endif
> #endif
> #ifdef CONFIG_CFS_BANDWIDTH
> @@ -624,10 +613,7 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
>
> P(se.load.weight);
> #ifdef CONFIG_SMP
> - P(se.avg.runnable_avg_sum);
> - P(se.avg.runnable_avg_period);
> - P(se.avg.load_avg_contrib);
> - P(se.avg.decay_count);
> + P(se.avg.load_avg);
> #endif
> P(policy);
> P(prio);
> diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
> index 1a2d04f..3055b9b 100644
> --- a/kernel/sched/fair.c
> +++ b/kernel/sched/fair.c
> @@ -282,9 +282,6 @@ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
> return grp->my_q;
> }
>
> -static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
> - int force_update);
> -
> static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
> {
> if (!cfs_rq->on_list) {
> @@ -304,8 +301,6 @@ static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
> }
>
> cfs_rq->on_list = 1;
> - /* We should have no load, but we need to update last_decay. */
> - update_cfs_rq_blocked_load(cfs_rq, 0);
> }
> }
>
> @@ -665,20 +660,27 @@ static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
> }
>
> #ifdef CONFIG_SMP
> -static unsigned long task_h_load(struct task_struct *p);
>
> -static inline void __update_task_entity_contrib(struct sched_entity *se);
> +/* dependent on LOAD_AVG_PERIOD, see below */
> +#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
> +
> +static unsigned long task_h_load(struct task_struct *p);
>
> /* Give new task start runnable values to heavy its load in infant time */
> void init_task_runnable_average(struct task_struct *p)
> {
> - u32 slice;
> + struct sched_avg *sa = &p->se.avg;
>
> - p->se.avg.decay_count = 0;
> - slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
> - p->se.avg.runnable_avg_sum = slice;
> - p->se.avg.runnable_avg_period = slice;
> - __update_task_entity_contrib(&p->se);
> + sa->last_update_time = 0;
> + /*
> + * sched_avg's period_contrib should be strictly less then 1024, so
> + * we give it 1023 to make sure it is almost a period (1024us), and
> + * will definitely be update (after enqueue).
> + */
> + sa->period_contrib = 1023;
> + sa->load_avg = p->se.load.weight;
> + sa->load_sum = p->se.load.weight * LOAD_AVG_MAX;
> + /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
> }
> #else
> void init_task_runnable_average(struct task_struct *p)
> @@ -1504,8 +1506,8 @@ static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
> delta = runtime - p->last_sum_exec_runtime;
> *period = now - p->last_task_numa_placement;
> } else {
> - delta = p->se.avg.runnable_avg_sum;
> - *period = p->se.avg.runnable_avg_period;
> + delta = p->se.avg.load_avg / p->se.load.weight;
> + *period = LOAD_AVG_MAX;
> }
>
> p->last_sum_exec_runtime = runtime;
> @@ -2071,13 +2073,9 @@ static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
> long tg_weight;
>
> /*
> - * Use this CPU's actual weight instead of the last load_contribution
> - * to gain a more accurate current total weight. See
> - * update_cfs_rq_load_contribution().
> + * Use this CPU's load average instead of actual weight
> */
> tg_weight = atomic_long_read(&tg->load_avg);
> - tg_weight -= cfs_rq->tg_load_contrib;
> - tg_weight += cfs_rq->load.weight;
>
> return tg_weight;
> }
> @@ -2087,7 +2085,7 @@ static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
> long tg_weight, load, shares;
>
> tg_weight = calc_tg_weight(tg, cfs_rq);
> - load = cfs_rq->load.weight;
> + load = cfs_rq->avg.load_avg;
>
> shares = (tg->shares * load);
> if (tg_weight)
> @@ -2154,7 +2152,6 @@ static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
> * Note: The tables below are dependent on this value.
