[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20150128175606.GB27003@developer.hsd1.ca.comcast.net>
Date: Wed, 28 Jan 2015 13:56:08 -0400
From: Eduardo Valentin <edubezval@...il.com>
To: Javi Merino <javi.merino@....com>
Cc: linux-pm@...r.kernel.org, linux-kernel@...r.kernel.org,
punit.agrawal@....com, broonie@...nel.org,
Zhang Rui <rui.zhang@...el.com>
Subject: Re: [PATCH v1 3/7] thermal: cpu_cooling: implement the power cooling
device API
On Wed, Jan 28, 2015 at 05:00:34PM +0000, Javi Merino wrote:
> Add a basic power model to the cpu cooling device to implement the
> power cooling device API. The power model uses the current frequency,
> current load and OPPs for the power calculations. The cpus must have
> registered their OPPs using the OPP library.
>
> Cc: Zhang Rui <rui.zhang@...el.com>
> Cc: Eduardo Valentin <edubezval@...il.com>
> Signed-off-by: Punit Agrawal <punit.agrawal@....com>
> Signed-off-by: Javi Merino <javi.merino@....com>
> ---
> Documentation/thermal/cpu-cooling-api.txt | 156 +++++++++-
> drivers/thermal/cpu_cooling.c | 480 +++++++++++++++++++++++++++++-
> include/linux/cpu_cooling.h | 39 +++
> 3 files changed, 670 insertions(+), 5 deletions(-)
>
> diff --git a/Documentation/thermal/cpu-cooling-api.txt b/Documentation/thermal/cpu-cooling-api.txt
> index 753e47cc2e20..71653584cd03 100644
> --- a/Documentation/thermal/cpu-cooling-api.txt
> +++ b/Documentation/thermal/cpu-cooling-api.txt
> @@ -36,8 +36,162 @@ the user. The registration APIs returns the cooling device pointer.
> np: pointer to the cooling device device tree node
> clip_cpus: cpumask of cpus where the frequency constraints will happen.
>
> -1.1.3 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
> +1.1.3 struct thermal_cooling_device *cpufreq_power_cooling_register(
> + const struct cpumask *clip_cpus, u32 capacitance,
> + get_static_t plat_static_func)
> +
> +Similar to cpufreq_cooling_register, this function registers a cpufreq
> +cooling device. Using this function, the cooling device will
> +implement the power extensions by using a simple cpu power model. The
> +cpus must have registered their OPPs using the OPP library.
> +
> +The additional parameters are needed for the power model (See 2. Power
> +models). "capacitance" is the dynamic power coefficient (See 2.1
> +Dynamic power). "plat_static_func" is a function to calculate the
> +static power consumed by these cpus (See 2.2 Static power).
> +
> +1.1.4 struct thermal_cooling_device *of_cpufreq_power_cooling_register(
> + struct device_node *np, const struct cpumask *clip_cpus, u32 capacitance,
> + get_static_t plat_static_func)
> +
> +Similar to cpufreq_power_cooling_register, this function register a
> +cpufreq cooling device with power extensions using the device tree
> +information supplied by the np parameter.
> +
> +1.1.5 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
>
> This interface function unregisters the "thermal-cpufreq-%x" cooling device.
>
> cdev: Cooling device pointer which has to be unregistered.
> +
> +2. Power models
> +
> +The power API registration functions provide a simple power model for
> +CPUs. The current power is calculated as dynamic + (optionally)
> +static power. This power model requires that the operating-points of
> +the CPUs are registered using the kernel's opp library and the
> +`cpufreq_frequency_table` is assigned to the `struct device` of the
> +cpu. If you are using CONFIG_CPUFREQ_DT then the
> +`cpufreq_frequency_table` should already be assigned to the cpu
> +device.
> +
> +The `plat_static_func` parameter of `cpufreq_power_cooling_register()`
> +and `of_cpufreq_power_cooling_register()` is optional. If you don't
> +provide it, only dynamic power will be considered.
> +
> +2.1 Dynamic power
> +
> +The dynamic power consumption of a processor depends on many factors.
