[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Message-ID: <023701d028c2$dba2cb30$92e86190$@alibaba-inc.com>
Date: Mon, 05 Jan 2015 16:37:35 +0800
From: "Hillf Danton" <hillf.zj@...baba-inc.com>
To: "'Joonsoo Kim'" <iamjoonsoo.kim@....com>
Cc: "Andrew Morton" <akpm@...ux-foundation.org>,
"'Christoph Lameter'" <cl@...ux.com>,
"'Pekka Enberg'" <penberg@...nel.org>,
"'David Rientjes'" <rientjes@...gle.com>,
"linux-kernel" <linux-kernel@...r.kernel.org>,
<linux-mm@...ck.org>, "Steven Rostedt" <rostedt@...dmis.org>,
"'Jesper Dangaard Brouer'" <brouer@...hat.com>
Subject: Re: [PATCH 1/2] mm/slub: optimize alloc/free fastpath by removing preemption on/off
>
> We had to insert a preempt enable/disable in the fastpath a while ago
> in order to guarantee that tid and kmem_cache_cpu are retrieved on the
> same cpu. It is the problem only for CONFIG_PREEMPT in which scheduler
> can move the process to other cpu during retrieving data.
>
> Now, I reach the solution to remove preempt enable/disable in the fastpath.
> If tid is matched with kmem_cache_cpu's tid after tid and kmem_cache_cpu
> are retrieved by separate this_cpu operation, it means that they are
> retrieved on the same cpu. If not matched, we just have to retry it.
>
> With this guarantee, preemption enable/disable isn't need at all even if
> CONFIG_PREEMPT, so this patch removes it.
>
> I saw roughly 5% win in a fast-path loop over kmem_cache_alloc/free
> in CONFIG_PREEMPT. (14.821 ns -> 14.049 ns)
>
> Below is the result of Christoph's slab_test reported by
> Jesper Dangaard Brouer.
>
> * Before
>
> Single thread testing
> =====================
> 1. Kmalloc: Repeatedly allocate then free test
> 10000 times kmalloc(8) -> 49 cycles kfree -> 62 cycles
> 10000 times kmalloc(16) -> 48 cycles kfree -> 64 cycles
> 10000 times kmalloc(32) -> 53 cycles kfree -> 70 cycles
> 10000 times kmalloc(64) -> 64 cycles kfree -> 77 cycles
> 10000 times kmalloc(128) -> 74 cycles kfree -> 84 cycles
> 10000 times kmalloc(256) -> 84 cycles kfree -> 114 cycles
> 10000 times kmalloc(512) -> 83 cycles kfree -> 116 cycles
> 10000 times kmalloc(1024) -> 81 cycles kfree -> 120 cycles
> 10000 times kmalloc(2048) -> 104 cycles kfree -> 136 cycles
> 10000 times kmalloc(4096) -> 142 cycles kfree -> 165 cycles
> 10000 times kmalloc(8192) -> 238 cycles kfree -> 226 cycles
> 10000 times kmalloc(16384) -> 403 cycles kfree -> 264 cycles
> 2. Kmalloc: alloc/free test
> 10000 times kmalloc(8)/kfree -> 68 cycles
> 10000 times kmalloc(16)/kfree -> 68 cycles
> 10000 times kmalloc(32)/kfree -> 69 cycles
> 10000 times kmalloc(64)/kfree -> 68 cycles
> 10000 times kmalloc(128)/kfree -> 68 cycles
> 10000 times kmalloc(256)/kfree -> 68 cycles
> 10000 times kmalloc(512)/kfree -> 74 cycles
> 10000 times kmalloc(1024)/kfree -> 75 cycles
> 10000 times kmalloc(2048)/kfree -> 74 cycles
> 10000 times kmalloc(4096)/kfree -> 74 cycles
> 10000 times kmalloc(8192)/kfree -> 75 cycles
> 10000 times kmalloc(16384)/kfree -> 510 cycles
>
> * After
>
> Single thread testing
> =====================
> 1. Kmalloc: Repeatedly allocate then free test
> 10000 times kmalloc(8) -> 46 cycles kfree -> 61 cycles
> 10000 times kmalloc(16) -> 46 cycles kfree -> 63 cycles
> 10000 times kmalloc(32) -> 49 cycles kfree -> 69 cycles
> 10000 times kmalloc(64) -> 57 cycles kfree -> 76 cycles
> 10000 times kmalloc(128) -> 66 cycles kfree -> 83 cycles
> 10000 times kmalloc(256) -> 84 cycles kfree -> 110 cycles