> */
> #define LOAD_AVG_PERIOD 32
> -#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
> #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
>
> /* Precomputed fixed inverse multiplies for multiplication by y^n */
> @@ -2181,7 +2178,7 @@ static const u32 runnable_avg_yN_sum[] = {
> * Approximate:
> * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
> */
> -static __always_inline u64 decay_load(u64 val, u64 n)
> +static __always_inline u64 decay_load32(u64 val, u64 n)
> {
> unsigned int local_n;
>
> @@ -2210,6 +2207,18 @@ static __always_inline u64 decay_load(u64 val, u64 n)
> return val >> 32;
> }
>
> +static __always_inline u64 decay_load(u64 val, u64 n)
> +{
> + if (likely(val <= UINT_MAX))
> + val = decay_load32(val, n);
> + else {
> + val *= (u32)decay_load32(1 << 15, n);
> + val >>= 15;
> + }
> +
> + return val;
> +}
> +
> /*
> * For updates fully spanning n periods, the contribution to runnable
> * average will be: \Sum 1024*y^n
> @@ -2234,7 +2243,7 @@ static u32 __compute_runnable_contrib(u64 n)
> n -= LOAD_AVG_PERIOD;
> } while (n > LOAD_AVG_PERIOD);
>
> - contrib = decay_load(contrib, n);
> + contrib = decay_load32(contrib, n);
> return contrib + runnable_avg_yN_sum[n];
> }
>
> @@ -2266,21 +2275,20 @@ static u32 __compute_runnable_contrib(u64 n)
> * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
> * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
> */
> -static __always_inline int __update_entity_runnable_avg(u64 now,
> - struct sched_avg *sa,
> - int runnable)
> +static __always_inline int
> +__update_load_avg(u64 now, struct sched_avg *sa, unsigned long w)
> {
> u64 delta, periods;
> - u32 runnable_contrib;
> + u32 contrib;
> int delta_w, decayed = 0;
>
> - delta = now - sa->last_runnable_update;
> + delta = now - sa->last_update_time;
> /*
> * This should only happen when time goes backwards, which it
> * unfortunately does during sched clock init when we swap over to TSC.
> */
> if ((s64)delta < 0) {
> - sa->last_runnable_update = now;
> + sa->last_update_time = now;
> return 0;
> }
>
> @@ -2291,23 +2299,24 @@ static __always_inline int __update_entity_runnable_avg(u64 now,
> delta >>= 10;
> if (!delta)
> return 0;
> - sa->last_runnable_update = now;
> + sa->last_update_time = now;
>
> /* delta_w is the amount already accumulated against our next period */
> - delta_w = sa->runnable_avg_period % 1024;
> + delta_w = sa->period_contrib;
> if (delta + delta_w >= 1024) {
> - /* period roll-over */
> decayed = 1;
>
> + /* how much left for next period will start over, we don't know yet */
> + sa->period_contrib = 0;
> +
> /*
> * Now that we know we're crossing a period boundary, figure
> * out how much from delta we need to complete the current
> * period and accrue it.
> */
> delta_w = 1024 - delta_w;
> - if (runnable)
> - sa->runnable_avg_sum += delta_w;
> - sa->runnable_avg_period += delta_w;
> + if (w)
> + sa->load_sum += w * delta_w;
Do you really need to have *w for computing the load_sum ? can't you
only use it when computing the load_avg ?
sa->load_avg = div_u64(sa->load_sum * w , LOAD_AVG_MAX)
>
> delta -= delta_w;
>
> @@ -2315,290 +2324,120 @@ static __always_inline int __update_entity_runnable_avg(u64 now,
> periods = delta / 1024;
> delta %= 1024;
>
> - sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
> - periods + 1);
> - sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
> - periods + 1);
> + sa->load_sum = decay_load(sa->load_sum, periods + 1);
>
> /* Efficiently calculate \sum (1..n_period) 1024*y^i */
> - runnable_contrib = __compute_runnable_contrib(periods);
> - if (runnable)
> - sa->runnable_avg_sum += runnable_contrib;
> - sa->runnable_avg_period += runnable_contrib;
> + contrib = __compute_runnable_contrib(periods);
> + if (w)
> + sa->load_sum += w * contrib;
> }
>
> /* Remainder of delta accrued against u_0` */
> - if (runnable)
> - sa->runnable_avg_sum += delta;
> - sa->runnable_avg_period += delta;
> + if (w)
> + sa->load_sum += w * delta;
>
> - return decayed;
> -}
> + sa->period_contrib += delta;
>
> -/* Synchronize an entity's decay with its parenting cfs_rq.*/
> -static inline u64 __synchronize_entity_decay(struct sched_entity *se)
> -{
> - struct cfs_rq *cfs_rq = cfs_rq_of(se);
> - u64 decays = atomic64_read(&cfs_rq->decay_counter);
> + if (decayed)
> + sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
>
> - decays -= se->avg.decay_count;
> - if (!decays)
> - return 0;
> -
> - se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
> - se->avg.decay_count = 0;
> -
> - return decays;
> + return decayed;
> }
>
> #ifdef CONFIG_FAIR_GROUP_SCHED
> -static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
> - int force_update)
> -{
> - struct task_group *tg = cfs_rq->tg;
> - long tg_contrib;
> -
> - tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
> - tg_contrib -= cfs_rq->tg_load_contrib;
> -
> - if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
> - atomic_long_add(tg_contrib, &tg->load_avg);
> - cfs_rq->tg_load_contrib += tg_contrib;
> - }
> -}
> -
> /*
> - * Aggregate cfs_rq runnable averages into an equivalent task_group
> - * representation for computing load contributions.