> +For a given processor implementation the primary factors are:
> +
> +- The time the processor spends running, consuming dynamic power, as
> + compared to the time in idle states where dynamic consumption is
> + negligible. Herein we refer to this as 'utilisation'.
> +- The voltage and frequency levels as a result of DVFS. The DVFS
> + level is a dominant factor governing power consumption.
> +- In running time the 'execution' behaviour (instruction types, memory
> + access patterns and so forth) causes, in most cases, a second order
> + variation. In pathological cases this variation can be significant,
> + but typically it is of a much lesser impact than the factors above.
> +
> +A high level dynamic power consumption model may then be represented as:
> +
> +Pdyn = f(run) * Voltage^2 * Frequency * Utilisation
> +
> +f(run) here represents the described execution behaviour and its
> +result has a units of Watts/Hz/Volt^2 (this often expressed in
> +mW/MHz/uVolt^2)
> +
> +The detailed behaviour for f(run) could be modelled on-line. However,
> +in practice, such an on-line model has dependencies on a number of
> +implementation specific processor support and characterisation
> +factors. Therefore, in initial implementation that contribution is
> +represented as a constant coefficient. This is a simplification
> +consistent with the relative contribution to overall power variation.
> +
> +In this simplified representation our model becomes:
> +
> +Pdyn = Capacitance * Voltage^2 * Frequency * Utilisation
> +
> +Where `capacitance` is a constant that represents an indicative
> +running time dynamic power coefficient in fundamental units of
> +mW/MHz/uVolt^2. Typical values for mobile CPUs might lie in range
> +from 100 to 500. For reference, the approximate values for the SoC in
> +ARM's Juno Development Platform are 530 for the Cortex-A57 cluster and
> +140 for the Cortex-A53 cluster.
> +
> +
> +2.2 Static power
> +
> +Static leakage power consumption depends on a number of factors. For a
> +given circuit implementation the primary factors are:
> +
> +- Time the circuit spends in each 'power state'
> +- Temperature
> +- Operating voltage
> +- Process grade
> +
> +The time the circuit spends in each 'power state' for a given
> +evaluation period at first order means OFF or ON. However,
> +'retention' states can also be supported that reduce power during
> +inactive periods without loss of context.
> +
> +Note: The visibility of state entries to the OS can vary, according to
> +platform specifics, and this can then impact the accuracy of a model
> +based on OS state information alone. It might be possible in some
> +cases to extract more accurate information from system resources.
> +
> +The temperature, operating voltage and process 'grade' (slow to fast)
> +of the circuit are all significant factors in static leakage power
> +consumption. All of these have complex relationships to static power.
> +
> +Circuit implementation specific factors include the chosen silicon
> +process as well as the type, number and size of transistors in both
> +the logic gates and any RAM elements included.
> +
> +The static power consumption modelling must take into account the
> +power managed regions that are implemented. Taking the example of an
> +ARM processor cluster, the modelling would take into account whether
> +each CPU can be powered OFF separately or if only a single power
> +region is implemented for the complete cluster.
> +
> +In one view, there are others, a static power consumption model can
> +then start from a set of reference values for each power managed
> +region (e.g. CPU, Cluster/L2) in each state (e.g. ON, OFF) at an
> +arbitrary process grade, voltage and temperature point. These values
> +are then scaled for all of the following: the time in each state, the
> +process grade, the current temperature and the operating voltage.
> +However, since both implementation specific and complex relationships
> +dominate the estimate, the appropriate interface to the model from the
> +cpu cooling device is to provide a function callback that calculates
> +the static power in this platform. When registering the cpu cooling
> +device pass a function pointer that follows the `get_static_t`
> +prototype:
> +
> + int plat_get_static(cpumask_t *cpumask, int interval,
> + unsigned long voltage, u32 &power);
> +
> +`cpumask` is the cpumask of the cpus involved in the calculation.
