lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <1426521535-12501-2-git-send-email-prarit@redhat.com>
Date:	Mon, 16 Mar 2015 11:58:54 -0400
From:	Prarit Bhargava <prarit@...hat.com>
To:	linux-kernel@...r.kernel.org
Cc:	corbet@....net, rtc-linux@...glegroups.com,
	linux-doc@...r.kernel.org, a.zummo@...ertech.it,
	Prarit Bhargava <prarit@...hat.com>
Subject: [PATCH 1/2] Documentation, add rtc directory and split up rtc.txt

Add a Documentation/rtc directory and split rtc.txt into two separate
files, one for the documentation itself, and the other for the rtctest.c
file.

Signed-off-by: Prarit Bhargava <prarit@...hat.com>
---
 Documentation/rtc.txt       |  469 -------------------------------------------
 Documentation/rtc/rtc.txt   |  207 +++++++++++++++++++
 Documentation/rtc/rtctest.c |  258 ++++++++++++++++++++++++
 3 files changed, 465 insertions(+), 469 deletions(-)
 delete mode 100644 Documentation/rtc.txt
 create mode 100644 Documentation/rtc/rtc.txt
 create mode 100644 Documentation/rtc/rtctest.c

diff --git a/Documentation/rtc.txt b/Documentation/rtc.txt
deleted file mode 100644
index 596b60c..0000000
--- a/Documentation/rtc.txt
+++ /dev/null
@@ -1,469 +0,0 @@
-
-	Real Time Clock (RTC) Drivers for Linux
-	=======================================
-
-When Linux developers talk about a "Real Time Clock", they usually mean
-something that tracks wall clock time and is battery backed so that it
-works even with system power off.  Such clocks will normally not track
-the local time zone or daylight savings time -- unless they dual boot
-with MS-Windows -- but will instead be set to Coordinated Universal Time
-(UTC, formerly "Greenwich Mean Time").
-
-The newest non-PC hardware tends to just count seconds, like the time(2)
-system call reports, but RTCs also very commonly represent time using
-the Gregorian calendar and 24 hour time, as reported by gmtime(3).
-
-Linux has two largely-compatible userspace RTC API families you may
-need to know about:
-
-    *	/dev/rtc ... is the RTC provided by PC compatible systems,
-	so it's not very portable to non-x86 systems.
-
-    *	/dev/rtc0, /dev/rtc1 ... are part of a framework that's
-	supported by a wide variety of RTC chips on all systems.
-
-Programmers need to understand that the PC/AT functionality is not
-always available, and some systems can do much more.  That is, the
-RTCs use the same API to make requests in both RTC frameworks (using
-different filenames of course), but the hardware may not offer the
-same functionality.  For example, not every RTC is hooked up to an
-IRQ, so they can't all issue alarms; and where standard PC RTCs can
-only issue an alarm up to 24 hours in the future, other hardware may
-be able to schedule one any time in the upcoming century.
-
-
-	Old PC/AT-Compatible driver:  /dev/rtc
-	--------------------------------------
-
-All PCs (even Alpha machines) have a Real Time Clock built into them.
-Usually they are built into the chipset of the computer, but some may
-actually have a Motorola MC146818 (or clone) on the board. This is the
-clock that keeps the date and time while your computer is turned off.
-
-ACPI has standardized that MC146818 functionality, and extended it in
-a few ways (enabling longer alarm periods, and wake-from-hibernate).
-That functionality is NOT exposed in the old driver.
-
-However it can also be used to generate signals from a slow 2Hz to a
-relatively fast 8192Hz, in increments of powers of two. These signals
-are reported by interrupt number 8. (Oh! So *that* is what IRQ 8 is
-for...) It can also function as a 24hr alarm, raising IRQ 8 when the
-alarm goes off. The alarm can also be programmed to only check any
-subset of the three programmable values, meaning that it could be set to
-ring on the 30th second of the 30th minute of every hour, for example.
-The clock can also be set to generate an interrupt upon every clock
-update, thus generating a 1Hz signal.
-
-The interrupts are reported via /dev/rtc (major 10, minor 135, read only
-character device) in the form of an unsigned long. The low byte contains
-the type of interrupt (update-done, alarm-rang, or periodic) that was
-raised, and the remaining bytes contain the number of interrupts since
-the last read.  Status information is reported through the pseudo-file
-/proc/driver/rtc if the /proc filesystem was enabled.  The driver has
-built in locking so that only one process is allowed to have the /dev/rtc
-interface open at a time.
-
-A user process can monitor these interrupts by doing a read(2) or a
-select(2) on /dev/rtc -- either will block/stop the user process until
-the next interrupt is received. This is useful for things like
-reasonably high frequency data acquisition where one doesn't want to
-burn up 100% CPU by polling gettimeofday etc. etc.