> + * Updating tg's load_avg is only necessary before it is used in
> + * update_cfs_share (which is done) and effective_load (which is
> + * not done because it is too costly).
> */
> -static inline void __update_tg_runnable_avg(struct sched_avg *sa,
> - struct cfs_rq *cfs_rq)
> -{
> - struct task_group *tg = cfs_rq->tg;
> - long contrib;
> -
> - /* The fraction of a cpu used by this cfs_rq */
> - contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
> - sa->runnable_avg_period + 1);
> - contrib -= cfs_rq->tg_runnable_contrib;
> -
> - if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
> - atomic_add(contrib, &tg->runnable_avg);
> - cfs_rq->tg_runnable_contrib += contrib;
> - }
> -}
> -
> -static inline void __update_group_entity_contrib(struct sched_entity *se)
> +static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
> {
> - struct cfs_rq *cfs_rq = group_cfs_rq(se);
> - struct task_group *tg = cfs_rq->tg;
> - int runnable_avg;
> -
> - u64 contrib;
> -
> - contrib = cfs_rq->tg_load_contrib * tg->shares;
> - se->avg.load_avg_contrib = div_u64(contrib,
> - atomic_long_read(&tg->load_avg) + 1);
> + long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
>
> - /*
> - * For group entities we need to compute a correction term in the case
> - * that they are consuming <1 cpu so that we would contribute the same
> - * load as a task of equal weight.
> - *
> - * Explicitly co-ordinating this measurement would be expensive, but
> - * fortunately the sum of each cpus contribution forms a usable
> - * lower-bound on the true value.
> - *
> - * Consider the aggregate of 2 contributions. Either they are disjoint
> - * (and the sum represents true value) or they are disjoint and we are
> - * understating by the aggregate of their overlap.
> - *
> - * Extending this to N cpus, for a given overlap, the maximum amount we
> - * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
> - * cpus that overlap for this interval and w_i is the interval width.
> - *
> - * On a small machine; the first term is well-bounded which bounds the
> - * total error since w_i is a subset of the period. Whereas on a
> - * larger machine, while this first term can be larger, if w_i is the
> - * of consequential size guaranteed to see n_i*w_i quickly converge to
> - * our upper bound of 1-cpu.
> - */
> - runnable_avg = atomic_read(&tg->runnable_avg);
> - if (runnable_avg < NICE_0_LOAD) {
> - se->avg.load_avg_contrib *= runnable_avg;
> - se->avg.load_avg_contrib >>= NICE_0_SHIFT;
> + if (delta) {
> + atomic_long_add(delta, &cfs_rq->tg->load_avg);
> + cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
> }
> }
>
> #else /* CONFIG_FAIR_GROUP_SCHED */
> -static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
> - int force_update) {}
> -static inline void __update_tg_runnable_avg(struct sched_avg *sa,
> - struct cfs_rq *cfs_rq) {}
> -static inline void __update_group_entity_contrib(struct sched_entity *se) {}
> +static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
> #endif /* CONFIG_FAIR_GROUP_SCHED */
>
> -static inline void __update_task_entity_contrib(struct sched_entity *se)
> -{
> - u32 contrib;
> +static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
>
> - /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
> - contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
> - contrib /= (se->avg.runnable_avg_period + 1);
> - se->avg.load_avg_contrib = scale_load(contrib);
> -}
> +#define subtract_until_zero(minuend, subtrahend) \
> + (subtrahend < minuend ? minuend - subtrahend : 0)
>
> -/* Compute the current contribution to load_avg by se, return any delta */
> -static long __update_entity_load_avg_contrib(struct sched_entity *se)
> +/*
> + * Group cfs_rq's load_avg is used for task_h_load and update_cfs_share
> + * calc.