> +`voltage` is the voltage at which they are operating. The function
> +should calculate the average static power for the last `interval`
> +milliseconds. It returns 0 on success, -E* on error. If it
> +succeeds, it should store the static power in `power`. Reading the
> +temperature of the cpus described by `cpumask` is left for
> +plat_get_static() to do as the platform knows best which thermal
> +sensor is closest to the cpu.
> +
> +If `plat_static_func` is NULL, static power is considered to be
> +negligible for this platform and only dynamic power is considered.
> +
> +The platform specific callback can then use any combination of tables
> +and/or equations to permute the estimated value. Process grade
> +information is not passed to the model since access to such data, from
> +on-chip measurement capability or manufacture time data, is platform
> +specific.
> +
> +Note: the significance of static power for CPUs in comparison to
> +dynamic power is highly dependent on implementation. Given the
> +potential complexity in implementation, the importance and accuracy of
> +its inclusion when using cpu cooling devices should be assessed on a
> +case by case basis.
> +
> diff --git a/drivers/thermal/cpu_cooling.c b/drivers/thermal/cpu_cooling.c
> index f65f0d109fc8..a639aaf228f5 100644
> --- a/drivers/thermal/cpu_cooling.c
> +++ b/drivers/thermal/cpu_cooling.c
> @@ -26,6 +26,7 @@
> #include <linux/thermal.h>
> #include <linux/cpufreq.h>
> #include <linux/err.h>
> +#include <linux/pm_opp.h>
> #include <linux/slab.h>
> #include <linux/cpu.h>
> #include <linux/cpu_cooling.h>
> @@ -45,6 +46,19 @@
> */
>
> /**
> + * struct power_table - frequency to power conversion
> + * @frequency: frequency in KHz
> + * @power: power in mW
> + *
> + * This structure is built when the cooling device registers and helps
> + * in translating frequency to power and viceversa.
> + */
> +struct power_table {
> + u32 frequency;
> + u32 power;
> +};
> +
> +/**
> * struct cpufreq_cooling_device - data for cooling device with cpufreq
> * @id: unique integer value corresponding to each cpufreq_cooling_device
> * registered.
> @@ -58,6 +72,15 @@
> * cpufreq frequencies.
> * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
> * @node: list_head to link all cpufreq_cooling_device together.
> + * @last_load: load measured by the latest call to cpufreq_get_actual_power()
> + * @time_in_idle: previous reading of the absolute time that this cpu was idle
> + * @time_in_idle_timestamp: wall time of the last invocation of
> + * get_cpu_idle_time_us()
> + * @dyn_power_table: array of struct power_table for frequency to power
> + * conversion, sorted in ascending order.
> + * @dyn_power_table_entries: number of entries in the @dyn_power_table array
> + * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
> + * @plat_get_static_power: callback to calculate the static power
> *
> * This structure is required for keeping information of each registered
> * cpufreq_cooling_device.
> @@ -71,6 +94,13 @@ struct cpufreq_cooling_device {
> unsigned int *freq_table; /* In descending order */
> struct cpumask allowed_cpus;
> struct list_head node;
> + u32 last_load;
> + u64 time_in_idle[NR_CPUS];
> + u64 time_in_idle_timestamp[NR_CPUS];
> + struct power_table *dyn_power_table;
> + int dyn_power_table_entries;
> + struct device *cpu_dev;
> + get_static_t plat_get_static_power;
> };
> static DEFINE_IDR(cpufreq_idr);
> static DEFINE_MUTEX(cooling_cpufreq_lock);
> @@ -205,6 +235,210 @@ static int cpufreq_thermal_notifier(struct notifier_block *nb,
> return 0;
> }
>
> +/**
> + * build_dyn_power_table() - create a dynamic power to frequency table
> + * @cpufreq_device: the cpufreq cooling device in which to store the table
> + * @capacitance: dynamic power coefficient for these cpus
> + *
> + * Build a dynamic power to frequency table for this cpu and store it
> + * in @cpufreq_device. This table will be used in cpu_power_to_freq() and
> + * cpu_freq_to_power() to convert between power and frequency
> + * efficiently. Power is stored in mW, frequency in KHz. The
> + * resulting table is in ascending order.