> 10000 times kmalloc(512) -> 77 cycles kfree -> 114 cycles
> 10000 times kmalloc(1024) -> 80 cycles kfree -> 116 cycles
> 10000 times kmalloc(2048) -> 102 cycles kfree -> 131 cycles
> 10000 times kmalloc(4096) -> 135 cycles kfree -> 163 cycles
> 10000 times kmalloc(8192) -> 238 cycles kfree -> 218 cycles
> 10000 times kmalloc(16384) -> 399 cycles kfree -> 262 cycles
> 2. Kmalloc: alloc/free test
> 10000 times kmalloc(8)/kfree -> 65 cycles
> 10000 times kmalloc(16)/kfree -> 66 cycles
> 10000 times kmalloc(32)/kfree -> 65 cycles
> 10000 times kmalloc(64)/kfree -> 66 cycles
> 10000 times kmalloc(128)/kfree -> 66 cycles
> 10000 times kmalloc(256)/kfree -> 71 cycles
> 10000 times kmalloc(512)/kfree -> 72 cycles
> 10000 times kmalloc(1024)/kfree -> 71 cycles
> 10000 times kmalloc(2048)/kfree -> 71 cycles
> 10000 times kmalloc(4096)/kfree -> 71 cycles
> 10000 times kmalloc(8192)/kfree -> 65 cycles
> 10000 times kmalloc(16384)/kfree -> 511 cycles
>
> Most of the results are better than before.
>
> Note that this change slightly worses performance in !CONFIG_PREEMPT,
> roughly 0.3%. Implementing each case separately would help performance,
> but, since it's so marginal, I didn't do that. This would help
> maintanance since we have same code for all cases.
>
> Tested-by: Jesper Dangaard Brouer <brouer@...hat.com>
> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@....com>
> ---
> mm/slub.c | 26 +++++++++++++-------------
> 1 file changed, 13 insertions(+), 13 deletions(-)
>
> diff --git a/mm/slub.c b/mm/slub.c
> index fe376fe..0624608 100644
> --- a/mm/slub.c
> +++ b/mm/slub.c
> @@ -2398,13 +2398,15 @@ redo:
> * reading from one cpu area. That does not matter as long
> * as we end up on the original cpu again when doing the cmpxchg.
> *
> - * Preemption is disabled for the retrieval of the tid because that
> - * must occur from the current processor. We cannot allow rescheduling
> - * on a different processor between the determination of the pointer
> - * and the retrieval of the tid.
> + * We should guarantee that tid and kmem_cache are retrieved on
> + * the same cpu. It could be different if CONFIG_PREEMPT so we need
> + * to check if it is matched or not.
> */
> - preempt_disable();
> - c = this_cpu_ptr(s->cpu_slab);
> + do {
> + tid = this_cpu_read(s->cpu_slab->tid);
> + c = this_cpu_ptr(s->cpu_slab);
> + } while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
> + barrier();
Help maintenance more if barrier is documented in commit message.
>
> /*
> * The transaction ids are globally unique per cpu and per operation on
> @@ -2412,8 +2414,6 @@ redo:
> * occurs on the right processor and that there was no operation on the
> * linked list in between.
> */
> - tid = c->tid;
> - preempt_enable();
>
> object = c->freelist;
> page = c->page;
> @@ -2659,11 +2659,11 @@ redo:
> * data is retrieved via this pointer. If we are on the same cpu
> * during the cmpxchg then the free will succedd.
> */
> - preempt_disable();
> - c = this_cpu_ptr(s->cpu_slab);
> -
> - tid = c->tid;
> - preempt_enable();
> + do {
> + tid = this_cpu_read(s->cpu_slab->tid);
> + c = this_cpu_ptr(s->cpu_slab);
> + } while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
> + barrier();
>
ditto
> if (likely(page == c->page)) {
> set_freepointer(s, object, c->freelist);
> --
> 1.7.9.5
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
Powered by blists - more mailing lists