> + */
> +static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
> {
> - long old_contrib = se->avg.load_avg_contrib;
> + int decayed;
>
> - if (entity_is_task(se)) {
> - __update_task_entity_contrib(se);
> - } else {
> - __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
> - __update_group_entity_contrib(se);
> + if (atomic_long_read(&cfs_rq->removed_load_avg)) {
> + long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
> + cfs_rq->avg.load_avg = subtract_until_zero(cfs_rq->avg.load_avg, r);
> + r *= LOAD_AVG_MAX;
> + cfs_rq->avg.load_sum = subtract_until_zero(cfs_rq->avg.load_sum, r);
> }
>
> - return se->avg.load_avg_contrib - old_contrib;
> -}
> + decayed = __update_load_avg(now, &cfs_rq->avg, cfs_rq->load.weight);
>
> -static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
> - long load_contrib)
> -{
> - if (likely(load_contrib < cfs_rq->blocked_load_avg))
> - cfs_rq->blocked_load_avg -= load_contrib;
> - else
> - cfs_rq->blocked_load_avg = 0;
> -}
> +#ifndef CONFIG_64BIT
> + if (cfs_rq->avg.last_update_time != cfs_rq->load_last_update_time_copy) {
> + smp_wmb();
> + cfs_rq->load_last_update_time_copy = cfs_rq->avg.last_update_time;
> + }
> +#endif
>
> -static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
> + return decayed;
> +}
>
> -/* Update a sched_entity's runnable average */
> -static inline void update_entity_load_avg(struct sched_entity *se,
> - int update_cfs_rq)
> +/* Update task and its cfs_rq load average */
> +static inline void update_load_avg(struct sched_entity *se, int update_tg)
> {
> struct cfs_rq *cfs_rq = cfs_rq_of(se);
> - long contrib_delta;
> - u64 now;
> + u64 now = cfs_rq_clock_task(cfs_rq);
>
> /*
> - * For a group entity we need to use their owned cfs_rq_clock_task() in
> - * case they are the parent of a throttled hierarchy.
> + * Track task load average for carrying it to new CPU after migrated,
> + * and group sched_entity for task_h_load calc in migration
> */
> - if (entity_is_task(se))
> - now = cfs_rq_clock_task(cfs_rq);
> - else
> - now = cfs_rq_clock_task(group_cfs_rq(se));
> -
> - if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
> - return;
> -
> - contrib_delta = __update_entity_load_avg_contrib(se);
> + __update_load_avg(now, &se->avg, se->on_rq * se->load.weight);
>
> - if (!update_cfs_rq)
> - return;
> -
> - if (se->on_rq)
> - cfs_rq->runnable_load_avg += contrib_delta;
> - else
> - subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
> + if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
> + update_tg_load_avg(cfs_rq);
> }
>
> -/*
> - * Decay the load contributed by all blocked children and account this so that
> - * their contribution may appropriately discounted when they wake up.