> + *
> + * Return: 0 on success, -E* on error.
> + */
> +static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
> + u32 capacitance)
> +{
> + struct power_table *power_table;
> + struct dev_pm_opp *opp;
> + struct device *dev = NULL;
> + int num_opps = 0, cpu, i, ret = 0;
> + unsigned long freq;
> +
> + rcu_read_lock();
> +
> + for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
> + dev = get_cpu_device(cpu);
> + if (!dev) {
> + dev_warn(&cpufreq_device->cool_dev->device,
> + "No cpu device for cpu %d\n", cpu);
> + continue;
> + }
> +
> + num_opps = dev_pm_opp_get_opp_count(dev);
> + if (num_opps > 0) {
> + break;
> + } else if (num_opps < 0) {
> + ret = num_opps;
> + goto unlock;
> + }
> + }
> +
> + if (num_opps == 0) {
> + ret = -EINVAL;
> + goto unlock;
> + }
> +
> + power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
> +
> + for (freq = 0, i = 0;
> + opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
> + freq++, i++) {
> + u32 freq_mhz, voltage_mv;
> + u64 power;
> +
> + freq_mhz = freq / 1000000;
> + voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
> +
> + /*
> + * Do the multiplication with MHz and millivolt so as
> + * to not overflow.
> + */
> + power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
> + do_div(power, 1000000000);
> +
> + /* frequency is stored in power_table in KHz */
> + power_table[i].frequency = freq / 1000;
> +
> + /* power is stored in mW */
> + power_table[i].power = power;
> + }
> +
> + if (i == 0) {
> + ret = PTR_ERR(opp);
> + goto unlock;
> + }
> +
> + cpufreq_device->cpu_dev = dev;
> + cpufreq_device->dyn_power_table = power_table;
> + cpufreq_device->dyn_power_table_entries = i;
> +
> +unlock:
> + rcu_read_unlock();
> + return ret;
> +}
> +
> +static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,
> + u32 freq)
> +{
> + int i;
> + struct power_table *pt = cpufreq_device->dyn_power_table;
> +
> + for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
> + if (freq < pt[i].frequency)
> + break;
> +
> + return pt[i - 1].power;
> +}
> +
> +static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_device,
> + u32 power)
> +{
> + int i;
> + struct power_table *pt = cpufreq_device->dyn_power_table;
> +
> + for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
> + if (power < pt[i].power)
> + break;
> +
> + return pt[i - 1].frequency;
> +}
> +
> +/**
> + * get_load() - get load for a cpu since last updated
> + * @cpufreq_device: &struct cpufreq_cooling_device for this cpu
> + * @cpu: cpu number
> + *
> + * Return: The average load of cpu @cpu in percentage since this
> + * function was last called.
> + */
> +static u32 get_load(struct cpufreq_cooling_device *cpufreq_device, int cpu)
> +{
> + u32 load;
> + u64 now, now_idle, delta_time, delta_idle;
> +
> + now_idle = get_cpu_idle_time(cpu, &now, 0);
> + delta_idle = now_idle - cpufreq_device->time_in_idle[cpu];
> + delta_time = now - cpufreq_device->time_in_idle_timestamp[cpu];
> +
> + if (delta_time <= delta_idle)
> + load = 0;
> + else
> + load = div64_u64(100 * (delta_time - delta_idle), delta_time);
> +
> + cpufreq_device->time_in_idle[cpu] = now_idle;
> + cpufreq_device->time_in_idle_timestamp[cpu] = now;
> +
> + return load;
> +}
> +
> +/**
> + * get_static_power() - calculate the static power consumed by the cpus
> + * @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
> + * @tz: thermal zone device in which we're operating
> + * @freq: frequency in KHz
> + * @power: pointer in which to store the calculated static power
> + *
> + * Calculate the static power consumed by the cpus described by
> + * @cpu_actor running at frequency @freq. This function relies on a
> + * platform specific function that should have been provided when the
> + * actor was registered. If it wasn't, the static power is assumed to
> + * be negligible. The calculated static power is stored in @power.