-
-At high frequencies, or under high loads, the user process should check
-the number of interrupts received since the last read to determine if
-there has been any interrupt "pileup" so to speak. Just for reference, a
-typical 486-33 running a tight read loop on /dev/rtc will start to suffer
-occasional interrupt pileup (i.e. > 1 IRQ event since last read) for
-frequencies above 1024Hz. So you really should check the high bytes
-of the value you read, especially at frequencies above that of the
-normal timer interrupt, which is 100Hz.
-
-Programming and/or enabling interrupt frequencies greater than 64Hz is
-only allowed by root. This is perhaps a bit conservative, but we don't want
-an evil user generating lots of IRQs on a slow 386sx-16, where it might have
-a negative impact on performance. This 64Hz limit can be changed by writing
-a different value to /proc/sys/dev/rtc/max-user-freq. Note that the
-interrupt handler is only a few lines of code to minimize any possibility
-of this effect.
-
-Also, if the kernel time is synchronized with an external source, the 
-kernel will write the time back to the CMOS clock every 11 minutes. In 
-the process of doing this, the kernel briefly turns off RTC periodic 
-interrupts, so be aware of this if you are doing serious work. If you
-don't synchronize the kernel time with an external source (via ntp or
-whatever) then the kernel will keep its hands off the RTC, allowing you
-exclusive access to the device for your applications.
-
-The alarm and/or interrupt frequency are programmed into the RTC via
-various ioctl(2) calls as listed in ./include/linux/rtc.h
-Rather than write 50 pages describing the ioctl() and so on, it is
-perhaps more useful to include a small test program that demonstrates
-how to use them, and demonstrates the features of the driver. This is
-probably a lot more useful to people interested in writing applications
-that will be using this driver.  See the code at the end of this document.
-
-(The original /dev/rtc driver was written by Paul Gortmaker.)
-
-
-	New portable "RTC Class" drivers:  /dev/rtcN
-	--------------------------------------------
-
-Because Linux supports many non-ACPI and non-PC platforms, some of which
-have more than one RTC style clock, it needed a more portable solution
-than expecting a single battery-backed MC146818 clone on every system.
-Accordingly, a new "RTC Class" framework has been defined.  It offers
-three different userspace interfaces:
-
-    *	/dev/rtcN ... much the same as the older /dev/rtc interface
-
-    *	/sys/class/rtc/rtcN ... sysfs attributes support readonly
-	access to some RTC attributes.
-
-    *	/proc/driver/rtc ... the system clock RTC may expose itself
-	using a procfs interface. If there is no RTC for the system clock,
-	rtc0 is used by default. More information is (currently) shown
-	here than through sysfs.
-
-The RTC Class framework supports a wide variety of RTCs, ranging from those
-integrated into embeddable system-on-chip (SOC) processors to discrete chips
-using I2C, SPI, or some other bus to communicate with the host CPU.  There's
-even support for PC-style RTCs ... including the features exposed on newer PCs
-through ACPI.
-
-The new framework also removes the "one RTC per system" restriction.  For
-example, maybe the low-power battery-backed RTC is a discrete I2C chip, but
-a high functionality RTC is integrated into the SOC.  That system might read
-the system clock from the discrete RTC, but use the integrated one for all
-other tasks, because of its greater functionality.
-
-SYSFS INTERFACE
----------------
-
-The sysfs interface under /sys/class/rtc/rtcN provides access to various
-rtc attributes without requiring the use of ioctls. All dates and times
-are in the RTC's timezone, rather than in system time.
-
-date:  	   	 RTC-provided date
-hctosys:   	 1 if the RTC provided the system time at boot via the
-		 CONFIG_RTC_HCTOSYS kernel option, 0 otherwise
-max_user_freq:	 The maximum interrupt rate an unprivileged user may request
-		 from this RTC.
-name:		 The name of the RTC corresponding to this sysfs directory
-since_epoch:	 The number of seconds since the epoch according to the RTC
-time:		 RTC-provided time
-wakealarm:	 The time at which the clock will generate a system wakeup
-		 event. This is a one shot wakeup event, so must be reset
-		 after wake if a daily wakeup is required. Format is seconds since
-		 the epoch by default, or if there's a leading +, seconds in the
-		 future, or if there is a leading +=, seconds ahead of the current
-		 alarm.
-
-IOCTL INTERFACE
----------------
-
-The ioctl() calls supported by /dev/rtc are also supported by the RTC class
-framework.  However, because the chips and systems are not standardized,
-some PC/AT functionality might not be provided.  And in the same way, some
-newer features -- including those enabled by ACPI -- are exposed by the
-RTC class framework, but can't be supported by the older driver.
-
-    *	RTC_RD_TIME, RTC_SET_TIME ... every RTC supports at least reading
-	time, returning the result as a Gregorian calendar date and 24 hour
-	wall clock time.  To be most useful, this time may also be updated.
-
-    *	RTC_AIE_ON, RTC_AIE_OFF, RTC_ALM_SET, RTC_ALM_READ ... when the RTC
-	is connected to an IRQ line, it can often issue an alarm IRQ up to
-	24 hours in the future.  (Use RTC_WKALM_* by preference.)