> - */
> -static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
> +/* Add the load generated by se into cfs_rq's load average */
> +static inline void enqueue_entity_load_avg(struct sched_entity *se)
> {
> - u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
> - u64 decays;
> -
> - decays = now - cfs_rq->last_decay;
> - if (!decays && !force_update)
> - return;
> + struct sched_avg *sa = &se->avg;
> + struct cfs_rq *cfs_rq = cfs_rq_of(se);
> + u64 now = cfs_rq_clock_task(cfs_rq);
> + int migrated = 0, decayed;
>
> - if (atomic_long_read(&cfs_rq->removed_load)) {
> - unsigned long removed_load;
> - removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
> - subtract_blocked_load_contrib(cfs_rq, removed_load);
> - }
> + if (sa->last_update_time == 0) {
> + sa->last_update_time = now;
>
> - if (decays) {
> - cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
> - decays);
> - atomic64_add(decays, &cfs_rq->decay_counter);
> - cfs_rq->last_decay = now;
> + if (entity_is_task(se))
> + migrated = 1;
> }
> + else
> + __update_load_avg(now, sa, se->on_rq * se->load.weight);
>
> - __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
> -}
> -
> -/* Add the load generated by se into cfs_rq's child load-average */
> -static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
> - struct sched_entity *se,
> - int wakeup)
> -{
> - /*
> - * We track migrations using entity decay_count <= 0, on a wake-up
> - * migration we use a negative decay count to track the remote decays
> - * accumulated while sleeping.
> - *
> - * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
> - * are seen by enqueue_entity_load_avg() as a migration with an already
> - * constructed load_avg_contrib.
> - */
> - if (unlikely(se->avg.decay_count <= 0)) {
> - se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
> - if (se->avg.decay_count) {
> - /*
> - * In a wake-up migration we have to approximate the
> - * time sleeping. This is because we can't synchronize
> - * clock_task between the two cpus, and it is not
> - * guaranteed to be read-safe. Instead, we can
> - * approximate this using our carried decays, which are
> - * explicitly atomically readable.
> - */
> - se->avg.last_runnable_update -= (-se->avg.decay_count)
> - << 20;
> - update_entity_load_avg(se, 0);
> - /* Indicate that we're now synchronized and on-rq */
> - se->avg.decay_count = 0;
> - }
> - wakeup = 0;
> - } else {
> - __synchronize_entity_decay(se);
> - }
> + decayed = update_cfs_rq_load_avg(now, cfs_rq);
>
> - /* migrated tasks did not contribute to our blocked load */
> - if (wakeup) {
> - subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
> - update_entity_load_avg(se, 0);
> + if (migrated) {
> + cfs_rq->avg.load_avg += sa->load_avg;
> + cfs_rq->avg.load_sum += sa->load_sum;
> }
>
> - cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
> - /* we force update consideration on load-balancer moves */
> - update_cfs_rq_blocked_load(cfs_rq, !wakeup);
> -}
> -
> -/*
> - * Remove se's load from this cfs_rq child load-average, if the entity is
> - * transitioning to a blocked state we track its projected decay using
> - * blocked_load_avg.
> - */
> -static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
> - struct sched_entity *se,
> - int sleep)
> -{
> - update_entity_load_avg(se, 1);
> - /* we force update consideration on load-balancer moves */
> - update_cfs_rq_blocked_load(cfs_rq, !sleep);
> -
> - cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
> - if (sleep) {
> - cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
> - se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
> - } /* migrations, e.g. sleep=0 leave decay_count == 0 */
> + if (decayed || migrated)
> + update_tg_load_avg(cfs_rq);
> }
>
> /*
> @@ -2623,16 +2462,8 @@ static int idle_balance(struct rq *this_rq);
>
> #else /* CONFIG_SMP */
>
> -static inline void update_entity_load_avg(struct sched_entity *se,
> - int update_cfs_rq) {}
> -static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
> - struct sched_entity *se,
> - int wakeup) {}
> -static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
> - struct sched_entity *se,
> - int sleep) {}
> -static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
> - int force_update) {}
> +static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
> +static inline void enqueue_entity_load_avg(struct sched_entity *se) {}
>
> static inline int idle_balance(struct rq *rq)
> {
> @@ -2764,7 +2595,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
> * Update run-time statistics of the 'current'.
> */
> update_curr(cfs_rq);
> - enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
> + enqueue_entity_load_avg(se);
> account_entity_enqueue(cfs_rq, se);
> update_cfs_shares(cfs_rq);
>
> @@ -2839,7 +2670,8 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
> * Update run-time statistics of the 'current'.
