lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20160201074156.GA27156@gmail.com>
Date:	Mon, 1 Feb 2016 08:41:57 +0100
From:	Ingo Molnar <mingo@...nel.org>
To:	riel@...hat.com
Cc:	linux-kernel@...r.kernel.org, fweisbec@...il.com,
	tglx@...utronix.de, luto@...capital.net, peterz@...radead.org,
	clark@...hat.com, Arnaldo Carvalho de Melo <acme@...radead.org>,
	Peter Zijlstra <a.p.zijlstra@...llo.nl>
Subject: [PATCH] perf tooling: Add 'perf bench syscall' benchmark


* riel@...hat.com <riel@...hat.com> wrote:

> (v3: address comments raised by Frederic)
> 
> Running with nohz_full introduces a fair amount of overhead.
> Specifically, various things that are usually done from the
> timer interrupt are now done at syscall, irq, and guest
> entry and exit times.
> 
> However, some of the code that is called every single time
> has only ever worked at jiffy resolution. The code in
> __acct_update_integrals was also doing some unnecessary
> calculations.
> 
> Getting rid of the unnecessary calculations, without
> changing any of the functionality in __acct_update_integrals
> gets us about an 11% win.
> 
> Not calling the time statistics updating code more than
> once per jiffy, like is done on housekeeping CPUs and on
> all the CPUs of a non-nohz_full system, shaves off a
> further 30%.
> 
> I tested this series with a microbenchmark calling
> an invalid syscall number ten million times in a row,
> on a nohz_full cpu.
> 
>     Run times for the microbenchmark:
>     
> 4.4				3.8 seconds
> 4.5-rc1				3.7 seconds
> 4.5-rc1 + first patch		3.3 seconds
> 4.5-rc1 + first 3 patches	3.1 seconds
> 4.5-rc1 + all patches		2.3 seconds

Another suggestion (beyond fixing the 32-bit build ;-), could you please stick 
your syscall microbenchmark into 'perf bench', so that we have a standardized way 
of checking such numbers?

In fact I'd suggest we introduce an entirely new sub-tool for system call 
performance measurement - and this might be the first functionality of it.

I've attached a quick patch that is basically a copy of 'perf bench numa' and 
which measures getppid() performance (simple syscall where the result is not 
cached by glibc).

I kept the process, threading and memory allocation bits of numa.c, just in case 
we need them to measure more complex syscalls. Maybe we could keep the threading 
bits and remove the memory allocation parameters, to simplify the benchmark?

Anyway, this could be a good base to start off on.

Thanks,

	Ingo

=====================>
>From ea072c9053555e71dec5eae5bb91bd6f9cc33723 Mon Sep 17 00:00:00 2001
From: Ingo Molnar <mingo@...nel.org>
Date: Mon, 1 Feb 2016 08:36:31 +0100
Subject: [PATCH] perf bench: Add 'syscall' benchmark utility

Just a basic 'perf bench syscall null' variant, which measures
getppid() performance.

Signed-off-by: Ingo Molnar <mingo@...nel.org>
---
 tools/perf/bench/Build     |    1 +
 tools/perf/bench/bench.h   |    1 +
 tools/perf/bench/syscall.c | 1598 ++++++++++++++++++++++++++++++++++++++++++++
 tools/perf/builtin-bench.c |   16 +-
 4 files changed, 1612 insertions(+), 4 deletions(-)

diff --git a/tools/perf/bench/Build b/tools/perf/bench/Build
index 60bf11943047..f7ad43f4871a 100644
--- a/tools/perf/bench/Build
+++ b/tools/perf/bench/Build
@@ -1,3 +1,4 @@
+perf-y += syscall.o
 perf-y += sched-messaging.o
 perf-y += sched-pipe.o
 perf-y += mem-functions.o
diff --git a/tools/perf/bench/bench.h b/tools/perf/bench/bench.h
index a50df86f2b9b..f4e674042467 100644
--- a/tools/perf/bench/bench.h
+++ b/tools/perf/bench/bench.h
@@ -26,6 +26,7 @@
 #endif
 