-
-    *	RTC_WKALM_SET, RTC_WKALM_RD ... RTCs that can issue alarms beyond
-	the next 24 hours use a slightly more powerful API, which supports
-	setting the longer alarm time and enabling its IRQ using a single
-	request (using the same model as EFI firmware).
-
-    *	RTC_UIE_ON, RTC_UIE_OFF ... if the RTC offers IRQs, the RTC framework
-	will emulate this mechanism.
-
-    *	RTC_PIE_ON, RTC_PIE_OFF, RTC_IRQP_SET, RTC_IRQP_READ ... these icotls
-	are emulated via a kernel hrtimer.
-
-In many cases, the RTC alarm can be a system wake event, used to force
-Linux out of a low power sleep state (or hibernation) back to a fully
-operational state.  For example, a system could enter a deep power saving
-state until it's time to execute some scheduled tasks.
-
-Note that many of these ioctls are handled by the common rtc-dev interface.
-Some common examples:
-
-    *	RTC_RD_TIME, RTC_SET_TIME: the read_time/set_time functions will be
-	called with appropriate values.
-
-    *	RTC_ALM_SET, RTC_ALM_READ, RTC_WKALM_SET, RTC_WKALM_RD: gets or sets
-	the alarm rtc_timer. May call the set_alarm driver function.
-
-    *	RTC_IRQP_SET, RTC_IRQP_READ: These are emulated by the generic code.
-
-    *	RTC_PIE_ON, RTC_PIE_OFF: These are also emulated by the generic code.
-
-If all else fails, check out the rtc-test.c driver!
-
-
--------------------- 8< ---------------- 8< -----------------------------
-
-/*
- *      Real Time Clock Driver Test/Example Program
- *
- *      Compile with:
- *		     gcc -s -Wall -Wstrict-prototypes rtctest.c -o rtctest
- *
- *      Copyright (C) 1996, Paul Gortmaker.
- *
- *      Released under the GNU General Public License, version 2,
- *      included herein by reference.
- *
- */
-
-#include <stdio.h>
-#include <linux/rtc.h>
-#include <sys/ioctl.h>
-#include <sys/time.h>
-#include <sys/types.h>
-#include <fcntl.h>
-#include <unistd.h>
-#include <stdlib.h>
-#include <errno.h>
-
-
-/*
- * This expects the new RTC class driver framework, working with
- * clocks that will often not be clones of what the PC-AT had.
- * Use the command line to specify another RTC if you need one.
- */
-static const char default_rtc[] = "/dev/rtc0";
-
-
-int main(int argc, char **argv)
-{
-	int i, fd, retval, irqcount = 0;
-	unsigned long tmp, data;
-	struct rtc_time rtc_tm;
-	const char *rtc = default_rtc;
-
-	switch (argc) {
-	case 2:
-		rtc = argv[1];
-		/* FALLTHROUGH */
-	case 1:
-		break;
-	default:
-		fprintf(stderr, "usage:  rtctest [rtcdev]\n");
-		return 1;
-	}
-
-	fd = open(rtc, O_RDONLY);
-
-	if (fd ==  -1) {
-		perror(rtc);
-		exit(errno);
-	}
-
-	fprintf(stderr, "\n\t\t\tRTC Driver Test Example.\n\n");
-
-	/* Turn on update interrupts (one per second) */
-	retval = ioctl(fd, RTC_UIE_ON, 0);
-	if (retval == -1) {
-		if (errno == ENOTTY) {
-			fprintf(stderr,
-				"\n...Update IRQs not supported.\n");
-			goto test_READ;
-		}
-		perror("RTC_UIE_ON ioctl");
-		exit(errno);
-	}
-
-	fprintf(stderr, "Counting 5 update (1/sec) interrupts from reading %s:",
-			rtc);
-	fflush(stderr);
-	for (i=1; i<6; i++) {
-		/* This read will block */
-		retval = read(fd, &data, sizeof(unsigned long));
-		if (retval == -1) {
-			perror("read");
-			exit(errno);
-		}
-		fprintf(stderr, " %d",i);
-		fflush(stderr);
-		irqcount++;
-	}
-
-	fprintf(stderr, "\nAgain, from using select(2) on /dev/rtc:");
-	fflush(stderr);
-	for (i=1; i<6; i++) {
-		struct timeval tv = {5, 0};     /* 5 second timeout on select */
-		fd_set readfds;
-
-		FD_ZERO(&readfds);
-		FD_SET(fd, &readfds);
-		/* The select will wait until an RTC interrupt happens. */
-		retval = select(fd+1, &readfds, NULL, NULL, &tv);
-		if (retval == -1) {
-		        perror("select");
-		        exit(errno);
-		}
-		/* This read won't block unlike the select-less case above. */
-		retval = read(fd, &data, sizeof(unsigned long));
-		if (retval == -1) {
-		        perror("read");
-		        exit(errno);
-		}
-		fprintf(stderr, " %d",i);
-		fflush(stderr);
-		irqcount++;
-	}
-
-	/* Turn off update interrupts */
-	retval = ioctl(fd, RTC_UIE_OFF, 0);