> */
> update_curr(cfs_rq);
> - dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
> +
> + update_load_avg(se, 1);
>
> update_stats_dequeue(cfs_rq, se);
> if (flags & DEQUEUE_SLEEP) {
> @@ -3028,7 +2860,7 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
> /* Put 'current' back into the tree. */
> __enqueue_entity(cfs_rq, prev);
> /* in !on_rq case, update occurred at dequeue */
> - update_entity_load_avg(prev, 1);
> + update_load_avg(prev, 0);
> }
> cfs_rq->curr = NULL;
> }
> @@ -3044,8 +2876,7 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
> /*
> * Ensure that runnable average is periodically updated.
> */
> - update_entity_load_avg(curr, 1);
> - update_cfs_rq_blocked_load(cfs_rq, 1);
> + update_load_avg(curr, 1);
> update_cfs_shares(cfs_rq);
>
> #ifdef CONFIG_SCHED_HRTICK
> @@ -3923,8 +3754,8 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
> if (cfs_rq_throttled(cfs_rq))
> break;
>
> + update_load_avg(se, 1);
> update_cfs_shares(cfs_rq);
> - update_entity_load_avg(se, 1);
> }
>
> if (!se)
> @@ -3983,8 +3814,8 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
> if (cfs_rq_throttled(cfs_rq))
> break;
>
> + update_load_avg(se, 1);
> update_cfs_shares(cfs_rq);
> - update_entity_load_avg(se, 1);
> }
>
> if (!se)
> @@ -3997,7 +3828,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
> /* Used instead of source_load when we know the type == 0 */
> static unsigned long weighted_cpuload(const int cpu)
> {
> - return cpu_rq(cpu)->cfs.runnable_load_avg;
> + return cpu_rq(cpu)->cfs.avg.load_avg;
> }
>
> /*
> @@ -4042,7 +3873,7 @@ static unsigned long cpu_avg_load_per_task(int cpu)
> {
> struct rq *rq = cpu_rq(cpu);
> unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
> - unsigned long load_avg = rq->cfs.runnable_load_avg;
> + unsigned long load_avg = rq->cfs.avg.load_avg;
>
> if (nr_running)
> return load_avg / nr_running;
> @@ -4161,7 +3992,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
> /*
> * w = rw_i + @wl
> */
> - w = se->my_q->load.weight + wl;
> + w = se->my_q->avg.load_avg + wl;
>
> /*
> * wl = S * s'_i; see (2)
> @@ -4182,7 +4013,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
> /*
> * wl = dw_i = S * (s'_i - s_i); see (3)
> */
> - wl -= se->load.weight;
> + wl -= se->avg.load_avg;
>
> /*
> * Recursively apply this logic to all parent groups to compute
> @@ -4256,14 +4087,14 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
> */
> if (sync) {
> tg = task_group(current);
> - weight = current->se.load.weight;
> + weight = current->se.avg.load_avg;
>
> this_load += effective_load(tg, this_cpu, -weight, -weight);
> load += effective_load(tg, prev_cpu, 0, -weight);
> }
>
> tg = task_group(p);
> - weight = p->se.load.weight;
> + weight = p->se.avg.load_avg;
>
> /*
> * In low-load situations, where prev_cpu is idle and this_cpu is idle
> @@ -4551,18 +4382,34 @@ migrate_task_rq_fair(struct task_struct *p, int next_cpu)
> {
> struct sched_entity *se = &p->se;
> struct cfs_rq *cfs_rq = cfs_rq_of(se);
> + u64 last_update_time;
>
> /*
> - * Load tracking: accumulate removed load so that it can be processed
> - * when we next update owning cfs_rq under rq->lock. Tasks contribute
> - * to blocked load iff they have a positive decay-count. It can never
> - * be negative here since on-rq tasks have decay-count == 0.
> + * Task on old CPU catches up with its old cfs_rq, and subtract itself from
> + * the cfs_rq (task must be off the queue now).