 extern int bench_numa(int argc, const char **argv, const char *prefix);
+extern int bench_syscall(int argc, const char **argv, const char *prefix);
 extern int bench_sched_messaging(int argc, const char **argv, const char *prefix);
 extern int bench_sched_pipe(int argc, const char **argv, const char *prefix);
 extern int bench_mem_memcpy(int argc, const char **argv,
diff --git a/tools/perf/bench/syscall.c b/tools/perf/bench/syscall.c
new file mode 100644
index 000000000000..5a4ef02176d1
--- /dev/null
+++ b/tools/perf/bench/syscall.c
@@ -0,0 +1,1598 @@
+/*
+ * syscall.c
+ *
+ * syscall: Measure various aspects of Linux system call performance
+ */
+
+#include "../perf.h"
+#include "../builtin.h"
+#include "../util/util.h"
+#include <subcmd/parse-options.h>
+#include "../util/cloexec.h"
+
+#include "bench.h"
+
+#include <errno.h>
+#include <sched.h>
+#include <stdio.h>
+#include <assert.h>
+#include <malloc.h>
+#include <signal.h>
+#include <stdlib.h>
+#include <string.h>
+#include <unistd.h>
+#include <pthread.h>
+#include <sys/mman.h>
+#include <sys/time.h>
+#include <sys/resource.h>
+#include <sys/wait.h>
+#include <sys/prctl.h>
+#include <sys/types.h>
+
+#include <numa.h>
+#include <numaif.h>
+
+/*
+ * Regular printout to the terminal, supressed if -q is specified:
+ */
+#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
+
+/*
+ * Debug printf:
+ */
+#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
+
+struct thread_data {
+	int			curr_cpu;
+	cpu_set_t		bind_cpumask;
+	int			bind_node;
+	u8			*process_data;
+	int			process_nr;
+	int			thread_nr;
+	int			task_nr;
+	unsigned int		loops_done;
+	u64			val;
+	u64			runtime_ns;
+	u64			system_time_ns;
+	u64			user_time_ns;
+	double			speed_gbs;
+	pthread_mutex_t		*process_lock;
+};
+
+/* Parameters set by options: */
+
+struct params {
+	/* Startup synchronization: */
+	bool			serialize_startup;
+
+	/* Task hierarchy: */
+	int			nr_proc;
+	int			nr_threads;
+
+	/* Working set sizes: */
+	const char		*mb_global_str;
+	const char		*mb_proc_str;
+	const char		*mb_proc_locked_str;
+	const char		*mb_thread_str;
+
+	double			mb_global;
+	double			mb_proc;
+	double			mb_proc_locked;
+	double			mb_thread;
+
+	/* Access patterns to the working set: */
+	bool			data_reads;
+	bool			data_writes;
+	bool			data_backwards;
+	bool			data_zero_memset;
+	bool			data_rand_walk;
+	u32			nr_loops;
+	u32			nr_secs;
+	u32			sleep_usecs;
+
+	/* Working set initialization: */
+	bool			init_zero;
+	bool			init_random;
+	bool			init_cpu0;
+
+	/* Misc options: */
+	int			show_details;
+	int			run_all;
+	int			thp;
+
+	long			bytes_global;
+	long			bytes_process;
+	long			bytes_process_locked;
+	long			bytes_thread;
+
+	int			nr_tasks;
+	bool			show_quiet;
+
+	bool			show_convergence;
+	bool			measure_convergence;
+
+	int			perturb_secs;
+	int			nr_cpus;
+	int			nr_nodes;
+
+	/* Affinity options -C and -N: */
+	char			*cpu_list_str;
+	char			*node_list_str;
+};
+
+
+/* Global, read-writable area, accessible to all processes and threads: */
+
+struct global_info {
+	u8			*data;
+
+	pthread_mutex_t		startup_mutex;
+	int			nr_tasks_started;
+
+	pthread_mutex_t		startup_done_mutex;
+
+	pthread_mutex_t		start_work_mutex;
+	int			nr_tasks_working;
+
+	pthread_mutex_t		stop_work_mutex;
+	u64			bytes_done;
+
+	struct thread_data	*threads;
+
+	/* Convergence latency measurement: */
+	bool			all_converged;
+	bool			stop_work;
+
+	int			print_once;
+
+	struct params		p;
+};
+
+static struct global_info	*g = NULL;
+
+static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
+static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
+
+struct params p0;
+
+static const struct option options[] = {
+	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
+	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
+
+	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
+	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
+	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
+	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
+
+	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: 10,000,000)"),
+	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
+	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
+
+	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
+	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
+	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
+	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
+	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
+
+
+	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
+	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
+	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
+	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
+
+	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
+	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
+	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
+	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
+	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
+	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
+	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
+
+	/* Special option string parsing callbacks: */
+        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
+			"bind the first N tasks to these specific cpus (the rest is unbound)",
+			parse_cpus_opt),
+        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
+			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
+			parse_nodes_opt),
+	OPT_END()
+};
+
+static const char * const bench_syscall_usage[] = {