-	if (retval == -1) {
-		perror("RTC_UIE_OFF ioctl");
-		exit(errno);
-	}
-
-test_READ:
-	/* Read the RTC time/date */
-	retval = ioctl(fd, RTC_RD_TIME, &rtc_tm);
-	if (retval == -1) {
-		perror("RTC_RD_TIME ioctl");
-		exit(errno);
-	}
-
-	fprintf(stderr, "\n\nCurrent RTC date/time is %d-%d-%d, %02d:%02d:%02d.\n",
-		rtc_tm.tm_mday, rtc_tm.tm_mon + 1, rtc_tm.tm_year + 1900,
-		rtc_tm.tm_hour, rtc_tm.tm_min, rtc_tm.tm_sec);
-
-	/* Set the alarm to 5 sec in the future, and check for rollover */
-	rtc_tm.tm_sec += 5;
-	if (rtc_tm.tm_sec >= 60) {
-		rtc_tm.tm_sec %= 60;
-		rtc_tm.tm_min++;
-	}
-	if (rtc_tm.tm_min == 60) {
-		rtc_tm.tm_min = 0;
-		rtc_tm.tm_hour++;
-	}
-	if (rtc_tm.tm_hour == 24)
-		rtc_tm.tm_hour = 0;
-
-	retval = ioctl(fd, RTC_ALM_SET, &rtc_tm);
-	if (retval == -1) {
-		if (errno == ENOTTY) {
-			fprintf(stderr,
-				"\n...Alarm IRQs not supported.\n");
-			goto test_PIE;
-		}
-		perror("RTC_ALM_SET ioctl");
-		exit(errno);
-	}
-
-	/* Read the current alarm settings */
-	retval = ioctl(fd, RTC_ALM_READ, &rtc_tm);
-	if (retval == -1) {
-		perror("RTC_ALM_READ ioctl");
-		exit(errno);
-	}
-
-	fprintf(stderr, "Alarm time now set to %02d:%02d:%02d.\n",
-		rtc_tm.tm_hour, rtc_tm.tm_min, rtc_tm.tm_sec);
-
-	/* Enable alarm interrupts */
-	retval = ioctl(fd, RTC_AIE_ON, 0);
-	if (retval == -1) {
-		perror("RTC_AIE_ON ioctl");
-		exit(errno);
-	}
-
-	fprintf(stderr, "Waiting 5 seconds for alarm...");
-	fflush(stderr);
-	/* This blocks until the alarm ring causes an interrupt */
-	retval = read(fd, &data, sizeof(unsigned long));
-	if (retval == -1) {
-		perror("read");
-		exit(errno);
-	}
-	irqcount++;
-	fprintf(stderr, " okay. Alarm rang.\n");
-
-	/* Disable alarm interrupts */
-	retval = ioctl(fd, RTC_AIE_OFF, 0);
-	if (retval == -1) {
-		perror("RTC_AIE_OFF ioctl");
-		exit(errno);
-	}
-
-test_PIE:
-	/* Read periodic IRQ rate */
-	retval = ioctl(fd, RTC_IRQP_READ, &tmp);
-	if (retval == -1) {
-		/* not all RTCs support periodic IRQs */
-		if (errno == ENOTTY) {
-			fprintf(stderr, "\nNo periodic IRQ support\n");
-			goto done;
-		}
-		perror("RTC_IRQP_READ ioctl");
-		exit(errno);
-	}
-	fprintf(stderr, "\nPeriodic IRQ rate is %ldHz.\n", tmp);
-
-	fprintf(stderr, "Counting 20 interrupts at:");
-	fflush(stderr);
-
-	/* The frequencies 128Hz, 256Hz, ... 8192Hz are only allowed for root. */
-	for (tmp=2; tmp<=64; tmp*=2) {
-
-		retval = ioctl(fd, RTC_IRQP_SET, tmp);
-		if (retval == -1) {
-			/* not all RTCs can change their periodic IRQ rate */
-			if (errno == ENOTTY) {
-				fprintf(stderr,
-					"\n...Periodic IRQ rate is fixed\n");
-				goto done;
-			}
-			perror("RTC_IRQP_SET ioctl");
-			exit(errno);
-		}
-
-		fprintf(stderr, "\n%ldHz:\t", tmp);
-		fflush(stderr);
-
-		/* Enable periodic interrupts */
-		retval = ioctl(fd, RTC_PIE_ON, 0);
-		if (retval == -1) {
-			perror("RTC_PIE_ON ioctl");
-			exit(errno);
-		}
-
-		for (i=1; i<21; i++) {
-			/* This blocks */
-			retval = read(fd, &data, sizeof(unsigned long));
-			if (retval == -1) {
-				perror("read");
-				exit(errno);
-			}
-			fprintf(stderr, " %d",i);
-			fflush(stderr);
-			irqcount++;
-		}
-
-		/* Disable periodic interrupts */
-		retval = ioctl(fd, RTC_PIE_OFF, 0);
-		if (retval == -1) {
-			perror("RTC_PIE_OFF ioctl");
-			exit(errno);
-		}
-	}
-
-done:
-	fprintf(stderr, "\n\n\t\t\t *** Test complete ***\n");
-
-	close(fd);
-
-	return 0;
-}
diff --git a/Documentation/rtc/rtc.txt b/Documentation/rtc/rtc.txt
new file mode 100644
index 0000000..fd6e0cd
--- /dev/null
+++ b/Documentation/rtc/rtc.txt
@@ -0,0 +1,207 @@
+
+	Real Time Clock (RTC) Drivers for Linux
+	=======================================
+
+When Linux developers talk about a "Real Time Clock", they usually mean
+something that tracks wall clock time and is battery backed so that it
+works even with system power off.  Such clocks will normally not track
+the local time zone or daylight savings time -- unless they dual boot
+with MS-Windows -- but will instead be set to Coordinated Universal Time
+(UTC, formerly "Greenwich Mean Time").