> + *
> + * Return: 0 on success, -E* on failure.
> + */
> +static int get_static_power(struct cpufreq_cooling_device *cpufreq_device,
> + struct thermal_zone_device *tz, unsigned long freq,
> + u32 *power)
> +{
> + struct dev_pm_opp *opp;
> + unsigned long voltage;
> + struct cpumask *cpumask = &cpufreq_device->allowed_cpus;
> + unsigned long freq_hz = freq * 1000;
> +
> + if (!cpufreq_device->plat_get_static_power) {
> + *power = 0;
> + return 0;
> + }
> +
> + rcu_read_lock();
> +
> + opp = dev_pm_opp_find_freq_exact(cpufreq_device->cpu_dev, freq_hz,
> + true);
> + voltage = dev_pm_opp_get_voltage(opp);
> +
> + rcu_read_unlock();
> +
> + if (voltage == 0) {
> + dev_warn_ratelimited(cpufreq_device->cpu_dev,
> + "Failed to get voltage for frequency %lu: %ld\n",
> + freq_hz, IS_ERR(opp) ? PTR_ERR(opp) : 0);
> + return -EINVAL;
> + }
> +
> + return cpufreq_device->plat_get_static_power(cpumask, tz->passive_delay,
> + voltage, power);
> +}
> +
> +/**
> + * get_dynamic_power() - calculate the dynamic power
> + * @cpufreq_device: &cpufreq_cooling_device for this cdev
> + * @freq: current frequency
> + *
> + * Return: the dynamic power consumed by the cpus described by
> + * @cpufreq_device.
> + */
> +static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_device,
> + unsigned long freq)
> +{
> + u32 raw_cpu_power;
> +
> + raw_cpu_power = cpu_freq_to_power(cpufreq_device, freq);
> + return (raw_cpu_power * cpufreq_device->last_load) / 100;
> +}
> +
> /* cpufreq cooling device callback functions are defined below */
>
> /**
> @@ -280,8 +514,161 @@ static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
> return 0;
> }
>
> +/**
> + * cpufreq_get_requested_power() - get the current power
> + * @cdev: &thermal_cooling_device pointer
> + * @tz: a valid thermal zone device pointer
> + * @power: pointer in which to store the resulting power
> + *
> + * Calculate the current power consumption of the cpus in milliwatts
> + * and store it in @power. This function should actually calculate
> + * the requested power, but it's hard to get the frequency that
> + * cpufreq would have assigned if there were no thermal limits.
> + * Instead, we calculate the current power on the assumption that the
> + * immediate future will look like the immediate past.
> + *
> + * Return: 0 on success, -E* if getting the static power failed.
> + */
> +static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
> + struct thermal_zone_device *tz,
> + u32 *power)
> +{
> + unsigned long freq;
> + int cpu, ret;
> + u32 static_power, dynamic_power, total_load = 0;
> + struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
> +
> + freq = cpufreq_quick_get(cpumask_any(&cpufreq_device->allowed_cpus));
> +
> + for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
> + u32 load;
> +
> + if (cpu_online(cpu))
> + load = get_load(cpufreq_device, cpu);
> + else
> + load = 0;
> +
> + total_load += load;
> + }
> +
> + cpufreq_device->last_load = total_load;
> +
> + dynamic_power = get_dynamic_power(cpufreq_device, freq);
> + ret = get_static_power(cpufreq_device, tz, freq, &static_power);
> + if (ret)
> + return ret;
> +
> + *power = static_power + dynamic_power;
> + return 0;
> +}
Repeating the query I've just made on v5, do we care if the system uses
different opps during the load sampling interval?
Meaning, 1 - idle might not reflect the correct load.
> +
> +/**
> + * cpufreq_state2power() - convert a cpu cdev state to power consumed
> + * @cdev: &thermal_cooling_device pointer
> + * @tz: a valid thermal zone device pointer
> + * @state: cooling device state to be converted
> + * @power: pointer in which to store the resulting power
> + *
> + * Convert cooling device state @state into power consumption in
> + * milliwatts assuming 100% load. Store the calculated power in
> + * @power.
> + *
> + * Return: 0 on success, -EINVAL if the cooling device state could not
> + * be converted into a frequency or other -E* if there was an error
> + * when calculating the static power.
> + */
> +static int cpufreq_state2power(struct thermal_cooling_device *cdev,
> + struct thermal_zone_device *tz,
> + unsigned long state, u32 *power)
> +{
> + unsigned int freq, num_cpus;
> + cpumask_t cpumask;
> + u32 static_power, dynamic_power;
> + int ret;
> + struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
> +
> + cpumask_and(&cpumask, &cpufreq_device->allowed_cpus, cpu_online_mask);
> + num_cpus = cpumask_weight(&cpumask);
> +
> + /* None of our cpus are online, so no power */
> + if (num_cpus == 0) {
> + *power = 0;
> + return 0;
> + }
> +
> + freq = cpufreq_device->freq_table[state];
> + if (!freq)
> + return -EINVAL;
> +
> + dynamic_power = cpu_freq_to_power(cpufreq_device, freq) * num_cpus;
> + ret = get_static_power(cpufreq_device, tz, freq, &static_power);
> + if (ret)
> + return ret;
> +
> + *power = static_power + dynamic_power;
> + return 0;
> +}
> +
> +/**
> + * cpufreq_power2state() - convert power to a cooling device state
> + * @cdev: &thermal_cooling_device pointer
> + * @tz: a valid thermal zone device pointer
> + * @power: power in milliwatts to be converted
> + * @state: pointer in which to store the resulting state
> + *
> + * Calculate a cooling device state for the cpus described by @cdev
> + * that would allow them to consume at most @power mW and store it in
> + * @state. Note that this calculation depends on external factors
> + * such as the cpu load or the current static power. Calling this
> + * function with the same power as input can yield different cooling
> + * device states depending on those external factors.
> + *
> + * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
> + * the calculated frequency could not be converted to a valid state.
> + * The latter should not happen unless the frequencies available to
> + * cpufreq have changed since the initialization of the cpu cooling
> + * device.
> + */
> +static int cpufreq_power2state(struct thermal_cooling_device *cdev,
> + struct thermal_zone_device *tz, u32 power,
> + unsigned long *state)
> +{
> + unsigned int cpu, cur_freq, target_freq;
> + int ret;
> + s32 dyn_power;
> + u32 last_load, normalised_power, static_power;
> + struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
> +
> + cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
> +
> + /* None of our cpus are online */
> + if (cpu >= nr_cpu_ids)
> + return -ENODEV;
> +
> + cur_freq = cpufreq_quick_get(cpu);
> + ret = get_static_power(cpufreq_device, tz, cur_freq, &static_power);
> + if (ret)
> + return ret;
> +
> + dyn_power = power - static_power;
> + dyn_power = dyn_power > 0 ? dyn_power : 0;
> + last_load = cpufreq_device->last_load ?: 1;
> + normalised_power = (dyn_power * 100) / last_load;
> + target_freq = cpu_power_to_freq(cpufreq_device, normalised_power);
> +
> + *state = cpufreq_cooling_get_level(cpu, target_freq);
> + if (*state == THERMAL_CSTATE_INVALID) {
> + dev_warn_ratelimited(&cdev->device,
> + "Failed to convert %dKHz for cpu %d into a cdev state\n",
> + target_freq, cpu);
> + return -EINVAL;
> + }
> +
> + return 0;
> +}
> +
> /* Bind cpufreq callbacks to thermal cooling device ops */
> -static struct thermal_cooling_device_ops const cpufreq_cooling_ops = {
> +static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
> .get_max_state = cpufreq_get_max_state,
> .get_cur_state = cpufreq_get_cur_state,
> .set_cur_state = cpufreq_set_cur_state,
> @@ -311,6 +698,9 @@ static unsigned int find_next_max(struct cpufreq_frequency_table *table,
> * @np: a valid struct device_node to the cooling device device tree node
> * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
> * Normally this should be same as cpufreq policy->related_cpus.
> + * @capacitance: dynamic power coefficient for these cpus
> + * @plat_static_func: function to calculate the static power consumed by these
> + * cpus (optional)
> *
> * This interface function registers the cpufreq cooling device with the name
> * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
> @@ -322,7 +712,8 @@ static unsigned int find_next_max(struct cpufreq_frequency_table *table,
> */
> static struct thermal_cooling_device *
> __cpufreq_cooling_register(struct device_node *np,
> - const struct cpumask *clip_cpus)
> + const struct cpumask *clip_cpus, u32 capacitance,
> + get_static_t plat_static_func)
> {
> struct thermal_cooling_device *cool_dev;
> struct cpufreq_cooling_device *cpufreq_dev;
> @@ -357,6 +748,20 @@ __cpufreq_cooling_register(struct device_node *np,
>
> cpumask_copy(&cpufreq_dev->allowed_cpus, clip_cpus);
>
> + if (capacitance) {
> + cpufreq_cooling_ops.get_requested_power =
> + cpufreq_get_requested_power;
> + cpufreq_cooling_ops.state2power = cpufreq_state2power;
> + cpufreq_cooling_ops.power2state = cpufreq_power2state;
> + cpufreq_dev->plat_get_static_power = plat_static_func;
> +
> + ret = build_dyn_power_table(cpufreq_dev, capacitance);
> + if (ret) {
> + cool_dev = ERR_PTR(ret);
> + goto free_table;
> + }
> + }
> +
> ret = get_idr(&cpufreq_idr, &cpufreq_dev->id);
> if (ret) {
> cool_dev = ERR_PTR(ret);
> @@ -422,7 +827,7 @@ free_cdev:
> struct thermal_cooling_device *
> cpufreq_cooling_register(const struct cpumask *clip_cpus)
> {
> - return __cpufreq_cooling_register(NULL, clip_cpus);
> + return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
> }
> EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
>
> @@ -446,11 +851,78 @@ of_cpufreq_cooling_register(struct device_node *np,
> if (!np)
> return ERR_PTR(-EINVAL);
>
> - return __cpufreq_cooling_register(np, clip_cpus);
> + return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
> }
> EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
>
> /**
> + * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
> + * @clip_cpus: cpumask of cpus where the frequency constraints will happen
> + * @capacitance: dynamic power coefficient for these cpus
> + * @plat_static_func: function to calculate the static power consumed by these
> + * cpus (optional)
> + *
> + * This interface function registers the cpufreq cooling device with
> + * the name "thermal-cpufreq-%x". This api can support multiple
> + * instances of cpufreq cooling devices. Using this function, the
> + * cooling device will implement the power extensions by using a
> + * simple cpu power model. The cpus must have registered their OPPs
> + * using the OPP library.
> + *
> + * An optional @plat_static_func may be provided to calculate the
> + * static power consumed by these cpus. If the platform's static
> + * power consumption is unknown or negligible, make it NULL.
> + *
> + * Return: a valid struct thermal_cooling_device pointer on success,
> + * on failure, it returns a corresponding ERR_PTR().
> + */
> +struct thermal_cooling_device *
> +cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
> + get_static_t plat_static_func)
> +{
> + return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
> + plat_static_func);
> +}
> +EXPORT_SYMBOL(cpufreq_power_cooling_register);
> +
> +/**
> + * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
> + * @np: a valid struct device_node to the cooling device device tree node
> + * @clip_cpus: cpumask of cpus where the frequency constraints will happen
> + * @capacitance: dynamic power coefficient for these cpus
> + * @plat_static_func: function to calculate the static power consumed by these
> + * cpus (optional)
> + *
> + * This interface function registers the cpufreq cooling device with
> + * the name "thermal-cpufreq-%x". This api can support multiple
> + * instances of cpufreq cooling devices. Using this API, the cpufreq
> + * cooling device will be linked to the device tree node provided.
> + * Using this function, the cooling device will implement the power
> + * extensions by using a simple cpu power model. The cpus must have
> + * registered their OPPs using the OPP library.
> + *
> + * An optional @plat_static_func may be provided to calculate the
> + * static power consumed by these cpus. If the platform's static
> + * power consumption is unknown or negligible, make it NULL.
> + *
> + * Return: a valid struct thermal_cooling_device pointer on success,
> + * on failure, it returns a corresponding ERR_PTR().
> + */
> +struct thermal_cooling_device *
> +of_cpufreq_power_cooling_register(struct device_node *np,
> + const struct cpumask *clip_cpus,
> + u32 capacitance,
> + get_static_t plat_static_func)
> +{
> + if (!np)
> + return ERR_PTR(-EINVAL);
> +
> + return __cpufreq_cooling_register(np, clip_cpus, capacitance,
> + plat_static_func);
> +}
> +EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
> +
> +/**
> * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
> * @cdev: thermal cooling device pointer.
> *
> diff --git a/include/linux/cpu_cooling.h b/include/linux/cpu_cooling.h
> index bd955270d5aa..c156f5082758 100644
> --- a/include/linux/cpu_cooling.h
> +++ b/include/linux/cpu_cooling.h
> @@ -28,6 +28,9 @@
> #include <linux/thermal.h>
> #include <linux/cpumask.h>
>
> +typedef int (*get_static_t)(cpumask_t *cpumask, int interval,
> + unsigned long voltage, u32 *power);
> +
> #ifdef CONFIG_CPU_THERMAL
> /**
> * cpufreq_cooling_register - function to create cpufreq cooling device.
> @@ -36,6 +39,10 @@
> struct thermal_cooling_device *
> cpufreq_cooling_register(const struct cpumask *clip_cpus);
>
> +struct thermal_cooling_device *
> +cpufreq_power_cooling_register(const struct cpumask *clip_cpus,
> + u32 capacitance, get_static_t plat_static_func);
> +
> /**
> * of_cpufreq_cooling_register - create cpufreq cooling device based on DT.
> * @np: a valid struct device_node to the cooling device device tree node.
> @@ -45,6 +52,12 @@ cpufreq_cooling_register(const struct cpumask *clip_cpus);
> struct thermal_cooling_device *
> of_cpufreq_cooling_register(struct device_node *np,
> const struct cpumask *clip_cpus);
> +
> +struct thermal_cooling_device *
> +of_cpufreq_power_cooling_register(struct device_node *np,
> + const struct cpumask *clip_cpus,
> + u32 capacitance,
> + get_static_t plat_static_func);
> #else
> static inline struct thermal_cooling_device *
> of_cpufreq_cooling_register(struct device_node *np,
> @@ -52,6 +65,15 @@ of_cpufreq_cooling_register(struct device_node *np,
> {
> return ERR_PTR(-ENOSYS);
> }
> +
> +static inline struct thermal_cooling_device *
> +of_cpufreq_power_cooling_register(struct device_node *np,
> + const struct cpumask *clip_cpus,
> + u32 capacitance,
> + get_static_t plat_static_func)
> +{
> + return NULL;
> +}
> #endif
>
> /**
> @@ -68,11 +90,28 @@ cpufreq_cooling_register(const struct cpumask *clip_cpus)
> return ERR_PTR(-ENOSYS);
> }
> static inline struct thermal_cooling_device *
> +cpufreq_power_cooling_register(const struct cpumask *clip_cpus,
> + u32 capacitance, get_static_t plat_static_func)
> +{
> + return NULL;
> +}
> +
> +static inline struct thermal_cooling_device *
> of_cpufreq_cooling_register(struct device_node *np,
> const struct cpumask *clip_cpus)
> {
> return ERR_PTR(-ENOSYS);
> }
> +
> +static inline struct thermal_cooling_device *
> +of_cpufreq_power_cooling_register(struct device_node *np,
> + const struct cpumask *clip_cpus,
> + u32 capacitance,
> + get_static_t plat_static_func)
> +{
> + return NULL;
> +}
> +
> static inline
> void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
> {
> --
> 1.9.1
>
Download attachment "signature.asc" of type "application/pgp-signature" (474 bytes)
Powered by blists - more mailing lists