lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20151028092752.GF29811@alap3.anarazel.de>
Date:	Wed, 28 Oct 2015 10:27:52 +0100
From:	Andres Freund <andres@...razel.de>
To:	Dave Chinner <david@...morbit.com>
Cc:	linux-mm@...ck.org, linux-fsdevel@...r.kernel.org,
	linux-kernel@...r.kernel.org
Subject: Re: Triggering non-integrity writeback from userspace

Hi,

Thanks for looking into this.

On 2015-10-25 08:39:12 +1100, Dave Chinner wrote:
> WB_SYNC_ALL is simply a method of saying "writeback all dirty pages
> and don't skip any". That's part of a data integrity operation, but
> it's not what results in data integrity being provided. It may cause
> some latencies caused by blocking on locks or in the request queues,
> so that's what I'd be looking for.

It also means we'll wait for more:
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
{
...
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
...
			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

> i.e. if the request queues are full, SYNC_FILE_RANGE_WRITE will
> block until all the IO it has been requested to write has been
> submitted to the request queues. Put simply: the IO is asynchronous
> in that we don't wait for completion, but the IO submission is still
> synchronous.

That's desirable in our case because there's a limit to how much
outstanding IO there is.

> Data integrity operations require related file metadata (e.g. block
> allocation trnascations) to be forced to the journal/disk, and a
> device cache flush issued to ensure the data is on stable storage.
> SYNC_FILE_RANGE_WRITE does neither of these things, and hence while
> the IO might be the same pattern as a data integrity operation, it
> does not provide such guarantees.

Which is desired here - the actual integrity is still going to be done
via fsync(). The idea of using SYNC_FILE_RANGE_WRITE beforehand is that
the fsync() will only have to do very little work. The language in
sync_file_range(2) doesn't inspire enough confidence for using it as an
actual integrity operation :/

> > If I followed the code correctly - not a sure thing at all - that means
> > bios are submitted with WRITE_SYNC specified. Not really what's needed
> > in this case.
>
> That just allows the IO scheduler to classify them differently to
> bulk background writeback.

It also influences which writes are merged and which are not, at least
if I understand elv_rq_merge_ok() and the callbacks it calls..

> You don't want to do writeback from the syscall, right? i.e. you'd
> like to expire the inode behind the fd, and schedule background
> writeback to run on it immediately?

Yes, that's exactly what we want. Blocking if a process has done too
much writes is fine tho.

Greetings,

Andres Freund
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo@...r.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