+	"perf bench syscall <options>",
+	NULL
+};
+
+static const char * const syscall_usage[] = {
+	"perf bench syscall mem [<options>]",
+	NULL
+};
+
+static cpu_set_t bind_to_cpu(int target_cpu)
+{
+	cpu_set_t orig_mask, mask;
+	int ret;
+
+	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
+	BUG_ON(ret);
+
+	CPU_ZERO(&mask);
+
+	if (target_cpu == -1) {
+		int cpu;
+
+		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
+			CPU_SET(cpu, &mask);
+	} else {
+		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
+		CPU_SET(target_cpu, &mask);
+	}
+
+	ret = sched_setaffinity(0, sizeof(mask), &mask);
+	BUG_ON(ret);
+
+	return orig_mask;
+}
+
+static cpu_set_t bind_to_node(int target_node)
+{
+	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
+	cpu_set_t orig_mask, mask;
+	int cpu;
+	int ret;
+
+	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
+	BUG_ON(!cpus_per_node);
+
+	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
+	BUG_ON(ret);
+
+	CPU_ZERO(&mask);
+
+	if (target_node == -1) {
+		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
+			CPU_SET(cpu, &mask);
+	} else {
+		int cpu_start = (target_node + 0) * cpus_per_node;
+		int cpu_stop  = (target_node + 1) * cpus_per_node;
+
+		BUG_ON(cpu_stop > g->p.nr_cpus);
+
+		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
+			CPU_SET(cpu, &mask);
+	}
+
+	ret = sched_setaffinity(0, sizeof(mask), &mask);
+	BUG_ON(ret);
+
+	return orig_mask;
+}
+
+static void bind_to_cpumask(cpu_set_t mask)
+{
+	int ret;
+
+	ret = sched_setaffinity(0, sizeof(mask), &mask);
+	BUG_ON(ret);
+}
+
+static void mempol_restore(void)
+{
+	int ret;
+
+	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
+
+	BUG_ON(ret);
+}
+
+static void bind_to_memnode(int node)
+{
+	unsigned long nodemask;
+	int ret;
+
+	if (node == -1)
+		return;
+
+	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
+	nodemask = 1L << node;
+
+	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
+	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
+
+	BUG_ON(ret);
+}
+
+#define HPSIZE (2*1024*1024)
+
+#define set_taskname(fmt...)				\
+do {							\
+	char name[20];					\
+							\
+	snprintf(name, 20, fmt);			\
+	prctl(PR_SET_NAME, name);			\
+} while (0)
+
+static u8 *alloc_data(ssize_t bytes0, int map_flags,
+		      int init_zero, int init_cpu0, int thp, int init_random)
+{
+	cpu_set_t orig_mask;
+	ssize_t bytes;
+	u8 *buf;
+	int ret;
+
+	if (!bytes0)
+		return NULL;
+
+	/* Allocate and initialize all memory on CPU#0: */
+	if (init_cpu0) {
+		orig_mask = bind_to_node(0);
+		bind_to_memnode(0);
+	}
+
+	bytes = bytes0 + HPSIZE;
+
+	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
+	BUG_ON(buf == (void *)-1);
+
+	if (map_flags == MAP_PRIVATE) {
+		if (thp > 0) {
+			ret = madvise(buf, bytes, MADV_HUGEPAGE);
+			if (ret && !g->print_once) {
+				g->print_once = 1;
+				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
+			}
+		}
+		if (thp < 0) {
+			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
+			if (ret && !g->print_once) {
+				g->print_once = 1;
+				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
+			}
+		}
+	}
+
+	if (init_zero) {
+		bzero(buf, bytes);
+	} else {
+		/* Initialize random contents, different in each word: */
+		if (init_random) {
+			u64 *wbuf = (void *)buf;
+			long off = rand();
+			long i;
+
+			for (i = 0; i < bytes/8; i++)
+				wbuf[i] = i + off;
+		}
+	}
+
+	/* Align to 2MB boundary: */
+	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
+
+	/* Restore affinity: */
+	if (init_cpu0) {
+		bind_to_cpumask(orig_mask);
+		mempol_restore();
+	}
+
+	return buf;
+}
+
+static void free_data(void *data, ssize_t bytes)
+{
+	int ret;
+
+	if (!data)
+		return;
+
+	ret = munmap(data, bytes);
+	BUG_ON(ret);
+}
+
+/*
+ * Create a shared memory buffer that can be shared between processes, zeroed:
+ */
+static void * zalloc_shared_data(ssize_t bytes)
+{
+	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
+}
+
+/*
+ * Create a shared memory buffer that can be shared between processes:
+ */
+static void * setup_shared_data(ssize_t bytes)
+{
+	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
+}
+
+/*
+ * Allocate process-local memory - this will either be shared between
+ * threads of this process, or only be accessed by this thread:
+ */
+static void * setup_private_data(ssize_t bytes)
+{
+	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
+}
+
+/*
+ * Return a process-shared (global) mutex:
+ */
+static void init_global_mutex(pthread_mutex_t *mutex)
+{
+	pthread_mutexattr_t attr;
+
+	pthread_mutexattr_init(&attr);
+	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
+	pthread_mutex_init(mutex, &attr);
+}
+
+static int parse_cpu_list(const char *arg)
+{
+	p0.cpu_list_str = strdup(arg);
+
+	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
+
+	return 0;
+}
+
+static int parse_setup_cpu_list(void)
+{
+	struct thread_data *td;
+	char *str0, *str;
+	int t;
+
+	if (!g->p.cpu_list_str)
+		return 0;
+
+	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
+
+	str0 = str = strdup(g->p.cpu_list_str);
+	t = 0;
+
+	BUG_ON(!str);
+
+	tprintf("# binding tasks to CPUs:\n");
+	tprintf("#  ");
+
+	while (true) {
+		int bind_cpu, bind_cpu_0, bind_cpu_1;
+		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
+		int bind_len;
+		int step;
+		int mul;
+
+		tok = strsep(&str, ",");
+		if (!tok)
+			break;
+
+		tok_end = strstr(tok, "-");
+
+		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
+		if (!tok_end) {
