lists.openwall.net | lists / announce owl-users owl-dev john-users john-dev passwdqc-users yescrypt popa3d-users / oss-security kernel-hardening musl sabotage tlsify passwords / crypt-dev xvendor / Bugtraq Full-Disclosure linux-kernel linux-netdev linux-ext4 linux-hardening PHC | |
Open Source and information security mailing list archives
| ||
|
Date: Mon, 23 Jan 2017 15:39:05 +0000 From: Mel Gorman <mgorman@...hsingularity.net> To: Andrew Morton <akpm@...ux-foundation.org> Cc: Linux Kernel <linux-kernel@...r.kernel.org>, Linux-MM <linux-mm@...ck.org>, Vlastimil Babka <vbabka@...e.cz>, Hillf Danton <hillf.zj@...baba-inc.com>, Jesper Dangaard Brouer <brouer@...hat.com>, Mel Gorman <mgorman@...hsingularity.net> Subject: [PATCH 3/4] mm, page_alloc: Drain per-cpu pages from workqueue context The per-cpu page allocator can be drained immediately via drain_all_pages() which sends IPIs to every CPU. In the next patch, the per-cpu allocator will only be used for interrupt-safe allocations which prevents draining it from IPI context. This patch uses workqueues to drain the per-cpu lists instead. This is slower but no slowdown during intensive reclaim was measured and the paths that use drain_all_pages() are not that sensitive to performance. This is particularly true as the path would only be triggered when reclaim is failing. It also makes a some sense to avoid storming a machine with IPIs when it's under memory pressure. Arguably, it should be further adjusted so that only one caller at a time is draining pages but it's beyond the scope of the current patch. Signed-off-by: Mel Gorman <mgorman@...hsingularity.net> --- mm/page_alloc.c | 44 +++++++++++++++++++++++++++++++++++++------- 1 file changed, 37 insertions(+), 7 deletions(-) diff --git a/mm/page_alloc.c b/mm/page_alloc.c index dd2ded8b416f..1acdfd80031a 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -2339,19 +2339,21 @@ void drain_local_pages(struct zone *zone) drain_pages(cpu); } +static void drain_local_pages_wq(struct work_struct *work) +{ + drain_local_pages(NULL); +} + /* * Spill all the per-cpu pages from all CPUs back into the buddy allocator. * * When zone parameter is non-NULL, spill just the single zone's pages. * - * Note that this code is protected against sending an IPI to an offline - * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: - * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but - * nothing keeps CPUs from showing up after we populated the cpumask and - * before the call to on_each_cpu_mask(). + * Note that this can be extremely slow as the draining happens in a workqueue. */ void drain_all_pages(struct zone *zone) { + struct work_struct __percpu *works; int cpu; /* @@ -2360,6 +2362,17 @@ void drain_all_pages(struct zone *zone) */ static cpumask_t cpus_with_pcps; + /* Workqueues cannot recurse */ + if (current->flags & PF_WQ_WORKER) + return; + + /* + * As this can be called from reclaim context, do not reenter reclaim. + * An allocation failure can be handled, it's simply slower + */ + get_online_cpus(); + works = alloc_percpu_gfp(struct work_struct, GFP_ATOMIC); + /* * We don't care about racing with CPU hotplug event * as offline notification will cause the notified @@ -2390,8 +2403,25 @@ void drain_all_pages(struct zone *zone) else cpumask_clear_cpu(cpu, &cpus_with_pcps); } - on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, - zone, 1); + + if (works) { + for_each_cpu(cpu, &cpus_with_pcps) { + struct work_struct *work = per_cpu_ptr(works, cpu); + INIT_WORK(work, drain_local_pages_wq); + schedule_work_on(cpu, work); + } + for_each_cpu(cpu, &cpus_with_pcps) + flush_work(per_cpu_ptr(works, cpu)); + } else { + for_each_cpu(cpu, &cpus_with_pcps) { + struct work_struct work; + + INIT_WORK(&work, drain_local_pages_wq); + schedule_work_on(cpu, &work); + flush_work(&work); + } + } + put_online_cpus(); } #ifdef CONFIG_HIBERNATION -- 2.11.0
Powered by blists - more mailing lists