+
+The newest non-PC hardware tends to just count seconds, like the time(2)
+system call reports, but RTCs also very commonly represent time using
+the Gregorian calendar and 24 hour time, as reported by gmtime(3).
+
+Linux has two largely-compatible userspace RTC API families you may
+need to know about:
+
+    *	/dev/rtc ... is the RTC provided by PC compatible systems,
+	so it's not very portable to non-x86 systems.
+
+    *	/dev/rtc0, /dev/rtc1 ... are part of a framework that's
+	supported by a wide variety of RTC chips on all systems.
+
+Programmers need to understand that the PC/AT functionality is not
+always available, and some systems can do much more.  That is, the
+RTCs use the same API to make requests in both RTC frameworks (using
+different filenames of course), but the hardware may not offer the
+same functionality.  For example, not every RTC is hooked up to an
+IRQ, so they can't all issue alarms; and where standard PC RTCs can
+only issue an alarm up to 24 hours in the future, other hardware may
+be able to schedule one any time in the upcoming century.
+
+
+	Old PC/AT-Compatible driver:  /dev/rtc
+	--------------------------------------
+
+All PCs (even Alpha machines) have a Real Time Clock built into them.
+Usually they are built into the chipset of the computer, but some may
+actually have a Motorola MC146818 (or clone) on the board. This is the
+clock that keeps the date and time while your computer is turned off.
+
+ACPI has standardized that MC146818 functionality, and extended it in
+a few ways (enabling longer alarm periods, and wake-from-hibernate).
+That functionality is NOT exposed in the old driver.
+
+However it can also be used to generate signals from a slow 2Hz to a
+relatively fast 8192Hz, in increments of powers of two. These signals
+are reported by interrupt number 8. (Oh! So *that* is what IRQ 8 is
+for...) It can also function as a 24hr alarm, raising IRQ 8 when the
+alarm goes off. The alarm can also be programmed to only check any
+subset of the three programmable values, meaning that it could be set to
+ring on the 30th second of the 30th minute of every hour, for example.
+The clock can also be set to generate an interrupt upon every clock
+update, thus generating a 1Hz signal.
+
+The interrupts are reported via /dev/rtc (major 10, minor 135, read only
+character device) in the form of an unsigned long. The low byte contains
+the type of interrupt (update-done, alarm-rang, or periodic) that was
+raised, and the remaining bytes contain the number of interrupts since
+the last read.  Status information is reported through the pseudo-file
+/proc/driver/rtc if the /proc filesystem was enabled.  The driver has
+built in locking so that only one process is allowed to have the /dev/rtc
+interface open at a time.
+
+A user process can monitor these interrupts by doing a read(2) or a
+select(2) on /dev/rtc -- either will block/stop the user process until
+the next interrupt is received. This is useful for things like
+reasonably high frequency data acquisition where one doesn't want to
+burn up 100% CPU by polling gettimeofday etc. etc.
+
+At high frequencies, or under high loads, the user process should check
+the number of interrupts received since the last read to determine if
+there has been any interrupt "pileup" so to speak. Just for reference, a
+typical 486-33 running a tight read loop on /dev/rtc will start to suffer
+occasional interrupt pileup (i.e. > 1 IRQ event since last read) for
+frequencies above 1024Hz. So you really should check the high bytes
+of the value you read, especially at frequencies above that of the
+normal timer interrupt, which is 100Hz.
+
+Programming and/or enabling interrupt frequencies greater than 64Hz is
+only allowed by root. This is perhaps a bit conservative, but we don't want
+an evil user generating lots of IRQs on a slow 386sx-16, where it might have
+a negative impact on performance. This 64Hz limit can be changed by writing
+a different value to /proc/sys/dev/rtc/max-user-freq. Note that the
+interrupt handler is only a few lines of code to minimize any possibility
+of this effect.
+
+Also, if the kernel time is synchronized with an external source, the 
+kernel will write the time back to the CMOS clock every 11 minutes. In 
+the process of doing this, the kernel briefly turns off RTC periodic 
+interrupts, so be aware of this if you are doing serious work. If you
+don't synchronize the kernel time with an external source (via ntp or
+whatever) then the kernel will keep its hands off the RTC, allowing you
+exclusive access to the device for your applications.
+
+The alarm and/or interrupt frequency are programmed into the RTC via
+various ioctl(2) calls as listed in ./include/linux/rtc.h
+Rather than write 50 pages describing the ioctl() and so on, it is
+perhaps more useful to include a small test program that demonstrates
+how to use them, and demonstrates the features of the driver. This is
+probably a lot more useful to people interested in writing applications
+that will be using this driver.  See the code at the end of this document.
+
+(The original /dev/rtc driver was written by Paul Gortmaker.)
+
+
+	New portable "RTC Class" drivers:  /dev/rtcN
+	--------------------------------------------
+
+Because Linux supports many non-ACPI and non-PC platforms, some of which
+have more than one RTC style clock, it needed a more portable solution
+than expecting a single battery-backed MC146818 clone on every system.
+Accordingly, a new "RTC Class" framework has been defined.  It offers
+three different userspace interfaces:
+
+    *	/dev/rtcN ... much the same as the older /dev/rtc interface
+
+    *	/sys/class/rtc/rtcN ... sysfs attributes support readonly
+	access to some RTC attributes.
+
+    *	/proc/driver/rtc ... the system clock RTC may expose itself
+	using a procfs interface. If there is no RTC for the system clock,
+	rtc0 is used by default. More information is (currently) shown
+	here than through sysfs.
+
+The RTC Class framework supports a wide variety of RTCs, ranging from those
+integrated into embeddable system-on-chip (SOC) processors to discrete chips
+using I2C, SPI, or some other bus to communicate with the host CPU.  There's
+even support for PC-style RTCs ... including the features exposed on newer PCs
+through ACPI.
+
+The new framework also removes the "one RTC per system" restriction.  For
+example, maybe the low-power battery-backed RTC is a discrete I2C chip, but
+a high functionality RTC is integrated into the SOC.  That system might read
+the system clock from the discrete RTC, but use the integrated one for all
+other tasks, because of its greater functionality.
+
+SYSFS INTERFACE
+---------------
+
+The sysfs interface under /sys/class/rtc/rtcN provides access to various
+rtc attributes without requiring the use of ioctls. All dates and times
+are in the RTC's timezone, rather than in system time.
+
+date:  	   	 RTC-provided date
+hctosys:   	 1 if the RTC provided the system time at boot via the
+		 CONFIG_RTC_HCTOSYS kernel option, 0 otherwise
+max_user_freq:	 The maximum interrupt rate an unprivileged user may request
+		 from this RTC.
+name:		 The name of the RTC corresponding to this sysfs directory
+since_epoch:	 The number of seconds since the epoch according to the RTC
+time:		 RTC-provided time
+wakealarm:	 The time at which the clock will generate a system wakeup
+		 event. This is a one shot wakeup event, so must be reset
+		 after wake if a daily wakeup is required. Format is seconds since
+		 the epoch by default, or if there's a leading +, seconds in the
+		 future, or if there is a leading +=, seconds ahead of the current
+		 alarm.
+
+IOCTL INTERFACE
+---------------
+
+The ioctl() calls supported by /dev/rtc are also supported by the RTC class
+framework.  However, because the chips and systems are not standardized,
+some PC/AT functionality might not be provided.  And in the same way, some
+newer features -- including those enabled by ACPI -- are exposed by the
+RTC class framework, but can't be supported by the older driver.
+
+    *	RTC_RD_TIME, RTC_SET_TIME ... every RTC supports at least reading
+	time, returning the result as a Gregorian calendar date and 24 hour
+	wall clock time.  To be most useful, this time may also be updated.
+
+    *	RTC_AIE_ON, RTC_AIE_OFF, RTC_ALM_SET, RTC_ALM_READ ... when the RTC
+	is connected to an IRQ line, it can often issue an alarm IRQ up to
+	24 hours in the future.  (Use RTC_WKALM_* by preference.)
+
+    *	RTC_WKALM_SET, RTC_WKALM_RD ... RTCs that can issue alarms beyond
+	the next 24 hours use a slightly more powerful API, which supports
+	setting the longer alarm time and enabling its IRQ using a single
+	request (using the same model as EFI firmware).
+
+    *	RTC_UIE_ON, RTC_UIE_OFF ... if the RTC offers IRQs, the RTC framework
+	will emulate this mechanism.
+
+    *	RTC_PIE_ON, RTC_PIE_OFF, RTC_IRQP_SET, RTC_IRQP_READ ... these icotls
+	are emulated via a kernel hrtimer.
+
+In many cases, the RTC alarm can be a system wake event, used to force
+Linux out of a low power sleep state (or hibernation) back to a fully
+operational state.  For example, a system could enter a deep power saving
+state until it's time to execute some scheduled tasks.
+
+Note that many of these ioctls are handled by the common rtc-dev interface.
+Some common examples:
+
+    *	RTC_RD_TIME, RTC_SET_TIME: the read_time/set_time functions will be
+	called with appropriate values.
+
+    *	RTC_ALM_SET, RTC_ALM_READ, RTC_WKALM_SET, RTC_WKALM_RD: gets or sets
+	the alarm rtc_timer. May call the set_alarm driver function.
+
+    *	RTC_IRQP_SET, RTC_IRQP_READ: These are emulated by the generic code.
+
+    *	RTC_PIE_ON, RTC_PIE_OFF: These are also emulated by the generic code.
+
+If all else fails, check out the rtc-test.c driver!
diff --git a/Documentation/rtc/rtctest.c b/Documentation/rtc/rtctest.c
new file mode 100644
index 0000000..1e06f46
--- /dev/null
+++ b/Documentation/rtc/rtctest.c
@@ -0,0 +1,258 @@
+/*
+ *      Real Time Clock Driver Test/Example Program
+ *
+ *      Compile with:
+ *		     gcc -s -Wall -Wstrict-prototypes rtctest.c -o rtctest
+ *
+ *      Copyright (C) 1996, Paul Gortmaker.
+ *
+ *      Released under the GNU General Public License, version 2,
+ *      included herein by reference.
+ *
+ */
+
+#include <stdio.h>
+#include <linux/rtc.h>
+#include <sys/ioctl.h>
+#include <sys/time.h>
+#include <sys/types.h>
+#include <fcntl.h>
+#include <unistd.h>
+#include <stdlib.h>
+#include <errno.h>
+
+
+/*
+ * This expects the new RTC class driver framework, working with
+ * clocks that will often not be clones of what the PC-AT had.
+ * Use the command line to specify another RTC if you need one.
+ */
+static const char default_rtc[] = "/dev/rtc0";
+
+
+int main(int argc, char **argv)
+{
+	int i, fd, retval, irqcount = 0;
+	unsigned long tmp, data;
+	struct rtc_time rtc_tm;
+	const char *rtc = default_rtc;
+
+	switch (argc) {
+	case 2:
+		rtc = argv[1];
+		/* FALLTHROUGH */
+	case 1:
+		break;
+	default:
+		fprintf(stderr, "usage:  rtctest [rtcdev]\n");
+		return 1;
+	}
+
+	fd = open(rtc, O_RDONLY);
+
+	if (fd ==  -1) {
+		perror(rtc);
+		exit(errno);
+	}
+
+	fprintf(stderr, "\n\t\t\tRTC Driver Test Example.\n\n");
+
+	/* Turn on update interrupts (one per second) */
+	retval = ioctl(fd, RTC_UIE_ON, 0);
+	if (retval == -1) {
+		if (errno == ENOTTY) {
+			fprintf(stderr,
+				"\n...Update IRQs not supported.\n");
+			goto test_READ;
+		}
+		perror("RTC_UIE_ON ioctl");
+		exit(errno);
+	}
+
+	fprintf(stderr, "Counting 5 update (1/sec) interrupts from reading %s:",
+			rtc);
+	fflush(stderr);
+	for (i=1; i<6; i++) {
+		/* This read will block */
+		retval = read(fd, &data, sizeof(unsigned long));
+		if (retval == -1) {
+			perror("read");
+			exit(errno);
+		}
+		fprintf(stderr, " %d",i);
+		fflush(stderr);
+		irqcount++;
+	}
+
+	fprintf(stderr, "\nAgain, from using select(2) on /dev/rtc:");
+	fflush(stderr);
+	for (i=1; i<6; i++) {
+		struct timeval tv = {5, 0};     /* 5 second timeout on select */
+		fd_set readfds;
+
+		FD_ZERO(&readfds);
+		FD_SET(fd, &readfds);
+		/* The select will wait until an RTC interrupt happens. */
+		retval = select(fd+1, &readfds, NULL, NULL, &tv);
+		if (retval == -1) {
+		        perror("select");
+		        exit(errno);
+		}
+		/* This read won't block unlike the select-less case above. */
+		retval = read(fd, &data, sizeof(unsigned long));
+		if (retval == -1) {
+		        perror("read");
+		        exit(errno);
+		}
+		fprintf(stderr, " %d",i);
+		fflush(stderr);
+		irqcount++;
+	}
+
+	/* Turn off update interrupts */
+	retval = ioctl(fd, RTC_UIE_OFF, 0);
+	if (retval == -1) {
+		perror("RTC_UIE_OFF ioctl");
+		exit(errno);
+	}
+
+test_READ:
+	/* Read the RTC time/date */
+	retval = ioctl(fd, RTC_RD_TIME, &rtc_tm);
+	if (retval == -1) {
+		perror("RTC_RD_TIME ioctl");
+		exit(errno);
+	}
+
+	fprintf(stderr, "\n\nCurrent RTC date/time is %d-%d-%d, %02d:%02d:%02d.\n",
+		rtc_tm.tm_mday, rtc_tm.tm_mon + 1, rtc_tm.tm_year + 1900,
+		rtc_tm.tm_hour, rtc_tm.tm_min, rtc_tm.tm_sec);
+
+	/* Set the alarm to 5 sec in the future, and check for rollover */
+	rtc_tm.tm_sec += 5;
+	if (rtc_tm.tm_sec >= 60) {
+		rtc_tm.tm_sec %= 60;
+		rtc_tm.tm_min++;
+	}
+	if (rtc_tm.tm_min == 60) {
+		rtc_tm.tm_min = 0;
+		rtc_tm.tm_hour++;
+	}
+	if (rtc_tm.tm_hour == 24)
+		rtc_tm.tm_hour = 0;
+
+	retval = ioctl(fd, RTC_ALM_SET, &rtc_tm);
+	if (retval == -1) {
+		if (errno == ENOTTY) {
+			fprintf(stderr,
+				"\n...Alarm IRQs not supported.\n");
+			goto test_PIE;
+		}
+		perror("RTC_ALM_SET ioctl");
+		exit(errno);
+	}
+
+	/* Read the current alarm settings */
+	retval = ioctl(fd, RTC_ALM_READ, &rtc_tm);
+	if (retval == -1) {
+		perror("RTC_ALM_READ ioctl");
+		exit(errno);
+	}
+
+	fprintf(stderr, "Alarm time now set to %02d:%02d:%02d.\n",
+		rtc_tm.tm_hour, rtc_tm.tm_min, rtc_tm.tm_sec);
+
+	/* Enable alarm interrupts */
+	retval = ioctl(fd, RTC_AIE_ON, 0);
+	if (retval == -1) {
+		perror("RTC_AIE_ON ioctl");
+		exit(errno);
+	}
+
+	fprintf(stderr, "Waiting 5 seconds for alarm...");
+	fflush(stderr);
+	/* This blocks until the alarm ring causes an interrupt */
+	retval = read(fd, &data, sizeof(unsigned long));
+	if (retval == -1) {
+		perror("read");
+		exit(errno);
+	}
+	irqcount++;
+	fprintf(stderr, " okay. Alarm rang.\n");
+
+	/* Disable alarm interrupts */
+	retval = ioctl(fd, RTC_AIE_OFF, 0);
+	if (retval == -1) {
+		perror("RTC_AIE_OFF ioctl");
+		exit(errno);
+	}
+
+test_PIE:
+	/* Read periodic IRQ rate */
+	retval = ioctl(fd, RTC_IRQP_READ, &tmp);
+	if (retval == -1) {
+		/* not all RTCs support periodic IRQs */
+		if (errno == ENOTTY) {
+			fprintf(stderr, "\nNo periodic IRQ support\n");
+			goto done;
+		}
+		perror("RTC_IRQP_READ ioctl");
+		exit(errno);
+	}
+	fprintf(stderr, "\nPeriodic IRQ rate is %ldHz.\n", tmp);
+
+	fprintf(stderr, "Counting 20 interrupts at:");
+	fflush(stderr);
+
+	/* The frequencies 128Hz, 256Hz, ... 8192Hz are only allowed for root. */
+	for (tmp=2; tmp<=64; tmp*=2) {
+
+		retval = ioctl(fd, RTC_IRQP_SET, tmp);
+		if (retval == -1) {
+			/* not all RTCs can change their periodic IRQ rate */
+			if (errno == ENOTTY) {
+				fprintf(stderr,
+					"\n...Periodic IRQ rate is fixed\n");
+				goto done;
+			}
+			perror("RTC_IRQP_SET ioctl");
+			exit(errno);
+		}
+
+		fprintf(stderr, "\n%ldHz:\t", tmp);
+		fflush(stderr);
+
+		/* Enable periodic interrupts */
+		retval = ioctl(fd, RTC_PIE_ON, 0);
+		if (retval == -1) {
+			perror("RTC_PIE_ON ioctl");
+			exit(errno);
+		}
+
+		for (i=1; i<21; i++) {
+			/* This blocks */
+			retval = read(fd, &data, sizeof(unsigned long));
+			if (retval == -1) {
+				perror("read");
+				exit(errno);
+			}
+			fprintf(stderr, " %d",i);
+			fflush(stderr);
+			irqcount++;
+		}
+
+		/* Disable periodic interrupts */
+		retval = ioctl(fd, RTC_PIE_OFF, 0);
+		if (retval == -1) {
+			perror("RTC_PIE_OFF ioctl");
+			exit(errno);
+		}
+	}
+
+done:
+	fprintf(stderr, "\n\n\t\t\t *** Test complete ***\n");
+
+	close(fd);
+
+	return 0;
+}
-- 
1.7.9.3

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