+			/* Single CPU specified: */
+			bind_cpu_0 = bind_cpu_1 = atol(tok);
+		} else {
+			/* CPU range specified (for example: "5-11"): */
+			bind_cpu_0 = atol(tok);
+			bind_cpu_1 = atol(tok_end + 1);
+		}
+
+		step = 1;
+		tok_step = strstr(tok, "#");
+		if (tok_step) {
+			step = atol(tok_step + 1);
+			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
+		}
+
+		/*
+		 * Mask length.
+		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
+		 * where the _4 means the next 4 CPUs are allowed.
+		 */
+		bind_len = 1;
+		tok_len = strstr(tok, "_");
+		if (tok_len) {
+			bind_len = atol(tok_len + 1);
+			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
+		}
+
+		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
+		mul = 1;
+		tok_mul = strstr(tok, "x");
+		if (tok_mul) {
+			mul = atol(tok_mul + 1);
+			BUG_ON(mul <= 0);
+		}
+
+		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
+
+		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
+			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
+			return -1;
+		}
+
+		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
+		BUG_ON(bind_cpu_0 > bind_cpu_1);
+
+		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
+			int i;
+
+			for (i = 0; i < mul; i++) {
+				int cpu;
+
+				if (t >= g->p.nr_tasks) {
+					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
+					goto out;
+				}
+				td = g->threads + t;
+
+				if (t)
+					tprintf(",");
+				if (bind_len > 1) {
+					tprintf("%2d/%d", bind_cpu, bind_len);
+				} else {
+					tprintf("%2d", bind_cpu);
+				}
+
+				CPU_ZERO(&td->bind_cpumask);
+				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
+					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
+					CPU_SET(cpu, &td->bind_cpumask);
+				}
+				t++;
+			}
+		}
+	}
+out:
+
+	tprintf("\n");
+
+	if (t < g->p.nr_tasks)
+		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
+
+	free(str0);
+	return 0;
+}
+
+static int parse_cpus_opt(const struct option *opt __maybe_unused,
+			  const char *arg, int unset __maybe_unused)
+{
+	if (!arg)
+		return -1;
+
+	return parse_cpu_list(arg);
+}
+
+static int parse_node_list(const char *arg)
+{
+	p0.node_list_str = strdup(arg);
+
+	dprintf("got NODE list: {%s}\n", p0.node_list_str);
+
+	return 0;
+}
+
+static int parse_setup_node_list(void)
+{
+	struct thread_data *td;
+	char *str0, *str;
+	int t;
+
+	if (!g->p.node_list_str)
+		return 0;
+
+	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
+
+	str0 = str = strdup(g->p.node_list_str);
+	t = 0;
+
+	BUG_ON(!str);
+
+	tprintf("# binding tasks to NODEs:\n");
+	tprintf("# ");
+
+	while (true) {
+		int bind_node, bind_node_0, bind_node_1;
+		char *tok, *tok_end, *tok_step, *tok_mul;
+		int step;
+		int mul;
+
+		tok = strsep(&str, ",");
+		if (!tok)
+			break;
+
+		tok_end = strstr(tok, "-");
+
+		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
+		if (!tok_end) {
+			/* Single NODE specified: */
+			bind_node_0 = bind_node_1 = atol(tok);
+		} else {
+			/* NODE range specified (for example: "5-11"): */
+			bind_node_0 = atol(tok);
+			bind_node_1 = atol(tok_end + 1);
+		}
+
+		step = 1;
+		tok_step = strstr(tok, "#");
+		if (tok_step) {
+			step = atol(tok_step + 1);
+			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
+		}
+
+		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
+		mul = 1;
+		tok_mul = strstr(tok, "x");
+		if (tok_mul) {
+			mul = atol(tok_mul + 1);
+			BUG_ON(mul <= 0);
+		}
+
+		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
+
+		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
+			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
+			return -1;
+		}
+
+		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
+		BUG_ON(bind_node_0 > bind_node_1);
+
+		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
+			int i;
+
+			for (i = 0; i < mul; i++) {
+				if (t >= g->p.nr_tasks) {
+					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
+					goto out;
+				}
+				td = g->threads + t;
+
+				if (!t)
+					tprintf(" %2d", bind_node);
+				else
+					tprintf(",%2d", bind_node);
+
+				td->bind_node = bind_node;
+				t++;
+			}
+		}
+	}
+out:
+
+	tprintf("\n");
+
+	if (t < g->p.nr_tasks)
+		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
+
+	free(str0);
+	return 0;
+}
+
+static int parse_nodes_opt(const struct option *opt __maybe_unused,
+			  const char *arg, int unset __maybe_unused)
+{
+	if (!arg)
+		return -1;
+
+	return parse_node_list(arg);
+
+	return 0;
+}
+
+/*
+ * The worker thread. For system calls this is trivial, for the time being:
+ */
+static u64 do_work(u8 *__data __maybe_unused, long bytes __maybe_unused, int nr __maybe_unused, int nr_max __maybe_unused, int loop __maybe_unused, u64 val __maybe_unused)
+{
+	getppid();
+
+	return 0;
+}
+
+static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
+{
+	unsigned int cpu;
+
+	cpu = sched_getcpu();
+
+	g->threads[task_nr].curr_cpu = cpu;
+	prctl(0, bytes_worked);
+}
+
+#define MAX_NR_NODES	64
+
+/*
+ * Count the number of nodes a process's threads
+ * are spread out on.
+ *
+ * A count of 1 means that the process is compressed
+ * to a single node. A count of g->p.nr_nodes means it's
+ * spread out on the whole system.
+ */
+static int count_process_nodes(int process_nr)
+{
+	char node_present[MAX_NR_NODES] = { 0, };
+	int nodes;
+	int n, t;
+
+	for (t = 0; t < g->p.nr_threads; t++) {
+		struct thread_data *td;
+		int task_nr;
+		int node;
+
+		task_nr = process_nr*g->p.nr_threads + t;
+		td = g->threads + task_nr;
+