> */
> - if (se->avg.decay_count) {
> - se->avg.decay_count = -__synchronize_entity_decay(se);
> - atomic_long_add(se->avg.load_avg_contrib,
> - &cfs_rq->removed_load);
> - }
> +#ifndef CONFIG_64BIT
> + u64 last_update_time_copy;
> +
> + do {
> + last_update_time_copy = cfs_rq->load_last_update_time_copy;
> + smp_rmb();
> + last_update_time = cfs_rq->avg.last_update_time;
> + } while (last_update_time != last_update_time_copy);
> +#else
> + last_update_time = cfs_rq->avg.last_update_time;
> +#endif
> + __update_load_avg(last_update_time, &se->avg, 0);
> + atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
> +
> + /*
> + * We are supposed to update the task to "current" time, then its up to date
> + * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
> + * what current time is, so simply throw away the out-of-date time. This
> + * will result in the wakee task is less decayed, but giving the wakee more
> + * load sounds not bad.
> + */
> + se->avg.last_update_time = 0;
>
> /* We have migrated, no longer consider this task hot */
> se->exec_start = 0;
> @@ -5399,36 +5246,6 @@ next:
> }
>
> #ifdef CONFIG_FAIR_GROUP_SCHED
> -/*
> - * update tg->load_weight by folding this cpu's load_avg
> - */
> -static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
> -{
> - struct sched_entity *se = tg->se[cpu];
> - struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
> -
> - /* throttled entities do not contribute to load */
> - if (throttled_hierarchy(cfs_rq))
> - return;
> -
> - update_cfs_rq_blocked_load(cfs_rq, 1);
> -
> - if (se) {
> - update_entity_load_avg(se, 1);
> - /*
> - * We pivot on our runnable average having decayed to zero for
> - * list removal. This generally implies that all our children
> - * have also been removed (modulo rounding error or bandwidth
> - * control); however, such cases are rare and we can fix these
> - * at enqueue.
> - *
> - * TODO: fix up out-of-order children on enqueue.
> - */
> - if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
> - list_del_leaf_cfs_rq(cfs_rq);
> - }
> -}
> -
> static void update_blocked_averages(int cpu)
> {
> struct rq *rq = cpu_rq(cpu);
> @@ -5437,17 +5254,17 @@ static void update_blocked_averages(int cpu)
>
> raw_spin_lock_irqsave(&rq->lock, flags);
> update_rq_clock(rq);
> +
> /*
> * Iterates the task_group tree in a bottom up fashion, see
> * list_add_leaf_cfs_rq() for details.
> */
> for_each_leaf_cfs_rq(rq, cfs_rq) {
> - /*
> - * Note: We may want to consider periodically releasing
> - * rq->lock about these updates so that creating many task
> - * groups does not result in continually extending hold time.
> - */
> - __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
> + /* throttled entities do not contribute to load */
> + if (throttled_hierarchy(cfs_rq))
> + continue;
> +
> + update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
> }
>
> raw_spin_unlock_irqrestore(&rq->lock, flags);
> @@ -5477,14 +5294,14 @@ static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
> }
>
> if (!se) {
> - cfs_rq->h_load = cfs_rq->runnable_load_avg;
> + cfs_rq->h_load = cfs_rq->avg.load_avg;
> cfs_rq->last_h_load_update = now;
> }
>
> while ((se = cfs_rq->h_load_next) != NULL) {
> load = cfs_rq->h_load;
> - load = div64_ul(load * se->avg.load_avg_contrib,
> - cfs_rq->runnable_load_avg + 1);
> + load = div64_ul(load * se->avg.load_avg,
> + cfs_rq->avg.load_avg + 1);
> cfs_rq = group_cfs_rq(se);
> cfs_rq->h_load = load;
> cfs_rq->last_h_load_update = now;
> @@ -5496,8 +5313,8 @@ static unsigned long task_h_load(struct task_struct *p)
> struct cfs_rq *cfs_rq = task_cfs_rq(p);
>
> update_cfs_rq_h_load(cfs_rq);
> - return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
> - cfs_rq->runnable_load_avg + 1);
> + return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
> + cfs_rq->avg.load_avg + 1);
> }
> #else
> static inline void update_blocked_averages(int cpu)
> @@ -5506,7 +5323,7 @@ static inline void update_blocked_averages(int cpu)
>
> static unsigned long task_h_load(struct task_struct *p)
> {
> - return p->se.avg.load_avg_contrib;
> + return p->se.avg.load_avg;
> }
> #endif
>
> @@ -7437,14 +7254,14 @@ static void switched_from_fair(struct rq *rq, struct task_struct *p)
>
> #ifdef CONFIG_SMP
> /*
> - * Remove our load from contribution when we leave sched_fair
> - * and ensure we don't carry in an old decay_count if we
> - * switch back.
