lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite for Android: free password hash cracker in your pocket
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <1459369015-28375-4-git-send-email-yuyang.du@intel.com>
Date:	Thu, 31 Mar 2016 04:16:52 +0800
From:	Yuyang Du <yuyang.du@...el.com>
To:	peterz@...radead.org, mingo@...nel.org,
	linux-kernel@...r.kernel.org
Cc:	bsegall@...gle.com, pjt@...gle.com, morten.rasmussen@....com,
	vincent.guittot@...aro.org, dietmar.eggemann@....com,
	lizefan@...wei.com, umgwanakikbuti@...il.com,
	Yuyang Du <yuyang.du@...el.com>
Subject: [PATCH RESEND v2 3/6] sched/fair: Add introduction to the sched load avg metrics

These sched metrics have become complex enough. We introduce them
at their definition.

Signed-off-by: Yuyang Du <yuyang.du@...el.com>
---
 include/linux/sched.h | 60 +++++++++++++++++++++++++++++++++++++++++----------
 1 file changed, 49 insertions(+), 11 deletions(-)

diff --git a/include/linux/sched.h b/include/linux/sched.h
index 54784d0..db3c6e1 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -1208,18 +1208,56 @@ struct load_weight {
 };
 
 /*
- * The load_avg/util_avg accumulates an infinite geometric series.
- * 1) load_avg factors frequency scaling into the amount of time that a
- * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
- * aggregated such weights of all runnable and blocked sched_entities.
- * 2) util_avg factors frequency and cpu capacity scaling into the amount of time
- * that a sched_entity is running on a CPU, in the range [0..SCHED_CAPACITY_SCALE].
- * For cfs_rq, it is the aggregated such times of all runnable and
+ * The load_avg/util_avg accumulates an infinite geometric series
+ * (see __update_load_avg() in kernel/sched/fair.c).
+ *
+ * [load_avg definition]
+ *
+ * load_avg = runnable% * scale_load_down(load)
+ *
+ * where runnable% is the time ratio that a sched_entity is runnable.
+ * For cfs_rq, it is the aggregated such load_avg of all runnable and
  * blocked sched_entities.
- * The 64 bit load_sum can:
- * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
- * the highest weight (=88761) always runnable, we should not overflow
- * 2) for entity, support any load.weight always runnable
+ *
+ * load_avg may also take frequency scaling into account:
+ *
+ * load_avg = runnable% * scale_load_down(load) * freq%
+ *
+ * where freq% is the CPU frequency normalize to the highest frequency
+ *
+ * [util_avg definition]
+ *
+ * util_avg = running% * SCHED_CAPACITY_SCALE
+ *
+ * where running% is the time ratio that a sched_entity is running on
+ * a CPU. For cfs_rq, it is the aggregated such util_avg of all runnable
+ * and blocked sched_entities.
+ *
+ * util_avg may also factor frequency scaling and CPU capacity scaling:
+ *
+ * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
+ *
+ * where freq% is the same as above, and capacity% is the CPU capacity
+ * normalized to the greatest capacity (due to uarch differences, etc).
+ *
+ * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
+ * themselves are in the range of [0, 1]. To do fixed point arithmetic,
+ * we therefore scale them to as large range as necessary. This is for
+ * example reflected by util_avg's SCHED_CAPACITY_SCALE.
+ *
+ * [Overflow issue]
+ *
+ * The 64bit load_sum can have 4353082796 (=2^64/47742/88761) entities
+ * with the highest load (=88761) always runnable on a single cfs_rq, we
+ * should not overflow as the number already hits PID_MAX_LIMIT.
+ *
+ * For all other cases (including 32bit kernel), struct load_weight's
+ * weight will overflow first before we do, because:
+ *
+ *    Max(load_avg) <= Max(load.weight)
+ *
+ * Then, it is the load_weight's responsibility to consider overflow
+ * issues.
  */
 struct sched_avg {
 	u64 last_update_time, load_sum;
-- 
2.1.4

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