+		node = numa_node_of_cpu(td->curr_cpu);
+		if (node < 0) /* curr_cpu was likely still -1 */
+			return 0;
+
+		node_present[node] = 1;
+	}
+
+	nodes = 0;
+
+	for (n = 0; n < MAX_NR_NODES; n++)
+		nodes += node_present[n];
+
+	return nodes;
+}
+
+/*
+ * Count the number of distinct process-threads a node contains.
+ *
+ * A count of 1 means that the node contains only a single
+ * process. If all nodes on the system contain at most one
+ * process then we are well-converged.
+ */
+static int count_node_processes(int node)
+{
+	int processes = 0;
+	int t, p;
+
+	for (p = 0; p < g->p.nr_proc; p++) {
+		for (t = 0; t < g->p.nr_threads; t++) {
+			struct thread_data *td;
+			int task_nr;
+			int n;
+
+			task_nr = p*g->p.nr_threads + t;
+			td = g->threads + task_nr;
+
+			n = numa_node_of_cpu(td->curr_cpu);
+			if (n == node) {
+				processes++;
+				break;
+			}
+		}
+	}
+
+	return processes;
+}
+
+static void calc_convergence_compression(int *strong)
+{
+	unsigned int nodes_min, nodes_max;
+	int p;
+
+	nodes_min = -1;
+	nodes_max =  0;
+
+	for (p = 0; p < g->p.nr_proc; p++) {
+		unsigned int nodes = count_process_nodes(p);
+
+		if (!nodes) {
+			*strong = 0;
+			return;
+		}
+
+		nodes_min = min(nodes, nodes_min);
+		nodes_max = max(nodes, nodes_max);
+	}
+
+	/* Strong convergence: all threads compress on a single node: */
+	if (nodes_min == 1 && nodes_max == 1) {
+		*strong = 1;
+	} else {
+		*strong = 0;
+		tprintf(" {%d-%d}", nodes_min, nodes_max);
+	}
+}
+
+static void calc_convergence(double runtime_ns_max, double *convergence)
+{
+	unsigned int loops_done_min, loops_done_max;
+	int process_groups;
+	int nodes[MAX_NR_NODES];
+	int distance;
+	int nr_min;
+	int nr_max;
+	int strong;
+	int sum;
+	int nr;
+	int node;
+	int cpu;
+	int t;
+
+	if (!g->p.show_convergence && !g->p.measure_convergence)
+		return;
+
+	for (node = 0; node < g->p.nr_nodes; node++)
+		nodes[node] = 0;
+
+	loops_done_min = -1;
+	loops_done_max = 0;
+
+	for (t = 0; t < g->p.nr_tasks; t++) {
+		struct thread_data *td = g->threads + t;
+		unsigned int loops_done;
+
+		cpu = td->curr_cpu;
+
+		/* Not all threads have written it yet: */
+		if (cpu < 0)
+			continue;
+
+		node = numa_node_of_cpu(cpu);
+
+		nodes[node]++;
+
+		loops_done = td->loops_done;
+		loops_done_min = min(loops_done, loops_done_min);
+		loops_done_max = max(loops_done, loops_done_max);
+	}
+
+	nr_max = 0;
+	nr_min = g->p.nr_tasks;
+	sum = 0;
+
+	for (node = 0; node < g->p.nr_nodes; node++) {
+		nr = nodes[node];
+		nr_min = min(nr, nr_min);
+		nr_max = max(nr, nr_max);
+		sum += nr;
+	}
+	BUG_ON(nr_min > nr_max);
+
+	BUG_ON(sum > g->p.nr_tasks);
+
+	if (0 && (sum < g->p.nr_tasks))
+		return;
+
+	/*
+	 * Count the number of distinct process groups present
+	 * on nodes - when we are converged this will decrease
+	 * to g->p.nr_proc:
+	 */
+	process_groups = 0;
+
+	for (node = 0; node < g->p.nr_nodes; node++) {
+		int processes = count_node_processes(node);
+
+		nr = nodes[node];
+		tprintf(" %2d/%-2d", nr, processes);
+
+		process_groups += processes;
+	}
+
+	distance = nr_max - nr_min;
+
+	tprintf(" [%2d/%-2d]", distance, process_groups);
+
+	tprintf(" l:%3d-%-3d (%3d)",
+		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
+
+	if (loops_done_min && loops_done_max) {
+		double skew = 1.0 - (double)loops_done_min/loops_done_max;
+
+		tprintf(" [%4.1f%%]", skew * 100.0);
+	}
+
+	calc_convergence_compression(&strong);
+
+	if (strong && process_groups == g->p.nr_proc) {
+		if (!*convergence) {
+			*convergence = runtime_ns_max;
+			tprintf(" (%6.1fs converged)\n", *convergence/1e9);
+			if (g->p.measure_convergence) {
+				g->all_converged = true;
+				g->stop_work = true;
+			}
+		}
+	} else {
+		if (*convergence) {
+			tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
+			*convergence = 0;
+		}
+		tprintf("\n");
+	}
+}
+
+static void show_summary(double runtime_ns_max, int l, double *convergence)
+{
+	tprintf("\r #  %5.1f%%  [%.1f mins]",
+		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
+
+	calc_convergence(runtime_ns_max, convergence);
+
+	if (g->p.show_details >= 0)
+		fflush(stdout);
+}
+
+static void *worker_thread(void *__tdata)
+{
+	struct thread_data *td = __tdata;
+	struct timeval start0, start, stop, diff;
+	int process_nr = td->process_nr;
+	int thread_nr = td->thread_nr;
+	unsigned long last_perturbance;
+	int task_nr = td->task_nr;
+	int details = g->p.show_details;
+	int first_task, last_task;
+	double convergence = 0;
+	u64 val = td->val;
+	double runtime_ns_max;
+	u8 *global_data;
+	u8 *process_data;
+	u8 *thread_data;
+	u64 bytes_done;
+	long work_done;
+	u32 l;
+	struct rusage rusage;
+
+	bind_to_cpumask(td->bind_cpumask);
+	bind_to_memnode(td->bind_node);
+
+	set_taskname("thread %d/%d", process_nr, thread_nr);
+
+	global_data = g->data;
+	process_data = td->process_data;
+	thread_data = setup_private_data(g->p.bytes_thread);
+
+	bytes_done = 0;
+
+	last_task = 0;
+	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
+		last_task = 1;
+
+	first_task = 0;
+	if (process_nr == 0 && thread_nr == 0)
+		first_task = 1;
+
+	if (details >= 2) {
+		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
+			process_nr, thread_nr, global_data, process_data, thread_data);
+	}
+
+	if (g->p.serialize_startup) {
+		pthread_mutex_lock(&g->startup_mutex);
+		g->nr_tasks_started++;
+		pthread_mutex_unlock(&g->startup_mutex);
+
+		/* Here we will wait for the main process to start us all at once: */
+		pthread_mutex_lock(&g->start_work_mutex);
+		g->nr_tasks_working++;
+
+		/* Last one wake the main process: */
+		if (g->nr_tasks_working == g->p.nr_tasks)
+			pthread_mutex_unlock(&g->startup_done_mutex);
+
+		pthread_mutex_unlock(&g->start_work_mutex);
+	}
+
+	gettimeofday(&start0, NULL);
+
+	start = stop = start0;
+	last_perturbance = start.tv_sec;
+
+	for (l = 0; l < g->p.nr_loops; l++) {
+		start = stop;
+
+		if (g->stop_work)
+			break;
+
+		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
+		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
+		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
+
+		if (g->p.sleep_usecs) {
+			pthread_mutex_lock(td->process_lock);
+			usleep(g->p.sleep_usecs);
+			pthread_mutex_unlock(td->process_lock);
+		}
+		/*
+		 * Amount of work to be done under a process-global lock:
+		 */
+		if (g->p.bytes_process_locked) {
+			pthread_mutex_lock(td->process_lock);
+			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
+			pthread_mutex_unlock(td->process_lock);
+		}
+
+		work_done = g->p.bytes_global + g->p.bytes_process +
+			    g->p.bytes_process_locked + g->p.bytes_thread;
+
+		update_curr_cpu(task_nr, work_done);
+		bytes_done += work_done;
+
+		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
+			continue;
+
+		td->loops_done = l;
+
+		gettimeofday(&stop, NULL);
+
+		/* Check whether our max runtime timed out: */
+		if (g->p.nr_secs) {
+			timersub(&stop, &start0, &diff);
+			if ((u32)diff.tv_sec >= g->p.nr_secs) {
+				g->stop_work = true;
+				break;
+			}
+		}
+
+		/* Update the summary at most once per second: */
+		if (start.tv_sec == stop.tv_sec)
+			continue;
+
+		/*
+		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
+		 * by migrating to CPU#0:
+		 */
+		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
+			cpu_set_t orig_mask;
+			int target_cpu;
+			int this_cpu;
+
+			last_perturbance = stop.tv_sec;
+
+			/*
+			 * Depending on where we are running, move into
+			 * the other half of the system, to create some
+			 * real disturbance:
+			 */
+			this_cpu = g->threads[task_nr].curr_cpu;
+			if (this_cpu < g->p.nr_cpus/2)
+				target_cpu = g->p.nr_cpus-1;
+			else
+				target_cpu = 0;
+
+			orig_mask = bind_to_cpu(target_cpu);
+
+			/* Here we are running on the target CPU already */
+			if (details >= 1)
+				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
+
+			bind_to_cpumask(orig_mask);
+		}
+
+		if (details >= 3) {
+			timersub(&stop, &start, &diff);
+			runtime_ns_max = diff.tv_sec * 1000000000;
+			runtime_ns_max += diff.tv_usec * 1000;
+
+			if (details >= 0) {
+				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
+					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
+			}
+			fflush(stdout);
+		}
+		if (!last_task)
+			continue;
+
+		timersub(&stop, &start0, &diff);
+		runtime_ns_max = diff.tv_sec * 1000000000ULL;
+		runtime_ns_max += diff.tv_usec * 1000ULL;
+
+		show_summary(runtime_ns_max, l, &convergence);
+	}
+
+	gettimeofday(&stop, NULL);
+	timersub(&stop, &start0, &diff);
+	td->runtime_ns = diff.tv_sec * 1000000000ULL;
+	td->runtime_ns += diff.tv_usec * 1000ULL;
+	td->speed_gbs = bytes_done / (td->runtime_ns / 1e9) / 1e9;
+
+	getrusage(RUSAGE_THREAD, &rusage);
+	td->system_time_ns = rusage.ru_stime.tv_sec * 1000000000ULL;
+	td->system_time_ns += rusage.ru_stime.tv_usec * 1000ULL;
+	td->user_time_ns = rusage.ru_utime.tv_sec * 1000000000ULL;
+	td->user_time_ns += rusage.ru_utime.tv_usec * 1000ULL;
+
+	free_data(thread_data, g->p.bytes_thread);
+
+	pthread_mutex_lock(&g->stop_work_mutex);
+	g->bytes_done += bytes_done;
+	pthread_mutex_unlock(&g->stop_work_mutex);
+
+	return NULL;
+}
+
+/*
+ * A worker process starts a couple of threads:
+ */
+static void worker_process(int process_nr)
+{
+	pthread_mutex_t process_lock;
+	struct thread_data *td;
+	pthread_t *pthreads;
+	u8 *process_data;
+	int task_nr;
+	int ret;
+	int t;
+
+	pthread_mutex_init(&process_lock, NULL);
+	set_taskname("process %d", process_nr);
+
+	/*
+	 * Pick up the memory policy and the CPU binding of our first thread,
+	 * so that we initialize memory accordingly:
+	 */
+	task_nr = process_nr*g->p.nr_threads;
+	td = g->threads + task_nr;
+
+	bind_to_memnode(td->bind_node);
+	bind_to_cpumask(td->bind_cpumask);
+
+	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
+	process_data = setup_private_data(g->p.bytes_process);
+
+	if (g->p.show_details >= 3) {
+		printf(" # process %2d global mem: %p, process mem: %p\n",
+			process_nr, g->data, process_data);
+	}
+
+	for (t = 0; t < g->p.nr_threads; t++) {
+		task_nr = process_nr*g->p.nr_threads + t;
+		td = g->threads + task_nr;
+
+		td->process_data = process_data;
+		td->process_nr   = process_nr;
+		td->thread_nr    = t;
+		td->task_nr	 = task_nr;
+		td->val          = rand();
+		td->curr_cpu	 = -1;
+		td->process_lock = &process_lock;
+
+		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
+		BUG_ON(ret);
+	}
+
+	for (t = 0; t < g->p.nr_threads; t++) {
+                ret = pthread_join(pthreads[t], NULL);
+		BUG_ON(ret);
+	}
+
+	free_data(process_data, g->p.bytes_process);
+	free(pthreads);
+}
+
+static void print_summary(void)
+{
+	if (g->p.show_details < 0)
+		return;
+
+	printf("\n ###\n");
+	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
+		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
+	printf(" #      %5dx %5ldMB global  shared mem operations\n",
+			g->p.nr_loops, g->p.bytes_global/1024/1024);
+	printf(" #      %5dx %5ldMB process shared mem operations\n",
+			g->p.nr_loops, g->p.bytes_process/1024/1024);
+	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
+			g->p.nr_loops, g->p.bytes_thread/1024/1024);
+
+	printf(" ###\n");
+
+	printf("\n ###\n"); fflush(stdout);
+}
+
+static void init_thread_data(void)
+{
+	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
+	int t;
+
+	g->threads = zalloc_shared_data(size);
+
+	for (t = 0; t < g->p.nr_tasks; t++) {
+		struct thread_data *td = g->threads + t;
+		int cpu;
+
+		/* Allow all nodes by default: */
+		td->bind_node = -1;
+
+		/* Allow all CPUs by default: */
+		CPU_ZERO(&td->bind_cpumask);
+		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
+			CPU_SET(cpu, &td->bind_cpumask);
+	}
+}
+
+static void deinit_thread_data(void)
+{
+	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
+
+	free_data(g->threads, size);
+}
+
+static int init(void)
+{
+	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
+
+	/* Copy over options: */
+	g->p = p0;
+
+	g->p.nr_cpus = numa_num_configured_cpus();
+
+	g->p.nr_nodes = numa_max_node() + 1;
+
+	/* char array in count_process_nodes(): */
+	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
+
+	if (g->p.show_quiet && !g->p.show_details)
+		g->p.show_details = -1;
+
+	/* Some memory should be specified: */
+	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
+		return -1;
+
+	if (g->p.mb_global_str) {
+		g->p.mb_global = atof(g->p.mb_global_str);
+		BUG_ON(g->p.mb_global < 0);
+	}
+
+	if (g->p.mb_proc_str) {
+		g->p.mb_proc = atof(g->p.mb_proc_str);
+		BUG_ON(g->p.mb_proc < 0);
+	}
+
+	if (g->p.mb_proc_locked_str) {
+		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
+		BUG_ON(g->p.mb_proc_locked < 0);
+		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
+	}
+
+	if (g->p.mb_thread_str) {
+		g->p.mb_thread = atof(g->p.mb_thread_str);
+		BUG_ON(g->p.mb_thread < 0);
+	}
+
+	BUG_ON(g->p.nr_threads <= 0);
+	BUG_ON(g->p.nr_proc <= 0);
+
+	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
+
+	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
+	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
+	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
+	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
+
+	g->data = setup_shared_data(g->p.bytes_global);
+
+	/* Startup serialization: */
+	init_global_mutex(&g->start_work_mutex);
+	init_global_mutex(&g->startup_mutex);
+	init_global_mutex(&g->startup_done_mutex);
+	init_global_mutex(&g->stop_work_mutex);
+
+	init_thread_data();
+
+	tprintf("#\n");
+	if (parse_setup_cpu_list() || parse_setup_node_list())
+		return -1;
+	tprintf("#\n");
+
+	print_summary();
+
+	return 0;
+}
+
+static void deinit(void)
+{
+	free_data(g->data, g->p.bytes_global);
+	g->data = NULL;
+
+	deinit_thread_data();
+
+	free_data(g, sizeof(*g));
+	g = NULL;
+}
+
+/*
+ * Print a short or long result, depending on the verbosity setting:
+ */
+static void print_res(const char *name, double val,
+		      const char *txt_unit, const char *txt_short, const char *txt_long)
+{
+	if (!name)
+		name = "main,";
+
+	if (!g->p.show_quiet)
+		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
+	else
+		printf(" %14.3f %s\n", val, txt_long);
+}
+
+static int __bench_syscall(const char *name)
+{
+	struct timeval start, stop, diff;
+	u64 runtime_ns_min, runtime_ns_sum;
+	pid_t *pids, pid, wpid;
+	double delta_runtime;
+	double runtime_avg;
+	double runtime_sec_max;
+	double runtime_sec_min;
+	int wait_stat;
+	double bytes;
+	int i, t, p;
+
+	if (init())
+		return -1;
+
+	pids = zalloc(g->p.nr_proc * sizeof(*pids));
+	pid = -1;
+
+	/* All threads try to acquire it, this way we can wait for them to start up: */
+	pthread_mutex_lock(&g->start_work_mutex);
+
+	if (g->p.serialize_startup) {
+		tprintf(" #\n");
+		tprintf(" # Startup synchronization: ..."); fflush(stdout);
+	}
+
+	gettimeofday(&start, NULL);
+
+	for (i = 0; i < g->p.nr_proc; i++) {
+		pid = fork();
+		dprintf(" # process %2d: PID %d\n", i, pid);
+
+		BUG_ON(pid < 0);
+		if (!pid) {
+			/* Child process: */
+			worker_process(i);
+
+			exit(0);
+		}
+		pids[i] = pid;
+
+	}
+	/* Wait for all the threads to start up: */
+	while (g->nr_tasks_started != g->p.nr_tasks)
+		usleep(1000);
+
+	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
+
+	if (g->p.serialize_startup) {
+		double startup_sec;
+
+		pthread_mutex_lock(&g->startup_done_mutex);
+
+		/* This will start all threads: */
+		pthread_mutex_unlock(&g->start_work_mutex);
+
+		/* This mutex is locked - the last started thread will wake us: */
+		pthread_mutex_lock(&g->startup_done_mutex);
+
+		gettimeofday(&stop, NULL);
+
+		timersub(&stop, &start, &diff);
+
+		startup_sec = diff.tv_sec * 1000000000.0;
+		startup_sec += diff.tv_usec * 1000.0;
+		startup_sec /= 1e9;
+
+		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
+		tprintf(" #\n");
+
+		start = stop;
+		pthread_mutex_unlock(&g->startup_done_mutex);
+	} else {
+		gettimeofday(&start, NULL);
+	}
+
+	/* Parent process: */
+
+
+	for (i = 0; i < g->p.nr_proc; i++) {
+		wpid = waitpid(pids[i], &wait_stat, 0);
+		BUG_ON(wpid < 0);
+		BUG_ON(!WIFEXITED(wait_stat));
+
+	}
+
+	runtime_ns_sum = 0;
+	runtime_ns_min = -1LL;
+
+	for (t = 0; t < g->p.nr_tasks; t++) {
+		u64 thread_runtime_ns = g->threads[t].runtime_ns;
+
+		runtime_ns_sum += thread_runtime_ns;
+		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
+	}
+
+	gettimeofday(&stop, NULL);
+	timersub(&stop, &start, &diff);
+
+	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
+
+	tprintf("\n ###\n");
+	tprintf("\n");
+
+	runtime_sec_max = diff.tv_sec * 1000000000.0;
+	runtime_sec_max += diff.tv_usec * 1000.0;
+	runtime_sec_max /= 1e9;
+
+	runtime_sec_min = runtime_ns_min/1e9;
+
+	bytes = g->bytes_done;
+	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
+
+	if (g->p.measure_convergence) {
+		print_res(name, runtime_sec_max,
+			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
+	}
+
+	print_res(name, runtime_sec_max,
+		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
+
+	print_res(name, runtime_sec_min,
+		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
+
+	print_res(name, runtime_avg,
+		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
+
+	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
+	print_res(name, delta_runtime / runtime_sec_max * 100.0,
+		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
+
+	print_res(name, bytes / g->p.nr_tasks / 1e9,
+		"GB,", "data/thread",		"GB data processed, per thread");
+
+	print_res(name, bytes / 1e9,
+		"GB,", "data-total",		"GB data processed, total");
+
+	print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
+		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
+
+	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
+		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
+
+	print_res(name, bytes / runtime_sec_max / 1e9,
+		"GB/sec,", "total-speed",	"GB/sec total speed");
+
+	if (g->p.show_details >= 2) {
+		char tname[32];
+		struct thread_data *td;
+		for (p = 0; p < g->p.nr_proc; p++) {
+			for (t = 0; t < g->p.nr_threads; t++) {
+				memset(tname, 0, 32);
+				td = g->threads + p*g->p.nr_threads + t;
+				snprintf(tname, 32, "process%d:thread%d", p, t);
+				print_res(tname, td->speed_gbs,
+					"GB/sec",	"thread-speed", "GB/sec/thread speed");
+				print_res(tname, td->system_time_ns / 1e9,
+					"secs",	"thread-system-time", "system CPU time/thread");
+				print_res(tname, td->user_time_ns / 1e9,
+					"secs",	"thread-user-time", "user CPU time/thread");
+			}
+		}
+	}
+
+	free(pids);
+
+	deinit();
+
+	return 0;
+}
+
+#define MAX_ARGS 50
+
+static int command_size(const char **argv)
+{
+	int size = 0;
+
+	while (*argv) {
+		size++;
+		argv++;
+	}
+
+	BUG_ON(size >= MAX_ARGS);
+
+	return size;
+}
+
+static void init_params(struct params *p, const char *name, int argc, const char **argv)
+{
+	int i;
+
+	printf("\n # Running %s \"perf bench syscall", name);
+
+	for (i = 0; i < argc; i++)
+		printf(" %s", argv[i]);
+
+	printf("\"\n");
+
+	memset(p, 0, sizeof(*p));
+
+	/* Initialize nonzero defaults: */
+
+	p->serialize_startup		= 1;
+	p->data_reads			= true;
+	p->data_writes			= true;
+	p->data_backwards		= true;
+	p->data_rand_walk		= true;
+	p->nr_loops			= 10000000;
+	p->init_random			= true;
+	p->mb_global_str		= "1";
+	p->nr_proc			= 1;
+	p->nr_threads			= 1;
+	p->nr_secs			= 5;
+	p->run_all			= argc == 1;
+}
+
+static int run_bench_syscall(const char *name, const char **argv)
+{
+	int argc = command_size(argv);
+
+	init_params(&p0, name, argc, argv);
+	argc = parse_options(argc, argv, options, bench_syscall_usage, 0);
+	if (argc)
+		goto err;
+
+	if (__bench_syscall(name))
+		goto err;
+
+	return 0;
+
+err:
+	return -1;
+}
+
+#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
+
+/*
+ * The built-in test-suite executed by "perf bench syscall -a".
+ */
+static const char *tests[][MAX_ARGS] = {
+   /* Basic single-stream NUMA bandwidth measurements: */
+   { "NULL-fail,",	  "null" },
+   { "NULL-fail,",	  "null", "-t", "2" }
+};
+
+static int bench_all(void)
+{
+	int nr = ARRAY_SIZE(tests);
+	int ret;
+	int i;
+
+	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
+	BUG_ON(ret < 0);
+
+	for (i = 0; i < nr; i++) {
+		run_bench_syscall(tests[i][0], tests[i] + 1);
+	}
+
+	printf("\n");
+
+	return 0;
+}
+
+int bench_syscall(int argc, const char **argv, const char *prefix __maybe_unused)
+{
+	init_params(&p0, "main,", argc, argv);
+	argc = parse_options(argc, argv, options, bench_syscall_usage, 0);
+	if (argc)
+		goto err;
+
+	if (p0.run_all)
+		return bench_all();
+
+	if (__bench_syscall(NULL))
+		goto err;
+
+	return 0;
+
+err:
+	usage_with_options(syscall_usage, options);
+	return -1;
+}
diff --git a/tools/perf/builtin-bench.c b/tools/perf/builtin-bench.c
index a1cddc6bbf0f..2600c031435c 100644
--- a/tools/perf/builtin-bench.c
+++ b/tools/perf/builtin-bench.c
@@ -9,10 +9,11 @@
 /*
  * Available benchmark collection list:
  *
- *  sched ... scheduler and IPC performance
- *  mem   ... memory access performance
- *  numa  ... NUMA scheduling and MM performance
- *  futex ... Futex performance
+ *  syscall ... syscall performance
+ *  sched   ... scheduler and IPC performance
+ *  mem     ... memory access performance
+ *  numa    ... NUMA scheduling and MM performance
+ *  futex   ... Futex performance
  */
 #include "perf.h"
 #include "util/util.h"
@@ -33,6 +34,12 @@ struct bench {
 	bench_fn_t	fn;
 };
 
+static struct bench syscall_benchmarks[] = {
+	{ "null",	"Benchmark for NULL syscall workloads",		bench_syscall		},
+	{ "all",	"Run all syscall benchmarks",			NULL			},
+	{ NULL,		NULL,						NULL			}
+};
+
 #ifdef HAVE_LIBNUMA_SUPPORT
 static struct bench numa_benchmarks[] = {
 	{ "mem",	"Benchmark for NUMA workloads",			bench_numa		},
@@ -73,6 +80,7 @@ struct collection {
 };
 
 static struct collection collections[] = {
+	{ "syscall",	"syscall benchmarks",				syscall_benchmarks	},
 	{ "sched",	"Scheduler and IPC benchmarks",			sched_benchmarks	},
 	{ "mem",	"Memory access benchmarks",			mem_benchmarks		},
 #ifdef HAVE_LIBNUMA_SUPPORT

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