> + * Remove our load from contribution when we leave cfs_rq.
> */
> - if (se->avg.decay_count) {
> - __synchronize_entity_decay(se);
> - subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
> - }
> + __update_load_avg(cfs_rq->avg.last_update_time, &se->avg,
> + se->on_rq * se->load.weight);
> + cfs_rq->avg.load_avg =
> + subtract_until_zero(cfs_rq->avg.load_avg, se->avg.load_avg);
> + cfs_rq->avg.load_sum =
> + subtract_until_zero(cfs_rq->avg.load_sum, se->avg.load_sum);
> #endif
> }
>
> @@ -7501,8 +7318,7 @@ void init_cfs_rq(struct cfs_rq *cfs_rq)
> cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
> #endif
> #ifdef CONFIG_SMP
> - atomic64_set(&cfs_rq->decay_counter, 1);
> - atomic_long_set(&cfs_rq->removed_load, 0);
> + atomic_long_set(&cfs_rq->removed_load_avg, 0);
> #endif
> }
>
> @@ -7547,14 +7363,12 @@ static void task_move_group_fair(struct task_struct *p, int on_rq)
> if (!on_rq) {
> cfs_rq = cfs_rq_of(se);
> se->vruntime += cfs_rq->min_vruntime;
> +
> #ifdef CONFIG_SMP
> - /*
> - * migrate_task_rq_fair() will have removed our previous
> - * contribution, but we must synchronize for ongoing future
> - * decay.
> - */
> - se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
> - cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
> + /* Virtually synchronize task with its new cfs_rq */
> + p->se.avg.last_update_time = cfs_rq->avg.last_update_time;
> + cfs_rq->avg.load_avg += p->se.avg.load_avg;
> + cfs_rq->avg.load_sum += p->se.avg.load_sum;
> #endif
> }
> }
> diff --git a/kernel/sched/proc.c b/kernel/sched/proc.c
> index 16f5a30..8f547fe 100644
> --- a/kernel/sched/proc.c
> +++ b/kernel/sched/proc.c
> @@ -504,7 +504,7 @@ static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
> #ifdef CONFIG_SMP
> static inline unsigned long get_rq_runnable_load(struct rq *rq)
> {
> - return rq->cfs.runnable_load_avg;
> + return rq->cfs.avg.load_avg;
> }
> #else
> static inline unsigned long get_rq_runnable_load(struct rq *rq)
> diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
> index a147571..7c8c2a9 100644
> --- a/kernel/sched/sched.h
> +++ b/kernel/sched/sched.h
> @@ -210,7 +210,6 @@ struct task_group {
>
> #ifdef CONFIG_SMP
> atomic_long_t load_avg;
> - atomic_t runnable_avg;
> #endif
> #endif
>
> @@ -331,21 +330,16 @@ struct cfs_rq {
>
> #ifdef CONFIG_SMP
> /*
> - * CFS Load tracking
> - * Under CFS, load is tracked on a per-entity basis and aggregated up.
> - * This allows for the description of both thread and group usage (in
> - * the FAIR_GROUP_SCHED case).
> + * CFS load tracking
> */
> - unsigned long runnable_load_avg, blocked_load_avg;
> - atomic64_t decay_counter;
> - u64 last_decay;
> - atomic_long_t removed_load;
> + struct sched_avg avg;
> + unsigned long tg_load_avg_contrib;
> + atomic_long_t removed_load_avg;
> +#ifndef CONFIG_64BIT
> + u64 load_last_update_time_copy;
> +#endif
>
> #ifdef CONFIG_FAIR_GROUP_SCHED
> - /* Required to track per-cpu representation of a task_group */
> - u32 tg_runnable_contrib;
> - unsigned long tg_load_contrib;
> -
> /*
> * h_load = weight * f(tg)
> *
> --
> 1.7.9.5
>
> --
> To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
> the body of a message to majordomo@...r.kernel.org
> More majordomo info at http://vger.kernel.org/majordomo-info.html
> Please read the FAQ at http://www.tux.org/lkml/
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists